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We use time-dependent non-equilibrium dynamical mean-field theory with weak-coupling auxiliary-field con-
tinuous time quantum Monte Carlo as an impurity solver to study the thermalization behavior of the mass-
imbalanced single-band Hubbard model after a quench of the Coulomb interaction from the non-interacting
limit to a finite positive value. When the Coulomb interaction in our model is increased under equilibrium
conditions, the quasi-particle weight for spin-up and spin-down (the mass imbalance) electrons approach zero
simultaneously, indicating the absence of a spin-selective Mott transition. By contrast, our out-of-equilibrium
study of the mass-imbalanced Hubbard model suggests that there exists the spin-selective dynamical phase tran-
sition (one spin orientation undergoes a fast thermalization at its critical Coulomb interaction strength while
the other spin orientation shows prethermalization behavior). The spin-selective dynamical phase transition is
characterized by the relaxation behavior of the spin-resolved kinetic energy and the spin-resolved momentum-
dependent occupation. To make connection with possible experiments, we calculate the spin-resolved two-time
optical conductivity, which confirms the spin-selective thermalization plateau. We find the critical Coulomb
interaction of each spin orientation for the spin-selective thermalization grows as the mass imbalance decreases.

I. INTRODUCTION

Research on non-equilibrium, strongly correlated electronic
systems has seen dramatic progress on both the theoretical and
experimental side in the past decade.1–5 In non-equilibrium
systems, the observation of hidden quantum states which are
not accessible in equilibrium, and the non-equilibrium con-
trol of quantum phase transitions in correlated electron sys-
tems have attracted much interest.6–13 Two commonly studied
scenarios in non-equilibrium correlated electronic systems are
the quenched Coulomb interaction in cold atom systems14–16

and the laser driven solid state system.8–10,17 For example,
photo-induced transient transitions to superconductivity3, ul-
trafast switching to a stable hidden quantum state7 in a layered
dichalcogenide crystal of 1T-TaS2, and the dynamical phase
transition from anti-ferromagnetic to paramagnetic states18,19

illustrate some of the interesting experimentally observed phe-
nomenology.

In addition, the thermalization behavior after a sudden
change of one parameter (e.g., the hopping terms after turn-
ing on a laser or a Coulomb interaction quench) has attracted
much discussion.20–23 Fotso et al.24 studied the thermaliza-
tion of the one-band Hubbard model by applying a static elec-
tric field. The authors found there are different thermalization
scenarios: (1) Either a monotonic or oscillatory approach to
an infinite-temperature steady state; (2) Either a monotonic or
oscillatory approach to a non-thermal steady state; (3) Or evo-
lution to an oscillatory state. By studying the thermalization
behavior of an interacting closed system under periodic drive,
Abanin et al.25 showed the energy absorption rate decreases
exponentially as a function of driving frequency.

By comparison with equilibrium results on the Mott
metal-insulator-transition induced by increasing the on-site
Coulomb interaction in the single-band Hubbard model, Eck-
stein et al.22,26 found new behavior out-of-equilibrium–a ther-
malization plateau after a Coulomb interaction quench in the
one-band Hubbard model at half-filling and a dynamical phase
transition at a critical Coulomb interaction strength. For

small interaction strengths, a prethermalizaton plateau where
a quasi-steady state is approached is present on very short
time scales, while subsequent thermalization occurs on much
longer time scales. For larger interaction strengths, a collapse-
and-revival oscillating behavior of physical observables is ob-
served. Fast thermalization behavior is observed at the critical
Coulomb interaction strength. Away from half filling, the dy-
namical phase transition between these two regimes turns into
a crossover.27

In this work, we study the thermalization behavior in the
mass imbalanced Hubbard model28–31 after a Coulomb inter-
action quench. Here, the mass imbalance implies the hop-
ping amplitude of spin-↑ (V↑) and spin-↓ (V↓) electrons in
the Hubbard model are different. The two limits of mass
imbalance are physically motivated and well-studied: In the
case V↓/V↑ = 0, the spin-↓ fermions are fully frozen and we
arrive at the Falicov-Kimball model (where we used spin-↑
and spin-↓ to stand for two the fermion species often called
“c” and “f” in the Falicov-Kimball model).32,33 On the other
hand, if V↓/V↑ = 1, we recover the mass-balanced Hubbard
model. The mass imbalance can be achieved in a cold atom
system34 by having different atomic species35,36 or by gen-
erating a spin-dependent hopping through a magnetic field
gradient.37 Although the thermalization behavior of Falicov-
Kimball and the mass-balanced Hubbard model have been
well studied,22,26,38 it’s still unclear what the relaxation be-
havior will be as the mass imbalance is tuned between the two
limiting case above. This work fills that gap.

In equilibrium, an orbital selective Mott transition has been
observed in a two band system with different bandwidths39

and a three band system with lattice distortion.40 Motivated by
the orbital selective Mott transition in the multi-band system,
Dao et al.28 and Philipp et al.30 studied the metal-insulator
transition in the mass-imbalanced one band Hubbard model
in equilibrium using dynamical mean-field theory combined
with different impurity solvers. Their studies suggest that
although the spin-up and spin-down electron have different
bandwidth, an spin-selective Mott transition can not happen
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in equilibrium. Further, with increasing mass imbalance,
the critical Coulomb interaction for Mott transition decrease
monotonically. Based on the equilibrium results for mass im-
balanced one band Hubbard model above, it’s natural to ask:
(1) Can we find an spin-selective dynamical phase transition
in the non-equilibrium system? (2) What is the thermalization
behavior dependence on the mass imbalance? In this work,
we show there is indeed a spin-selective dynamical phase tran-
sition out-of-equilibrium and we compute the thermalization
behavior as a function of the mass imbalance using several
observables to illustrate the behavior.

Our paper is organized as follows. In Sec.II, we describe the
mass imbalanced Hubbard model and illustrate how we calcu-
late several physical observables within dynamical mean-field
theory. In Sec.III, we characterized the spin-selective dynam-
ical phase transition in the mass imbalanced Hubbard model
by presenting the relaxation behavior of the spin-resolved ki-
netic energy and the momentum distribution for each Fermion
species. We also confirmed the spin-selective dynamical
phase transition by calculating the spin-resolved optical con-
ductivity. Finally, in Sec.IV we summarize the main conclu-
sions of this work.

II. MODEL AND METHOD

The time-dependent mass-imbalanced single-band Hub-
bard model at half-filling is given by29–31,

H =
∑
〈ij〉σ

−Vσ
(
c†iσcjσ + c†jσciσ

)
+ U(t)

∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
, (1)

where c†iσ (ciσ) create (annihilate) one electron at site i with
spin σ, n̂iσ = c†iσciσ is the corresponding number op-
erator, 〈ij〉 restricts the hopping to nearest neighbors, Vσ
is the corresponding hopping amplitude for a spin σ elec-
tron (t is reserved for time), and U(t) denotes the time-
dependent Coulomb interaction strength between spin-↑ and
spin-↓ fermions on the same site. Throughout this paper, the
system is initially prepared in the ground state of the non-
interacting limit (Ut<0 = Ui = 0). At t = 0, the Coulomb
interaction is quenched to a constant value Ut≥0 = Uf > 0
for all later times. In the following, we set V↑ = 1 (1/V↑) as
our unit of energy (time) and vary the mass imbalance V↓/V↑
between 0 and 1.

We perform our calculations on the Bethe lattice, which has
a semi-elliptic densities of states

ρσ(ε) =
1

2πV 2
σ

√
4V 2

σ − ε2, (2)

with half-bandwidth Dσ = 2Vσ . The mass-imbalanced Hub-
bard model (1) can be solved exactly using non-equilibrium
dynamical mean field theory (DMFT),1,2,20,22,41 which maps
the lattice model self-consistently onto a single-site Ander-
son impurity model. We use non-equilibrium dynamical mean

FIG. 1. (Color online) Kinetic (Ekin), Coulomb interaction (Eint),
and total energy (Etot) as a function of time for the half-filled mass
imbalanced Hubbard model(V↓/V↑ = 1/4) after an interaction
quench from Ui = 0 to Uf at time t = 0. (a) Uf = 1.0, (b)
Uf = 1.7, (c)Uf = 2.0, (d)Uf = 2.5. The dashed black line denote
the analytical value of total energy using Eq.(7). Since the system is
closed, and the Hamiltonian after the quench is time-independent,
the total energy is a constant in time.

field theory with continuous time Monte Carlo42 (CTQMC)
as an impurity solver to solve the mass imbalanced Hubbard
model at zero temperature. We enforce a paramagnetic solu-
tion and half-filling of both spin-↑ and spin-↓ electrons. In the
mass-balanced Hubbard model, these constraints can be ful-
filled by explicitly symmetrizing over the two spin spices and
setting the chemical potential to be µ = U/2, respectively.
Away from this mass balanced Hubbard model limit, we again
enforce half-filling by fixing µ = U/2. However, to ensure
the paramagnetic solution at half-filling, we symmetrize the
Weiss’s functions in the Keldysh time contour using particle-
hole symmetry: G0,σ(t, t′) = −G0,σ(t′, t).

The expectational value of an observable O at time t is
given by

〈O(t)〉 =
1

Z0
Tr[e−βH(t<0)U(0, t)OU(t, 0)], (3)

where Z0 is the partition function of the non-interacting
Hamiltonian at t < 0, and U(t, 0) = T exp[−i

∫ t
0
H(t̄)dt̄] is

the time evolution operator. The momentum dependent den-
sity matrix is written as

nkσ(t) = nσ(εk, t) = −iG<kσ(t, t), (4)

where G<kσ(t, t) is the lesser Green’s function at equal time t
and momentum independence of the self-energy is assumed.
The time dependent spin-resolved kinetic energy is given by

Eσkin(t) =

∫
dεσρσ(εσ)εσn(εσ, t). (5)

The Coulomb interaction energy is given by

Eint(t) = U〈ni↑(t)ni↓(t)〉

= −i
∫
C
dt̄Σii↑(t, t̄)Gii↑(t̄, t) + 〈ni↑(t)〉/2, (6)



3

FIG. 2. (Color online) Spin-resolved kinetic energy, and Fermi-surface discontinuity as a function of time for the half-filled mass imbalanced
Hubbard model(V↓/V↑ = 1/4) after an interaction quench from Ui = 0 to Uf = U at time t = 0. (a-b) spin-↑ kinetic energy and Fermi
surface discontinuity in the relatively weak Coulomb interaction region, (c-d) spin-↑ kinetic energy and Fermi surface discontinuity in the
relatively strong Coulomb interaction region, (e-f) spin-↓ kinetic energy and Fermi surface discontinuity in the relatively weak Coulomb
interaction region, (g-h) spin-↓ kinetic energy and Fermi surface discontinuity in the relatively strong Coulomb interaction region. Here
the relative weaker or stronger are compared to the critical Coulomb interaction for the spin-selective dynamical phase transition for spin-↑
Uc↑ = 1.7 and spin-↓ Uc↓ = 2.0.

where C denotes the Keldysh contour.26 The total energy is

Etot =
∑
σ

Eσkin + Eint. (7)

The Fermi-surface discontinuity is defined as

∆n(t) = n(ε = 0−, t)− n(ε = 0+, t). (8)

The effective temperature after interaction quench is calcu-
lated by numerically solving the equation,26

E(0+) =
Tr
[
H(0+)e−βeffH(0+)

]
Tr
[
e−βeffH(0+)

] , (9)

where E(0+) is the same as Eq.(7), and H(0+) is the Hamil-
tonian after quench. As the system is fully thermalized, the
physical observables will be the same as for the equilibrium
system with effective temperature determined by Eq.(9), and
the same Hamiltonian after quench.

III. THERMALIZATION PICTURE AFTER COULOMB
INTERACTION QUENCH

Since the Hamiltonian after the Coulomb interaction
quench H(t ≥ 0) is independent of time, the total energy
of the closed system will remain constant in time. This char-
acter can serve as a check on the reliability of the CTQMC
impurity solver applied to the SU(2) symmetry broken case
that we consider here.

In the current case, because the initial Coulomb interaction
is zero, U(t < 0) = 0, we have the momentum distribution
n0
εk

= θ(−εk) and double occupancy 〈n↑n↓〉0 = 1/4, where

θ is a step function. The total energy after the Coulomb inter-
action quench will be

Etot(t = 0+) =
∑
σ

∫
dεσρσ(εσ)εσn

0
ε + U(t = 0+)/4

= −4(V↑ + V↓)/(3π) + Uf/4, (10)

where we analytically integrate over the Bethe lattice density
of states, Eq. (2), up to the Fermi energy.

A. Interaction quench for mass imbalance V↓/V↑ = 1/4

In Fig.1, we plot the relaxation behavior of the ki-
netic, Coulomb interaction, and total energy for Uf =
1.0, 1.7, 2.0, 2.5. The black dashed line is the total energy cal-
culated analytically using Eq.(10). The dots are the energies
calculated using non-equilibrium DMFT with CTQMC as the
impurity solver. The analytical and numerical results of the
total energy are in good agreement with each other, indicating
the CTQMC impurity solver is reliable for the Hamiltonian
Eq.(1). The kinetic and Coulomb energy approach the quasi-
steady state very fast on a time scale set by 1/Uf . By solv-
ing the Eq. (9) with equilibrium DMFT using CTQMC42 as
the impurity solver, we get the effective temperature for each
quenched Coulomb interaction:

• Uf = 1.0;Etot = −0.28052, βeff = 7.740.

• Uf = 1.7;Etot = −0.10552, βeff = 2.420.

• Uf = 2.0;Etot = −0.03052, βeff = 1.704.

• Uf = 2.5;Etot = +0.09448, βeff = 1.114.
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FIG. 3. (Color online) Momentum distribution nε(t) as a function
of time and energy for quenches from Ui = 0 to Uf for the half-
filled mass imbalanced Hubbard model (V↓/V↑ = 1/4). From top
to bottom are the data calculated using non-equilibrium DMFT for
Uf = 1.0, 1.7, 2.0, 2.5, respectively. The left column (red dot) and
right column (blue dot) are for spin-↑ and spin-↓ electrons, respec-
tively. Note the transition to an oscillatory behavior occurs first for
the spin-↑ (left column) electrons as the interactions are increased.

If the quenched system arrives at its thermal equilibrium state
at sufficiently long time, the temperature of the state is given
by Teff = 1/βeff .26 In this paper, we will compare the ex-
pectation values of observables after the quench with its ther-
mal equilibrium expectation values at T = Teff to indicate
whether the system is fully thermalized or not. The effective
temperature increases with the final Coulomb interaction be-
cause the scattering processes induced by a larger Coulomb
interaction will lead to higher a temperature of the system. As
indicated in Ref.[26], the Fermi-surface discontinuity of the
momentum distribution can be a good criteria to characterize
the relaxation after an interaction quench. A finite jump of
∆n(ε = 0, t) clearly indicates the system is not fully ther-
malized because the thermalized system with finite effective
temperature Teff will have a continuous distribution (that is,
no jump) at all the energies.

Following Ref. [22], we characterize the spin-selective dy-
namical phase transition in the quenched mass imbalanced
Hubbard model by plotting the evolution behavior of the spin-
resolved kinetic energy and Fermi surface discontinuity in

FIG. 4. (Color online) The figure shows the Fermi-surface discon-
tinuity ∆n (see Fig.3) as a function of time for different Coulomb
interaction Uf = 1.0, 1.7, 2.0, 2.5. We fixed V↓/V↑ = 1/4 for the
half-filed mass imbalanced Hubbard model.

Fig. 2. From Fig. 2(a-b), one sees the spin-↑ kinetic energy for
the relatively weak Coulomb interaction region (U < Uc↑ =
1.7) approaches the quasi-stationary state rapidly, reaching it
at t ≈ 3, while the Fermi-surface discontinuity is still evolv-
ing over the time scale shown in the figure. For the larger
Coulomb interaction region shown in Fig. 2(c-d), both the ki-
netic energy and the Fermi-surface discontinuity exhibit a de-
caying collapse-and-revival behavior. However, at the critical
Coulomb interaction Uc↑ = 1.7, the two quantities undergo
a rapid thermalization process and approach the thermalized
state already at t ≈ 3. This sharp crossover between the rela-
tively weak and relatively strong Coulomb interaction behav-
ior is defined as the dynamical phase transition critical point
for spin-up electrons. At this critical Coulomb interaction, the
spin-↓ electron is still evolving up the time scale calculated
t = 5 [shown in Fig. 2 (f) with U = 1.7]. By looking at the
kinetic energy and Fermi surface discontinuity for the spin-↓
in Fig. 2(e-h), one sees that the critical Coulomb interaction
for spin-↓ electrons undergo fast thermalization is Uc↓ = 2.0.
In conclusion, we characterize the dynamical phase transition
using the spin-resolved kinetic energy and the Fermi surface
discontinuity. The critical Coulomb interaction for different
spin orientations is different in the quenched mass imbalanced
model. This picture is confirmed by comparison with an equi-
librium calculation at an effective temperature and the calcu-
lated optical conductivity that will be shown in later sections
of this paper.

In Fig. 3 we plot the spin-resolved momentum dependent
occupation number as a function of energy and time for dif-
ferent Coulomb interaction Uf . A cut of Fig.3 to show the
Fermi-surface discontinuity is plotted in Fig. 4. Some general
thermalization features are evident in Fig. 3 and Fig. 4. At
time t = 0, both spin species are occupied up to the Fermi
energy (since the initial condition is a zero-temperature non-
interacting system). Hence, the Fermi surface discontinuity
is fixed at ∆nσ = 1.0 for all Coulomb interaction strengths
and both the spin species at t = 0. At very short times, the
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FIG. 5. (Color online) Momentum distribution nε(t) as a function
of energy at fixed time t = 3.5 for quenches from Ui = 0 to Uf .
The dotted points data are calculated using non-equilibrium DMFT.
The solid black line shows the momentum distribution at an effective
temperature Teff calculated using equilibrium DMFT with CTQMC
as an impurity solver. We fixed V↓/V↑ = 1/4 for the half-filfed mass
imbalanced Hubbard model.

momentum distributions evolve toward the thermalized state
with zero discontinuity at Fermi surface. These features ap-
pear to be transient in quenched dynamics. At intermediate
time scales, we observed some mixture of the transient and
prethermalization pictures.

At Uf = 1.0, the Fermi-surface discontinuity decreases
monotonically, maintaining a finite value for the time scale
shown. This demonstrates the prethermalization picture in
which the kinetic and Coulomb interaction energies relax to
a quasi-stationary state rapidly (shown in Fig. 1) while the
momentum distribution evolves over a longer time scale. By
comparing the two spin species, one can see the momen-
tum distribution gap at the Fermi surface is smaller for spin-
up particles. According to the study of Moeckel et al.21 at
weak Coulomb interaction region, ∆nσ = 2Z − 1 for a
quasi-stationary state in the weak Coulomb interaction region,
where Zσ the quasi-particle weight at zero temperature for
spin σ calculated in equilibrium. The quasi-particle weight
calculated from Ref.[28 and 30] shows the particle species
with larger bandwidth has smaller quasi-particle weight.

To further confirm the system is not thermalized on the time

FIG. 6. (Color online) Momentum distribution nεk (t) for quenches
from Ui = 0 to Uf . Left column: Uf = 4.0. Right column: Uf =
8.0. From top to bottom, the data are the momentum distribution as
a function of time for spin-↑, spin-↓ electrons, and the Fermi surface
discontinuity, respectively. We fixed V↓/V↑ = 1/4 for the half-filed
mass imbalanced Hubbard model.

scale shown in Figs. 3,4, we calculate the momentum distri-
bution for the quasi-stationary state with the effective tem-
perature Teff = 0.129 obtained by doing equilibrium DMFT
with CTQMC as the impurity solver. The comparison of the
non-equilibrium results at t = 3 and the equilibrium data at
effective temperature Teff is shown in Fig. 5 with Uf = 1.0.
The apparent deviation between the data in out-of-equilibrium
and in equilibrium (Teff = 0.129) indicate the studied system
has not reached a thermal state.

Further increasing the Coulomb interaction illustrates a
very different relaxation behavior. Here we choose three dif-
ferent final Coulomb interactions Uf = 1.7, 2.0, 2.5. At
Uf = 1.7, the Fermi-surface discontinuity of spin-up particles
approaches zero at around t = 2.6, while the spin-down parti-
cles are still gapped up to t = 5.0. Here the disappearance of
the Fermi-surface discontinuity indicates the spin-up particles
have approached a thermalized state. The finite discontinuity
of the spin-down particles indicates they are still in a non-
thermal state. This conclusion can be confirmed by doing an
equilibrium calculation with the same Hamiltonian after the
quench at the effective temperature. The effective tempera-
ture Teff = 0.413 is calculated through Eq.(9). In Fig. 5 with
Uf = 1.7, for the spin-up particles, the momentum distribu-
tion demonstrates a good match for the non-equilibrium and
equilibrium results indicating the thermal equilibrium state is
reached for this specific spin. However, there exist apparent
deviation between the two data for the spin-down particles.
This provides clear evidence for the spin selective dynamical
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FIG. 7. (Color online) The spin-resolved optical conductivity
σ↑(↓)(t + s, t) after Coulomb interaction quench to U = 1.0 (a),
U = 1.7 (b), U = 2.0 (c), U = 2.5 (d). The black solid lines shows
the optical conductivity in thermal equilibrium at Teff = 0.129 (a-
b),Teff = 0.413 (c-d), Teff = 0.587 (e-f), Teff = 0.898 (g-h)
.We fixed V↓/V↑ = 1/4 for the half-filed mass imbalanced Hub-
bard model.The left column and right column are data for spin-↑ and
spin-↓ electrons, respectively.

phase transition where the spin-↑ (↓) is (not) thermalized in
some time window.

Continuing to increase the final Coulomb interaction to
Uf = 2.0, we find that the Fermi-surface discontinuity of
spin-up particles enters a collapse and revival oscillation with
a small amplitude and the spin-down particles approach zero
and maintain the same zero value as time increases. Increasing
the Coulomb interaction to Uf = 2.7, we find the two species
exhibit clear collapse and revival oscillations, while they have
different oscillating periods. From analytical results based on
the strong Coulomb interaction limit,22 all observables oscil-
late with period 2π/Uf . Here we attribute the behavior to be
in the intermediate Coulomb interaction regime because the
kinetic and Coulomb energy are not oscillating clearly and the
oscillations of spin-up and down particles have different peri-
ods. To confirm our conclusion, we calculated the momentum
distribution in the strong coupling region in Fig. 6. Further
increasing the final Coulomb interaction up to Uf = 4.0, 8.0,
the momentum distribution for the two spin particles exhibit

FIG. 8. (Color online) Momentum distribution nεk (t) for quenches
from Ui = 0 to Uf for the half-filed mass imbalanced Hub-
bard model(V↓/V↑ = 1/2). From top to bottom are for Uf =
1.0, 2.2, 2.4, 4.0, the first and second column show the result for
spin-↑ and spin-↓ electron, respectively.

a collapse and revival oscillation with a period close to each
other and finally approach 2π/Uf .

B. Spin-resolved optical conductivity

In order to make contact with experiments and to provide
more evidence of the spin selective thermalization picture,
we compute the two-time spin-resolved optical conductivity
σ↑(↓)(t, t

′). In solid state systems, the optical spectroscopy is
based on a pump-probe setup in which a strong laser “pumps”
a system out of equilibrium and a weak “probe” light is used
measure the spectroscopy. Here, for the quenched system, the
system is already out of equilibrium, so we need only the weak
probe light to determine the linear response of the electrical
current in the non-equilibrium state. We use a time-dependent
electric field δE(t̄), for the probe light giving a change in the
current,

δ〈j(t)〉 =

∫ t

−∞
dt̄σ(t, t̄)δE(t̄). (11)
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FIG. 9. (Color online) The figure shows the Fermi-surface discon-
tinuity ∆n as a function of time for different Coulomb interaction
Uf = 1.0, 2.2, 2.4, 4.0 from top to bottom. We fixed V↓/V↑ = 1/2
for the half-filed mass imbalanced Hubbard model.

Details of the calculation of the optical conductivity using
non-equilibrium DMFT can be found in Ref. [43]. The op-
tical conductivity is measured in units of σ0 = 2ρa2e2V/~2,
with a the lattice constant, ρ number of lattice sites per volume
and V the volume of the sample. As the system approaches its
thermal equilibrium state, the electrical response will become
stationary. This can serve as another criteria to check if the
system is relaxed to its thermal equilibrium state.26,38

Fig. 7 shows the spin-resolved two time optical conductiv-
ity as a function of the time difference, s, with different final
Coulomb interaction Uf = 1.0, 1.7, 2.0, 2.5. After quenching
to Uf = 1.0 [Fig.7 (a-b)], the optical conductivity shows a
rapid initial relaxation, while the thermal equilibrium state is
not approached on the time scale shown in the figure for both
spin-↑ and spin-↓ electrons. The confirms the prethermaliza-
tion picture supported by the momentum distribution. For the
quench to Uf = 1.7 [Fig.7 (c-d)], we observe a rapid relax-
ation of the optical response for the spin-↑ electrons. The op-
tical conductivity depends only on the time difference s, and
is in good agreement with the equilibrium optical conductivity
with Teff = 0.413. However, for the spin-↓ electrons, an ap-
parent deviation of the non-equilibrium data and the equilib-
rium data suggest the thermal equilibrium state is not reached.
The confirms the picture of the spin selective thermalization
plateau indicated by the momentum distribution. Further in-
creasing the final Coulomb interaction to Uf = 2.0 [Fig.7
(e-f)], the spin-up electrons show a collapse and revival be-
havior, while the spin-down electrons exhibit fast relaxation to
equilibrium states. Continuing to increase the final interaction
strength [Fig.7 (g-h)], both spins species exhibit an oscillating
character. The deviation from the large interaction limit (with
oscillating period 2π/Uf ) indicates the Coulomb interaction
in still in the intermediate region, which is consistent with the
behavior seen in the momentum distribution jump.

C. Dependence of spin selective dynamical phase transition on
mass imbalance

In order to study the dependence of the spin-selective dy-
namical phase transition, we study the mass imbalanced Hub-
bard model with a different imbalance ratio,V↓/V↑ = 1/2.
The spin-resolved momentum occupation and Fermi surface
discontinuity for different Coulomb interactions are shown in
Fig.8 and Fig.9, respectively. The momentum dependent dis-
tribution and Fermi surface discontinuity exhibit very simi-
lar behavior compared with V↓/V↑ = 1/4. Prethermaliza-
tion is illustrated at Uf = 1.0 with the momentum occupa-
tions for the two spin evolving with the time scale shown.
At Uf = 2.2, the spin-↑ electron approaches the thermalized
state rapidly (t ≈ 2.2) while the spin-↓ electron takes a longer
time (t ≈ 4.5) to thermalize. Further increasing the Coulomb
interaction (Uf = 2.4) will induce an oscillating behavior
for the spin-↑ electron while the spin-↓ electron thermalizes
rapidly. As the Coulomb interaction moves into the large
Coulomb interaction region (Uf = 4.0), the approximately
period 2π/Uf oscillating behavior is observed. Here the crit-
ical Coulomb interaction for the spin-↑ dynamical phase tran-
sition is Uf = 2.2. The length of the time region where only
one-spin species is thermalized is ∆t = 4.5 − 2.2 = 2.3
[Fig.9]. At the mass imbalance ratio V↓/V↑ = 1/4, the crit-
ical Coulomb interaction is Uf = 1.7. the length of region
is ∆t = 8.5 − 2.6 = 5.9 [Fig.4]. Further, as the mass im-
balance is reduced, the critical Coulomb interaction for the
spin-selective dynamical phase transition is increased. As
one approaches the mass balanced limit, the time widow will
disappear22 with critical Coulomb interaction U = 3.2. Our
results are consistent with the equilibrium study of the Mott
transition in the mass imbalanced Hubbard model where the
critical U increases as the mass imbalance decreases.28,30

IV. DISCUSSION AND CONCLUSIONS

In this work, we theoretically studied the thermalization be-
havior in the mass imbalanced Hubbard model after a quench
of the Coulomb interaction, which can be realized experi-
mentally in cold atom systems. We checked the reliability
of the impurity solver for the SU(2) symmetry broken case
by computing the self-consistency of total energy. We char-
acterized the spin-selective dynamical phase transition by il-
lustrating the relaxation behavior of the spin-resolved kinetic
energy and momentum-dependent occupation. In the weak
Coulomb interaction region, a prethermalization picture is ob-
served, where prethermalization is characterized as the kinetic
thermalizing to a quasi-stationary state rapidly while the mo-
mentum dependent occupation evolves on a longer time scale.
In the medium interaction regime, an spin selective thermal-
ization plateau is observed. We find that there exists a crit-
ical Coulomb interaction Uc↑ where the spin-↑ particles ap-
proach a thermalized state rapidly while the spin-↓ particles
take longer to evolve. Further increasing the Coulomb inter-
action in a very small parameter regime to Uc↓, we find that
the spin-↓ particles thermalize rapidly to a thermalized state
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while the momentum dependent occupation of spin-↑ parti-
cles begin to oscillate in time. Further increasing the Coulomb
interaction, the two spin species oscillate, but have different
periods. Finally, as one approaches the strong Coulomb inter-
action limit, the period of the two spin species approach each
other and converge to 2π/U . To make contact with experi-
ments, we calculate the spin-resolved two-time optical con-
ductivity. This further supports the spin-selective dynamical
phase transition picture. Finally, we study the dependence of
spin-selective dynamical phase transition on the mass imbal-
ance, and find that the critical Coulomb interaction increase
when the mass imbalance decreases, which is consistent with

the equilibrium study on Mott transition in mass imbalanced
Hubbard model.
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