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We study the eigenstate phases of disordered spin chains with on-site finite non-Abelian symmetry.
We develop a general formalism based on standard group theory to construct local spin Hamiltonians
invariant under any on-site symmetry. We then specialize to the case of the simplest non-Abelian
group, S3, and numerically study a particular two parameter spin-1 Hamiltonian. We observe a
thermal phase and a many-body localized phase with a spontaneous symmetry breaking (SSB) from
S3 to Z3 in our model Hamiltonian. We diagnose these phases using full entanglement distributions
and level statistics. We also use a spin-glass diagnostic specialized to detect spontaneous breaking
of the S3 symmetry down to Z3. Our observed phases are consistent with the possibilities outlined
by Potter and Vasseur [Phys. Rev. B 94, 224206 (2016)], namely thermal/ ergodic and many-body
localized spin-glass (MBL-SG) phases. We also speculate about the nature of an intermediate region
between the thermal and MBL+SSB regions where full S3 symmetry exists.

I. INTRODUCTION

Statistical mechanics and thermodynamics are bridges
that connect microscopic laws such as Newtonian and
quantum mechanics to macroscopic phenomena that we
measure in the laboratory. The validity of statistical
physics relies on the existence of thermal equilibrium. For
an isolated quantum system, the notion of thermalization
is understood in the form of the Eigenstate Thermaliza-
tion hypothesis (ETH)1,2. ETH posits that for a quantum
system, an eigenstate embodies an ensemble and ther-
malization can be diagnosed by monitoring if subsystems
are thermal with respect to the rest of the system. Fur-
thermore, if the system thermalizes, all eigenstates are
thermal. Integrable systems violate ETH due to the ex-
istence of an extensive number of conserved quantities
that prevent the system from acting as a bath for it-
self. However, quantum integrable models are highly fine
tuned and one recovers thermalization by any infinitesi-
mal deviation from the integrable point.

Recently, many-body localization (MBL) has emerged
as a generic class of interacting and disordered isolated
systems which violate ETH. Basko et al.3 showed that
all many-body eigenstates remain localized to all orders
in perturbation for an effective interacting disordered
model. Several numerical works subsequently verified
that all many-body eigenstates are localized in one di-
mensional disordered lattice models with short-range in-
teractions4–9. Furthermore, there has been a mathemati-
cal proof by Imbrie10 for the existence of MBL in a partic-
ular disordered spin model with short range interactions.
The absence of thermalization has been further quanti-
fied as a consequence of emergent integrability due to
the presence of a complete set of local integrals of mo-
tion (LIOMs). The key distinction from fine tuned inte-
grable models is that the LIOMs or ‘lbits’ (for localized
bits) in the MBL phase are robust against perturbations.
One can use these lbits to construct a phenomenological
lbit Hamiltonian that captures the entanglement dynam-

ics11–14.

Having established the existence of MBL and its vio-
lation of ETH in certain models, natural questions that
arise are “what is the most robust version of MBL?” and
“does it lead to a refined notion of ETH?” To this end, it
is worthwhile to consider instabilities to the MBL phase
that lead to delocalization and thereby the restoration of
thermalization. Recent works have considered instabili-
ties to the MBL phase due to a small bath15,16, external
drive17, Griffiths effects and dimensionality18,19, topolog-
ically protected chiral edge20 and a single particle mo-
bility edge21,22. Contrary to the common wisdom that
these instabilities would lead to the complete restoration
of thermalization, preliminary numerical results have in-
dicated that the lack of thermalization tends to survive
in some form in all these cases. However, the fate of these
exotic phases in the thermodynamic limit is still an open
question.

Potter and Vasseur23 have recently added another in-
stability to this list. It was argued that the l-bit Hamil-
tonian ‘enriched’ with non-Abelian symmetry that is not
spontaneously broken is unstable to perturbations. This
instability arises from the extensive degeneracy in the
spectrum of the l-bit Hamiltonian associated with the
higher-dimensional irreducible representations (irreps) of
the non-Abelian group. Any perturbation of such a spec-
trum results in resonant delocalization making MBL un-
stable, driving the system to thermalization or a quan-
tum critical glass (QCG)-like phase24,25. On the other
hand, if the non-Abelian symmetry was spontaneously
broken to an Abelian subgroup, the system could localize
and be driven to the so-called many-body localized spin-
glass (MBL-SG) phase which is characterized by MBL as
well as long range order arising from spontaneous sym-
metry breaking8,26,27.

Thus symmetry provides a platform to search for ex-
otic violations of ETH beyond MBL in strongly interact-
ing systems. To this end, in this paper, we develop a
procedure to construct general Hamiltonians with global
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symmetries and analyze the thermalization and local-
ization indicators for individual eigenstates. As a par-
ticular example, we construct a two-parameter Hamil-
tonian with on-site S3 symmetry. Using numerical ex-
act diagonalization of our model Hamiltonian, we calcu-
late cut-averaged entanglement entropy (CAEE) distri-
butions and level statistics which are indicators of local-
ization and a spin-glass diagnostic which detects sym-
metry breaking. Within the accuracy of our numerical
analysis, we are able to distinctly observe both a thermal
phase and an MBL-SG phase with spontaneous symme-
try breaking of S3 to Z3 symmetry.

We also employ the same diagnostics to quantify
an intermediate region between the aforementioned two
phases where the full S3 symmetry is intact. However, we
cannot ascertain the fate of this region in thermodynamic
limit, due to the possibility of quantum critical cone like
finite-size effects28. The paper is organized as follows. In
Sec. II we construct a general S3 symmetric Hamiltonian
using group theory methods. We numerically diagonal-
ize our model and compute indicators of localization and
symmetry breaking in III. We end the paper with dis-
cussion of results and conclusion. We provide a review of
the conjecture by Potter and Vasseur23 on the incompat-
ibility of MBL with non-Abelian symmetries and other
details of our analysis in the Appendices.

II. MODEL S3 INVARIANT HAMILTONIAN

In this section, we analyze a specific spin-1 Hamil-
tonian that is invariant under the smallest non-Abelian
group, S3. In terms of the spin angular momentum basis
|S = 1, Sz = +1, 0,−1〉, the spin operators are

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sz =

1 0 0
0 0 0
0 0 −1

 ,

Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , S± =
1√
2

(Sx ± iSy).

The symmetry group S3 contains six elements: S3 =
{1, a, a2, x, xa, xa2}, and the two generators, a and x,
satisfy the properties a3 = x2 = 1 and xax = a−1. Note
that in this paper, we refer to the identity element of the
group simply as 1. In the spin basis, they are chosen to
have the following representations,

V (a) =

ω 0 0
0 1 0
0 0 ω∗

 , V (x) =

0 0 1
0 −1 0
1 0 0

 , (1)

where ω = e2πi/3. It can be verified that the spin opera-
tors transform under the generators as follows,

V (a)S± V (a)† = ω±1S±, V (a)Sz V (a)† = Sz (2)

V (x)S± V (x)† = −S∓, V (x)Sz V (x)† = −Sz. (3)

Using the symmetry arguments detailed in Appendix B,
we construct the following Hamiltonian:

H(λ, κ) = λHd(κ) +Ht, (4)

Hd(κ) =

L∑
i=1

(1− κ) hi (Szi )2 + κ Ji S
z
i S

z
i+1,

Ht = ∆t [Ha +Hb +Hc] ,

Ha = a

L∑
i=1

(S+
i )2(S−i+1)2 + (S−i )2(S+

i+1)2 + h.c,

Hb = b

L∑
i=1

(S+
i S

z
i )(S−i+1S

z
i+1) + (S−i S

z
i )(S+

i+1S
z
i+1) + h.c,

Hc = c

L∑
i=1

(S+
i )2(S+

i+1S
z
i+1) + (S−i )2(S−i+1S

z
i+1) + h.c.

The above Hamiltonian consists of two parts: 1) The
disordered part Hd with a one body (disordered hi term)
and a two-body l-bit term (disordered Ji term). The
two-body term is designed to drive spontaneous symme-
try breaking of non-Abelian S3 symmetry down to an
Abelian Z3 symmetry. The relative strengths of these
two terms are controlled by the κ ∈ [0, 1] parameter,
where κ = 1 is expected to be the SSB limit. 2) The
second term Ht, the thermalizing term, contains a repre-
sentative subset of the most general two-body symmetric
operators. The intention is to keep Ht sufficiently generic
while retaining invariance under symmetry action (see
Appendix B for details of how this Hamiltonian is con-
structed and can be generalized to arbitrary symmetry
groups). The λ parameter controls disorder strength.

Using the transformation of the spin operators listed
above, it is straightforward to verify that the Hamilto-
nian has the desired symmetry, that is, ∀g ∈ S3

U(g)H(λ, κ)U(g)† = H(λ, κ), U(g) =

L⊗
i=1

V (g)i. (5)

For numerical analysis, the parameters in the Hamil-
tonian are selected as follows, (a) hi = wh gh(i),
Ji = wJ gJ(i) and gh/J(i) are random numbers drawn
from a normal distribution with mean 0 and stan-
dard deviation 1; (b) (wh, wJ ,∆t, a, b, c) are free real
parameters. We arbitrarily fix these to the values
(1.0, 0.6, 0.17, 0.74, 0.67, 0.85) respectively for our numer-
ical study without loss of generality.

III. NUMERICAL RESULTS

We perform exact diagonalization of the Hamiltonian
in Eq. 4. The local Hilbert space for the S3 symmetric
Hamiltonian is three dimensional, in contrast to the spin
1
2 case and this constraints our maximum system size ac-
cessible to be L = 10 sites. We study the properties of
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the eigenstates pertaining to localization and thermaliza-
tion of this Hamiltonian for various values of λ ∈ (0,∞)
and κ ∈ [0, 1]. For clarity of presentation of certain anal-
ysis, we use the rescaled variable λ

1+λ ∈ (0, 1) instead

of λ (wherever mentioned). We employ periodic bound-
ary conditions for all our analysis. To characterize the
phases, we study below several relevant diagnostics that
quantify the nature of localization and thermalization of
the eigenstates. First, we consider the full entanglement
distributions evaluated using the cut averaged entangle-
ment entropy.

A. Cut averaged entanglement entropy
distributions

Since MBL is a characteristic of a single eigenstate,
it is useful to quantify this phase without averaging
across different eigenstates. Recent work by Yu-Clark
and Pekker29 has proposed cut averaged entanglement
entropy (CAEE) to quantify the MBL phase at the level
of a single eigenstate. CAEE for a subsystem size, d,
is obtained by taking the average of the entanglement
entropy computed for all subsystems of a specific size
d (contiguous spins contained in a segment of length d)
located on the spin chain with periodic boundary con-
ditions. The CAEE scaling, S(d) is then evaluated by
repeating this procedure for different subsystem sizes,
d. The key advantage of the CAEE is that strong sub-
additivity condition constrains the shape of the entan-
glement scaling as a function of subsystem size, i.e. ,
S(d) is guaranteed to be a smooth convex function of
the subsystem size, d without any average over disorder
or eigenstates29. This allows us to quantify the entan-
glement scaling of each eigenstate using the slope of the
CAEE (SCAEE), S′(d∗), at some fixed subsystem size,
d∗ as in Ref29. We can then construct the full distri-
bution of the slopes across the disorder snapshots and
eigenstates. Fig. 1 shows sample CAEE, along with a
spline fit for 200 randomly chosen eigenstates for 4 dif-
ferent {λ, κ} from a few disorder realizations of a 10-site
Hamiltonian [4]. It can be seen that the eigenstates for
small λ are mostly volume law, while for large λ, there
exists mixture of area-law and volume-law states. In or-
der to identify the nature of the eigenstate transitions
for various parameter regimes, we monitor the full dis-
tribution of the slope of the CAEE (SCAEE) evaluated
at subsystem size L/4 (S′(L/4)) for different values of λ
and κ and disorder realizations. Operationally, we com-
pute SCAEE as follows: for each eigenstate, we obtain
the CAEE scaling, S(d) for d = 0 . . . L, fit the data to a
curve using a spline fit and then evaluate the slope, S′(d)
for this fit curve at d = L/4.

There is however a potential issue because of the non-
Abelian nature of the S3 symmetry of the Hamiltonian.
Generally, at finite-sizes, the eigenstates of a Hamiltonian
invariant under the action of a symmetry group G trans-
form as irreps of the same group. For our case, S3 has 3
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FIG. 1. (Color online) CAEE and spline fit for 200 eigenstates
randomly sampled from the spectra of 19 disorder realizations
of the 10 site Hamiltonian (4).

irreps- two 1D irreps (1, 1′) and one 2D irrep (2). Eigen-
states that transform as the 2 are two-fold degenerate.
We may get different entanglement scaling depending on
which precise orthonormal states in this 2D vector space
is produced as the eigenstates30. To avoid this issue, we
diagonalize the Hamiltonian in the 1D irrep sector. In
addition to ensuring that we only sample non-degenerate
eigenstates which transform as 1D irreps, this also helps
us in reaching higher system sizes (See Appendix [C] for
more details).
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FIG. 2. (Color online) Slope histograms for 9 sites and 879
disorder samples for representative {λ, κ}. 243 Eigenstates
that transform as 1D irreps chosen sampled for each disorder
realization. The plot is normalized to have unit area.

Fig. 2 shows the distribution of S′(L/4) for different λ
and κ. The values of λ are chosen so as to show what the
distribution looks like when the system has strong, weak
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and intermediate disorder strength. For all values of the
SSB parameter κ, for weak disorder λ, we see that the
S′(L/4) distribution becomes increasingly narrow with
system size with a peak located close to 1.1 ≈ log(3)
which is the maximum value possible for S′(d) for any
state of spin-1 chain. This is also evident from the large
number of eigenstates with volume-law entanglement en-
tropy scaling S(d) ∝ d in Fig. 1. These properties are
consistent with an ergodic/ thermal phase. For high dis-
order however, we see that the distribution for κ = 0 in
Fig. 2 is different from κ = 1. For the former, there is a
relatively extended thermal tail which is suppressed for
the latter. To gain a better understanding we present the
first two moments (mean and variance) of this slope dis-
tribution which are indicators of a potential MBL tran-
sition.
κ = 1 with S3 → Z3 symmetry breaking: The entan-

glement distribution for the κ = 1 limit Fig. 2 and its
moments, displayed in the upper panels of Figs. 3,4 are
consistent with the existence of an MBL phase for the
large disorder limit and transitions to a fully thermal
phase for weak disorder. One way to estimate the transi-
tion point is by locating where the mean, S′(L/4) curves
for different system sizes cross on the λ axis in Fig. 3.
This is roughly at λ/(1 + λ) ≈ 0.72. Another is by lo-
cating the peak of the variance, σ2(S′(L/4)) curve on
the λ axis which is believed to be close to the point of
phase transition in the thermodynamic limit28,31. The
drift of this point towards the disorder side i.e. larger λ
with increase in system size is considered to be typical
for exact diagonalization (ED) studies of MBL28. Since
our model has a non-Abelian symmetry, the existence of
a full MBL phase must accompany SSB to an Abelian
subgroup. We confirm SSB (S3 to Z3 in this case) by
computing a spin-glass diagnostic in III B.
κ = 0 with full S3 symmetry: The entanglement dis-

tribution for the κ = 0 limit, shown in Fig. 2, and its
moments, displayed in the lower panels of Figs. 3 and
4 shows an enhanced variance and mean at the κ = 0
for the large disorder limit. The enhanced mean value is
an indication of the presence of sub-thermal volume law
states and area law states. However, the crossing of the
S′(L/4) curves persists (roughly at λ/(1 + λ) ≈ 0.70) as
does the peak in the σ2(S′(L/4)) plot. How this peak
value changes as we approach the thermodynamic limit
is an open question and we hope that better tools of nu-
merical analysis like matrix product state methods can
shed some light on this issue. We leave this for future
work.

B. Spontaneous symmetry breaking in excited
states

As indicated by the entanglement distributions, the full
MBL phase appears only in the κ = 1 limit. This is the
limit where the disordered ‘l-bit’ term is dominated by∑
i Ji S

z
i S

z
i+1 which triggers the spontaneous symmetry
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FIG. 3. (Color online) Mean of S′(L/4) distribution (with
spline fit) as a function of λ/(1 + λ) for κ = 0 and κ = 1.
243 eigenstates per disorder realization that transform as 1D
irreps sampled for 800 (7,8 sites), 879 (9 sites) and 654 (10
sites) disorder realizations respectively .

breaking (SSB). To confirm that SSB has indeed taken
place for the many-body excited states, we use a spin-
glass diagnostic which we describe below. In the study
of classical spin glasses32,33, one is interested in order pa-
rameters sensitive to the spin-glass phase characterized
by long-range order in the presence of disorder. One such
important quantity of study is the spin-glass susceptibil-
ity34

χ =
1

N

N∑
i,j=1

[
〈sisj〉2

]
, (6)

where, si are classical Ising variables, 〈∗〉 indicates sta-
tistical averaging and [∗] indicates disorder averaging. In
Ref 8, the authors defined a similar quantum mechanical
diagnostic to detect spin-glass (SG) order arising from
SSB of Z2 → trivial group in a Z2 invariant Ising- like
disordered spin chain:

χSG =
1

L

L∑
i,j=1

|〈ε|σzi σzj |ε〉|2, (7)

where, |ε〉 is an energy eigenstate and σz is the Pauli-Z
operator. In their model, it was shown that the average

χSG scales with system size as χSG ∼ L in the MBL-SG
phase and approaches a constant value set by normaliza-
tion for the paramagnetic phase. Similar to eq. 7, for our



5

0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 (
S'

(L
/4

))

= 1
L = 7
L = 8
L = 9
L = 10

0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 (
S'

(L
/4

))

= 0
L = 7
L = 8
L = 9
L = 10

FIG. 4. (Color online) Variance of S′(L/4) distribution
(with spline fit) as a function of λ for κ = 0 and κ = 1.
243 eigenstates per disorder realization that transform as 1D
irreps sampled for 800 (7,8 sites), 879 (9 sites) and 654 (10
sites) disorder realizations respectively.

model, we define the following spin-glass diagnostic that
looks for signatures of spin glass order arising from SSB
of S3 → Z3

χSGZ3
=

1

L− 1

L∑
i6=j=1

|〈ε|Szi Szj |ε〉|2. (8)

Note that we choose to exclude the i = j term in the sum-
mation unlike Eq [7]. We look at the statistics of χSGZ3

across randomly sampled eigenstates and disorder real-
izations. We find signatures for transition to an MBL-SG
phase as we vary λ similar to what was found in Ref 8.

Fig. 5 shows χSGZ3
versus λ for κ = 0, 1. For κ = 1, we

indeed observe that the SG diagnostic increases with sys-
tem size for large disorder. For κ = 0, we see that the
SG diagnostic at best saturates to a constant value inde-
pendent of system size and at worst reduces with system
size but certainly does not increase with it indicating the
lack of SSB. To rule out SSB to other subgroups in the
κ = 0 regime, we have to use other SG diagnostics that
can detect spontaneous breaking of S3 down to one of
the other subgroups like Z2 and trivial group. In Ap-
pendix D, we construct appropriate SG diagnostics and
present numerical evidence that the full S3 is indeed in-
tact for κ = 0.
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FIG. 5. (Color online) χSG
Z3

versus λ (with spline fit) for
κ = 0 and κ = 1. 243 eigenstates per disorder realization
that transform as 1D irreps sampled for 800 (7,8 sites), 879
(9 sites) and 715 (10 sites) disorder realizations respectively.

C. Level statistics

Level statistics is a basis independent diagnostic that
indicates localization and thermalization based on the
statistics of the adjacent gap ratio (δn = En+1 − En)
defined as,

rn = min(δn, δn+1)/max(δn, δn+1). (9)

In the presence of symmetry, no interaction term in the
Hamiltonian can mix eigenstates that transform as dif-
ferent irreducible representations of the symmetry group.
Thus, it is meaningful to compute rn(Γ), the level statis-
tics ratio for the eigenstates that transform as each ir-
rep Γ of the group separately. In this paper, in Fig. 6,

we present r̄ = r(1)+r(1′)
2 as a function of λ where r(Γ)

is obtained by averaging rn(Γ) computed for randomly
sampled eigenstates which transform as the Γ irrep (see
Appendix C for details on how we detect the irrep of
each eigenstate), across disorder realizations. On the
side with low disorder, for both κ = 0 and κ = 1, we
observe r̄ ≈ 0.53. This is typical for a fully thermal
phase indicating a Wigner-Dyson (WD) distribution. For
a fully localized phase, typically, r̄ ≈ 0.39, corresponding
to Poisson distribution. However, the application of this
diagnostic to the degenerate spectrum of our S3 invariant
Hamiltonian can be tricky. In particular, closer to the l-
bit point of large λ, the extensively degenerate spectrum
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FIG. 6. (Color online) r versus λ/(1+λ) for κ = 0 and κ = 1
. 243 eigenstates per disorder realization that transform as
1D irreps sampled for 800 (7,8 sites), 879 (9 sites) and 715
(10 sites) disorder realizations respectively.

may mimic level clustering and result in r̄ < 0.39 which
we do indeed observe. Hence, this diagnostic is only reli-
able at the thermal side, where we obtain the WD value
of r̄ ≈ 0.53. For the strong disorder, the level statistics
approaches Poisson value but a clear reading is plagued
by the degeneracies for both κ = 0, 1.

D. Finite size scaling

In order to determine the location and nature of the pu-
tative transitions, we perform finite size scaling collapse
for MBL and SG diagnosics using the following scaling
ansatz used in Ref8.

g(λ, L) = Laf((λ− λc)L
1
ν ) (10)

Fig. 7 shows the scaling collapse of the diagnostics

S′(L/4), σ2(S′(L/4)) and χSGZ3
for 8, 9 and 10 site data.

For κ = 1, we obtain a good collapse for both the MBL
and SG diagnostics at λc ≈ 2.65 and ν ≈ 2.5. For κ = 0,
we do not get a scaling collapse for the SG diagnostic χSGZ3

for non-zero λc and positive ν which is consistent with
the absence of SSB. On the other hand, we get a reason-
able collapse for S′(L/4) and σ2(S′(L/4)) at λc ≈ 2.35
and ν ≈ 2.5.

Note that the value of the finite size exponent ν used in
Fig. 7 is consistent with the Harris35/CCFS36,37/CLO38

criterion of ν ≥ 2 for one dimensional spin chains with
quenched disorder. However, we emphasize that the our
estimate is very rough and even for values of ν that vio-
lates the criterion (eg: ν ≈ 1.5 ), we still get a decent col-
lapse. This violation is a common feature of ED studies of
small system sizes8,39. Indeed, recent work by Khemani
and Huse40 suggests that this might be an indication of
the system not exhibiting true thermodynamic behavior
and is expected to undergo a crossover after which we
obtain ν consistent with the Harris/CCFS/CLO bounds.
Within the accuracy of our numerical investigation how-
ever, we can neither confirm nor rule out the possibility
of our system being en-route to such a crossover.

IV. DISCUSSION

Based on the above analysis, we are in a position to put
together an approximate phase diagram for the model
Hamiltonian H. Fig. 8 shows a color map of S′(L/4),

χSGZ3
and r plotted in the κ, λ space. Fig. 9 shows a

schematic plot that indicates a thermal phase for the
weak disorder limit and a MBL+SSB phase for strong
disorder limit. In addition to these two phases, there is
a hint of a third regime for strong disorder and no SSB,
where there seems to be a coexistence of localized and
delocalized states in the many-body spectrum. We now
discuss each of this regimes separately.

Thermal phase. For the thermal phase, the distribu-
tion of slopes has a mean that saturates at the maximal
entropy per unit site. This indicates a substantial pres-
ence of volume law scaling eigenstates. The distribution
of χSGZ3

has mean that does not increase with system size
and implies absence of SSB. The level statistics clearly
show Wigner-Dyson distribution highlighting the ther-
mal nature of this regime.

MBL+SSB phase. For the MBL+ SSB phase, the dis-
tribution of slopes has mean close to 0. This indicates
the presence of area-law scaling eigenstates. The distri-
bution of χSGZ3

parameter (designed to detect S3 → Z3

symmetry breaking) increases with system size. This in-
dicates a substantial presence of eigenstates with SSB.
The above results are consistent with a spin-glass phase
with a residual Abelian symmetry group that supports
a full MBL states with strong signatures of SSB at all
eigenstates. The level statistics data is more noisy due
to the level clustering as a result of degeneracies in this
regime but hovers around the Poisson value.

Intermediate phase. This case is shown as dashed re-
gion in the schematic Fig 9. The full S3 symmetry is
intact in this regime and is incompatible with the full
MBL phase. At the l-bit point (λ→∞), the many-body
spectrum has extensive number of states with extensive
degeneracy. Any infinitesimal thermal perturbation is
expected to split this extensive degeneracy down to the
minimal values set by the size of the irreps of the group (2
and 1 in our case). This is expected to result in resonant
delocalization of an extensive number of states. Thus the
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FIG. 7. (Color online) Scaling collapse of MBL and SG diagnostics for 8, 9 and 10 sites.
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most plausible scenario is a fully thermal phase. Our nu-
merical results, however, are not fully consistent with a
thermal phase, but do not have the strong signatures of
MBL-SG or MBL phases, either. A possibility for this
regime is a marginal MBL phase that may be separating
another MBL+SSB phase that is not explored within our
parameter space. This can be uncovered introducing dis-
order to some of the relevant two-body thermal terms
which are non-disordered in our current analysis. We
leave this investigation for future work.

Finite-size effects such as the critical-cone region28 are
important in this putative intermediate phase. Indeed,
such finite-size effects play an important role at large λ,
and one has to be careful about the order of the ther-
modynamic and large λ limits. At finite-size L, large λ
corresponds to adding a small perturbation of Ht on top
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of the lbit Hamiltonian, and for 1/λ much smaller than
the lbit many-body level spacing ∼ 3−L one can apply
first-order perturbation theory. One effect is to split the
exponentially degenerate lbit states, resulting presum-
ably in volume law eigenstates. However, there are also
states in the lbit spectrum which are not highly degener-
ate, corresponding to sectors where most of the sites sit
in the one dimensional irrep, and only a few sit in the two
dimensional irrep. These are area law states, and could
remain area law upon the addition of such a small pertur-
bation. Thus some vestiges of localization are expected
to remain at large λ for a finite-size L. More numerical
work at larger sizes will have to be done to distinguish
these effects from a truly thermodynamic intermediate
phase.

V. CONCLUSION AND OUTLOOK

In this paper, we construct and study a spin-1 Hamil-
tonian invariant under an on-site S3 symmetry using var-
ious disorder and symmetry diagnostics. We study the
eigenstate phases that can arise via ergodicity and sym-
metry breaking. Within the accuracy of our numeri-
cal analysis, we can identify three regions in the two-
parameter Hamiltonian space two of which are consistent
with thermal, MBL- spin-glass phases and a third whose
identity is not established with certainty in the present
study. We state our observations about various charac-
teristics of this region and speculate with regard to its
identity.

There are other interesting questions that are left for
future study. In this work, we are limited to small sys-
tem sizes by the tools of numerical analysis employed
i.e. exact diagonalization. There is much to be gained
in designing and employing other numerical techniques

to study larger system sizes. In this regard, it would be
useful to explore the extension of tensor network tech-
niques, which have been shown to be effective in the
case of full-MBL, where eigenstates are expected to have
area-law properties, to other settings, in particular to fur-
ther study the disordered region with unbroken S3 sym-
metry. Another extension of is to repeat our study in
a Floquet setting where exotic possibilities have been
conjectured in the presence of global symmetries41–45.
Here, the arguments for instability of disordered Floquet
systems with non-Abelian symmetries to thermalization
would be stronger because of energy pumping. However,
as we saw in the equilibrium case, such a system might
have interesting features worth exploring. Furthermore,
we could consider relaxing the setting of indefinitely sta-
ble phases, like MBL, to the so-called ‘pre-thermal’ set-
ting46,47 where the system is stable for times that are
exponential in system size, and study the role of non-
Abelian symmetries.

Note added: As we were finishing this draft, we
learned of a related paper: “Localization-protected or-
der in spin chains with non-Abelian discrete symme-
tries” (arXiv:1706.00022) by Aaron J. Friedman, Romain
Vasseur, Andrew C. Potter, S. A. Parameswaran.
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48 Maksym Serbyn, Z. Papić, and Dmitry A. Abanin. Lo-
cal conservation laws and the structure of the many-body
localized states. Phys. Rev. Lett., 111:127201, Sep 2013.

49 Ronen Vosk and Ehud Altman. Many-body localization in
one dimension as a dynamical renormalization group fixed
point. Phys. Rev. Lett., 110:067204, Feb 2013.

50 Note that we do not restrict ourselves to a local two-
dimensional Hilbert space. This means, we should be talk-
ing about p-dits and l-dits instead of p-bits and l-bits. How-
ever, to keep with standard terminology, we will use the
latter names.

51 Pierre Ramond. Group theory: a physicist’s survey. Cam-
bridge University Press, Cambridge, UK, 2010.

52 Isao Sakata. A general method for obtaining clebsch-
gordan coefficients of finite groups. i. its application to
point and space groups. Journal of Mathematical Physics,
15(10):1702–1709, 1974.

53 Abhishodh Prakash and Tzu-Chieh Wei. Ground states
of one-dimensional symmetry-protected topological phases
and their utility as resource states for quantum computa-
tion. Phys. Rev. A, 92:022310, Aug 2015.



10

Appendix A: Incompatibility of non-Abelian
symmetries with full MBL

Here, we review the main hypothesis of Potter and
Vasseur23. The authors consider the case of a fully MBL
system (as opposed to the case of a partially local, par-
tially thermal system with mobility edges), and study the
compatibility of MBL in the presence of various global
symmetries. The working definition of an MBL sys-
tem they consider is the existence of a complete set of
quasi-local conserved quantities with associated quasi-
local projectors in terms of which the Hamiltonian, H
can be defined as13,48,49,

H =

L∑
i=1

D∑
α=1

E[i]αP̂ [i]α

+

L∑
i 6=j=1

D∑
α,β=1

E[i, j]α,βP̂ [i]αP̂ [j]β

+

L∑
i 6=j 6=k=1

D∑
α,β,γ=1

E[i, j, k]α,β,γP̂ [i]αP̂ [j]βP̂ [k]γ + . . .

(A1)

Here, L is the number of spins, P̂ [i]α is the projector
onto the αth quasi-local conserved quantity at the ith lo-
cation, D is the number of conserved quantities and the
E’s are constants that fix the energy eigenvalues. Fur-
thermore, we can apply a finite depth quantum unitary
circuit, W , that re-expresses the conserved quantities as
local degrees of freedom. These local objects are called
l-bits in terms of which the original spins (p-bits50) and
Hamiltonian can be defined. This is typically called the
l-bit Hamiltonian, Hlbit.

Let us now consider the case when the Hamiltonian
H has a global on-site symmetry i.e H commutes with
the unitary representation of some group, G of the form

U(g) =
⊗L

i=1 Vi(g), where, Vi(g) acts on each physical
spin.

g : H → U(g)HU†(g) = H (A2)

In this case, representation theory of the group G plays a
role in constraining the allowed form of the l-bit Hamil-
tonian [A1]. For spins (p-bits) to allow a well defined
on-site group action, the local Hilbert space of each spin
must correspond to some faithful representation of that
group. This must also be true for a tensor product of
the p-bits that constitute an l-bit. In other words, we
can write the l-bit- projectors P̂ [i]α using a fully reduced
basis that can be labeled as |Γ,mΓ; dΓ〉

P̂Γ,mΓ;dΓ
= |Γ,mΓ; dΓ〉〈Γ,mΓ; dΓ| (A3)

We define the different labels below and compare them
with the well known case of the representations of the
rotation group SO(3):

• Γ = 1 . . . NR labels the irreducible representation
(irrep) of the group and is equivalent to the total
angular momentum quantum number, j. The num-
ber of values it can take is equal to the number of
irreps of G, NR.
• mΓ = 1 . . . |Γ| is equivalent to the azimuthal quan-

tum number mj . The number of values it can take
is equal to the dimension of the irrep, |Γ|.
• dΓ = 1 . . . DΓ labels which of the DΓ copies of the

Γ irrep is being considered.
In this basis, the action of the group is

g : |Γ,mΓ; dΓ〉 →
|Γ|∑
nΓ=1

Γ(g)nΓ,mΓ
|Γ, nΓ; dΓ〉 (A4)

Demanding the invariance of the Hamiltonian [A1] under
group action and invoking Schur’s lemma51 irrep-wise, we
get the constrained form of the Hamiltonian compatible
with on-site symmetry as

H =

L∑
i=1

NR∑
Γ=1

DiΓ∑
diΓ=1

E[i]Γ,diΓ P̂ [i]Γ,diΓ

+

L∑
i 6=j=1

NR∑
Γ,Γ′=1

DiΓ∑
diΓ=1

Dj
Γ′∑

dj
Γ′=1

E[i, j]Γ,diΓ,Γ′,dj
Γ′
P̂ [i]Γ,diΓ P̂ [j]Γ′,dj

Γ′

+ . . . (A5)

where,

P̂Γ;dΓ
≡

|Γ|∑
mΓ=1

|Γ,mΓ; dΓ〉〈Γ,mΓ; dΓ|. (A6)

We now consider the cases of Abelian and non-Abelian
symmetries separately. If G is an Abelian group, all ir-
reps are one dimensional (|Γ| = 1). This means that all
projectors PΓ;dΓ are rank-1 which preserves the form [A1].
With sufficient disorder, resulting in sufficiently random
E′s, we can imagine that all degeneracies are lifted and
we can obtain an MBL phase stable to perturbations.
However, if G is non-Abelian, not all irreps are one di-
mensional. This means that we invariably have higher-
rank local projectors giving us only a partial set of con-
served quantities rather than complete which leads to
degeneracies that are extensive in system size. This is
clearly seen by examining the eigenvalues and eigenvec-
tors of Eq [A5].

H|{Γ,mΓ; dΓ}〉 = E({Γ; dΓ})|{Γ; dΓ}〉,

E({Γ; dΓ}) =

L∑
i=1

E[i]Γi,diΓi
+

L∑
i 6=j=1

E[i, j]Γi,diΓi ,Γ
′
j ,d

j

Γ′
j

+ . . .

|{Γ,mΓ; dΓ}〉 =

L⊗
i=1

|Γi,mΓi ; d
i
Γi〉. (A7)

Note that none of the eigenvalues, E have any labels cor-
responding to the inner multiplicity of the irreps mΓ.
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This means that the eigenstate |{Γ,mΓ; dΓ}〉 has a degen-
eracy of |Γ1|× |Γ2|× . . . |ΓL| which is clearly extensive in
system size whenG is non-Abelian. The authors of Ref 23
state that under the influence of perturbations, such a
degeneracy is susceptible to long range resonances which
destabilizes MBL. Furthermore, they suggest a possible
set of phases for the system to be in depending on the
nature of the global symmetry group G. Here we list
the possibilities for the case of finite groups such as Sn≥3

and Dn≥3, (i) Ergodic/ thermal phase, (ii) The so-called
MBL spin-glass (MBL-SG)27 phase characterized by lo-
calization with symmetry spontaneously broken (SSB)
to an Abelian subgroup, and (iii) The so-called quantum
critical glass phase (QCG)24–26 characterized by critical
scaling of entanglement entropy. Within the accuracy of
our numerical analysis, our findings are consistent with
the conjecture of Potter and Vasseur.

Appendix B: Constructing symmetric Hamiltonians

In this appendix, we give details of how the Hamilto-
nian used in the main text, Eq [4] was constructed. We
also detail a general technique to construct local symmet-
ric operators with which we can build spin Hamiltonians
invariant under any on-site symmetry in any dimension.
The construction of the 1D S3 invariant Hamiltonian of
the main text is a specific application of this general tech-
nique.

1. Building the S3 invariant Hamiltonian

a. Basis properties of S3 and its representation used.

We first review some basic properties of the group S3

and its representation used in this paper. S3, the sym-
metry group of three objects is the smallest non-Abelian
group. It is of order 6 and can be generated using two
elements and the following presentation

〈a, x|a3 = x2 = 1, xax = a−1〉. (B1)

It has three irreducible representations, 1,1′,2 which can
be written as

1. χ1(a) = 1, χ1(x) = 1,

2. χ1′
(a) = 1, χ1′

(x) = −1,

3. Γ2(a) =

(
ω 0
0 ω∗

)
, Γ2(x) =

(
0 1
1 0

)
,

where ω = e2πi/3. The local Hilbert space we have cho-
sen for each spin lives is the three-dimensional reducible
representation 2⊕1′. We use the eigenspace of the spin-1
angular momentum operator Sz to label the irreps. The
2 irrep is encoded in the two-dimensional ±1 eigenspace
of Sz (which we will call |±〉) and the 1′ is encoded in
the one-dimensional 0 eigenspace of Sz (which we will
call |0〉). The matrix representation of a general group

element in this basis looks like

V (g) =

Γ2(g)11 0 Γ2(g)12

0 χ1′
(g) 0

Γ2(g)21 0 Γ2(g)22.

 (B2)

In particular, the generators have the following represen-
tation

V (a) =

ω 0 0
0 1 0
0 0 ω∗

 , V (x) =

0 0 1
0 −1 0
1 0 0

 . (B3)

b. 1-spin operator

We first construct a 1-spin invariant operator. We start
with a general operator that acts on the space of a single
spin

λ̂ =

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

 (B4)

We now demand that λ̂ is invariant under conjugation
by V (g), i.e., the representation of symmetry on a single
spin.

V (g)λ̂V †(g) = λ̂ (B5)

Schur’s lemma51 constrains the matrix elements of λ̂ in
the following way:

1. λ̂ cannot mix basis states corresponding to different
irreps.

2. λ̂ must be proportional to the identity operator
when acting on basis states corresponding to the
internal states of the same irrep.

3. If there are multiple copies of the same irrep, λ̂
can mix the basis states corresponding the same
internal state of different copies but should still be
proportional to the identity operator as an action
on the internal states.

The meaning of these constraints should become clearer
with the applications that will follow. For a single spin
operator, since we have only one copy of each irrep, con-
straint 3 does not apply. Applying constraints 1 and 2,

we get the form of λ̂:

λ̂ =

λ2 0 0
0 λ1′ 0
0 0 λ2

 = λ1′ |0〉〈0|+ λ2 (|+〉〈+|+ |−〉〈−|)

= (λ2 − λ1′)(Sz)2 + λ1′13 (B6)

From this, we can read off the only non-trivial 1-spin
symmetric operator, (Sz)2 which is also Hermitian.
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c. 2-spin operator

In order to find a symmetric 2-spin operator, we follow
the same logic as that of a 1-spin operator. First, we start
with a general operator that acts on the 9 dimensional
vector space of 2 spins,

Ĵ =


J11 J12 . . . J19

J21 J22 . . . J29

...
. . .

...
J91 J92 . . . J99.

 (B7)

Next, we demand invariance under conjugation by V (g)⊗
V (g), i.e., the representation of symmetry on two spins.

V (g)⊗ V (g)ĴV †(g)⊗ V †(g) = Ĵ (B8)

We now have to impose the constraints coming from
Schur’s lemma. However, in order to do that, we need to
find out the irrep content of V (g) ⊗ V (g). For this, we
first list the Clebsch Gordan (CG) decomposition that
gives us the outcomes of fusing different S3 irreps. This
is the generalization of angular momentum addition of
SU(2) irreps. Note that we exclude the trivial case of
fusion with the trivial irrep 1,

1′ ⊗ 1′ ∼= 1

2 ⊗ 1′ ∼= 2

2 ⊗ 2 ∼= 2⊕ 1′ ⊕ 1

The irrep content of V (g) ⊗ V (g) is obtained from the
CG decomposition,

(2⊕ 1′)⊗ (2⊕ 1′) ∼= 1⊕ 1⊕ 1′ ⊕ 2⊕ 2⊕ 2. (B9)

It is clear that we are bound to have multiple copies
of the same irrep in this decomposition for which, using
Constraint 3 imposed by Schur’s lemma, unlike the single
spin case, we can get off diagonal operators. Let us list
and label the different instances of each irrep appearing
in the decomposition for convenience.

1′ ⊗ 1′ → 1A

2⊗ 2→ 1B

2⊗ 2→ 1′

1′ ⊗ 2→ 2A

2⊗ 1′ → 2B

2⊗ 2→ 2C

The subscripts label the copy of the irrep. We next need
the basis of the representation of each irrep in V (g) ⊗
V (g). These can be written in terms of the original basis
states (labeled by Sz eigenvalues) using CG coefficients
which we calculate using the technique by Sakata52 (also

see53).

|1A〉 = |0〉|0〉

|1B〉 =
|+〉|−〉+ |−〉|+〉√

2

|1′〉 =
|+〉|−〉 − |−〉|+〉√

2

|2A,±〉 = ±|0〉|±〉
|2B ,±〉 = ±|±〉|0〉
|2C ,±〉 = |∓〉|∓〉 (B10)

Using this, we have the 2-spin S3 symmetric operator
constrained by Schur’s lemma

Ĵ = J1′ |1′〉〈1′|+
∑

µ,ν=A,B

J1
µν |1µ〉〈1ν |

+
∑

µ,ν=A,B,C

J2
µν(|2µ,+〉〈2ν ,+|+ |2µ,−〉〈2ν ,−|) (B11)

As in the case of 1-spin invariant operator, we can again
read off the several independent symmetric 2-spin opera-
tors by simplifying Eq .B11. However, since we need the
operators to be Hermitian, we take Hermitian combina-
tions of these operators. We finally list the non-trivial
independent Hermitian operators expressed in terms of
spin-1 operators.

Ĵ1 = Sz ⊗ Sz,
Ĵ2 = (Sz)2 ⊗ (Sz)2

Ĵ3 = (S+)2 ⊗ (S−)2 + (S−)2 ⊗ (S+)2

Ĵ4 = (S+Sz)⊗ (S−Sz) + (S−Sz)⊗ (S+Sz) + h.c

Ĵ5 = (S−Sz)⊗ (SzS+) + (S+Sz)⊗ (SzS−) + h.c

Ĵ6 = (S+Sz)⊗ (S+)2 + (S−Sz)⊗ (S−)2 + h.c

Ĵ7 = (S+)2 ⊗ (S+Sz) + (S−)2 ⊗ (S−Sz) + h.c

To construct the Hamiltonian .4, we have used (Sz)2 and

Ĵ1 to build the disordered part Hd and Ĵ3, Ĵ4, Ĵ7 to build
the thermal part of the Hamiltonian, Ht. Since Ĵ5 and
Ĵ6 are mirrored versions of Ĵ4 and Ĵ7 respectively, we
can keep our thermal term sufficiently generic even if
leave them out. Note that while we have constructed a
Hamiltonian for a 1D spin chain, the symmetric operators
constructed using this formalism can be used to build
Hamiltonians for any spatial dimensions.

2. General technique

We now give details of a general procedure that can be
applied to obtain n-spin symmetric operators invariant
under a representation of any on-site symmetry group.
The schematic procedure is as follows

1. To construct symmetric n-spin operators, we first
write down general operators that act on the
Hilbert space of n spins.
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2. We then demand the invariance of this operator
under symmetry action.

3. Using Schur’s lemma, we constrain the matrix ele-
ments of the n-spin operator and read off the inde-
pendent operators.

4. If required, we finally take the hermitian combina-
tions of the independent operators.

If G is the group we are considering, the most general
local Hilbert space for the spin compatible with G-action
can be an arbitrary number of copies of each irrep of
G. Like mentioned in Sec A, we can choose the basis as
|Γ,mΓ; dΓ〉 where the symbols have the same meaning as
before. The matrix representation of the group operators
in this basis is block diagonal.

U(g) =

L⊗
i=1

Vi(g) (B12)

Vi(g) =

NR⊕
Γ=1

1DiΓ ⊗ Γ(g) (B13)

The “passive” group action on the basis is

g : |Γ,mΓ; dΓ〉 7→
|Γ|∑
nΓ=1

Γ(g)nΓ,mΓ
|Γ, nΓ; dΓ〉 (B14)

a. 1-spin symmetric operator

Let us now start with symmetric 1-spin operators. The
most general 1-spin operator we can write down is

λ̂ = λΓ,mΓ;dΓ

Γ′,mΓ′ ;dΓ′ |Γ,mΓ; dΓ〉〈Γ′,mΓ′ ; dΓ′ | (B15)

Note that for notational convenience, here and hence-
forth, we assume summation over repeated indices. De-
manding invariance under conjugation with V (g), we
have

V (g)λV (g)† = λ (B16)

=⇒ Γ(g)mΓ,nΓ
(Γ′(g)mΓ′ ,nΓ′ )

∗λΓ,nΓ;dΓ

Γ′,nΓ′ ;dΓ′ = λΓ,mΓ;dΓ

Γ′,mΓ′ ;dΓ′ .

In matrix form, the condition on λ becomes

[Γ(g)][λΓ;dΓ

Γ′;dΓ′ ] = [λΓ;dΓ

Γ′;dΓ′ ][Γ
′(g)]. (B17)

This means that [λΓ;dΓ

Γ′;dΓ′ ] is an intertwiner between the

irreps Γ and Γ′. Such a matrix is constrained by Schur’s
lemma:

[λΓ;dΓ

Γ′;dΓ′ ] = 0 if Γ 6= Γ′

∝ 1Γ if Γ = Γ′

=⇒ λΓ,mΓ;dΓ

Γ′,m′
Γ′ ;d

′
Γ′

= 0 if Γ 6= Γ′

∝ δmΓ,m′
Γ′

if Γ = Γ′ (B18)

Using this in Eq B15, we get the form of a symmetric
1-spin operator,

λ̂ = λΓ
dΓ,d′Γ

|Γ,mΓ; dΓ〉〈Γ,mΓ; d′Γ|. (B19)

Here, the non-zero matrix elements λΓ
dΓ,d′Γ

are free pa-

rameters that act on the degenerate subspace associated
with the outer multiplicity of each irrep.

b. 2-spin symmetric operator

We now consider 2-spin symmetric operators. The
most general operator that acts on the 2-spin Hilbert
space is

Ĵ = J
(∆,m∆;d∆),(Λ,mΛ;dΛ)
(∆′,m∆′ ;d∆′ ),(Λ′,mΛ′ ;dΛ′ )

|∆,m∆; d∆〉〈∆′,m∆′ ; d∆′ |
|Λ,mΛ; dΛ〉〈Λ′,mΛ′ ; dΛ′ | (B20)

For this operator to be symmetric, it needs to be invariant
under conjugation by V1(g)⊗ V2(g),

[V1(g)⊗ V2(g)] J [V1(g)⊗ V2(g)]
†

= J. (B21)

To use the techniques like we did for the 1-spin oper-
ator in the previous subsection, we need to first block-
diagonalize V1(g) ⊗ V2(g) using a suitable basis change
and then use Schur’s lemma. This redefinition of the ba-
sis states can be done using Clebsch-Gordan (CG) coef-
ficients. Recall that the irrep content of a direct product
of two irreps is schematically given by the CG series:

∆⊗ Λ =
⊕

Γ

NΓ
∆Λ Γ (B22)

NΓ
∆Λ denotes the number of copies of the Γ irrep that

exists in the fusion outcome of ∆⊗Λ. At the level of rep-
resentations, Eq .B22 tells us that there exists a change
of basis by a unitary matrix C∆Λ that fully reduces the
direct product of the irreps ∆⊗ Λ:

∆(g)⊗ Λ(g) ∼=
⊕

Γ

1NΓ
∆Λ
⊗ Γ(g), (B23)

C∆Λ (∆(g)⊗ Λ(g))C†∆Λ =
⊕

Γ

1NΓ
∆Λ
⊗ Γ(g), (B24)

CΓ;αΓ

∆Λ (∆(g)⊗ Λ(g))CΓ;αΓ†
∆Λ = Γ(g). (B25)

CΓ;αΓ

∆Λ are isometries whose matrix elements,

[CΓ;αΓ

∆Λ ]mΓ
m∆,mΛ

are the CG coefficients that project

∆ × Λ onto the αthΓ copy of the irrep Γ, where,
αΓ = 1 . . . NΓ

∆Λ. It is useful to look at the ‘passive’
action of the CG coefficients on the basis kets to remind
us of the actual “change-of-basis” action,

[C∗Γ;αΓ

∆Λ ]mΓ
m∆,mΛ

|∆,m∆〉|Λ,mΛ〉 = |Γ,mΓ, αΓ〉 (B26)
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Now, consider the following equivalences

V1(g)⊗V2(g) =

[⊕
∆

1D1
∆
⊗∆(g)

]
⊗
[⊕

Λ

1D2
Λ
⊗ Λ(g)

]
∼=
⊕

(∆,Λ)

[
1D1

∆×D2
Λ

]
⊗ [∆(g)⊗ Λ(g)]

∼=
⊕

(∆,Λ)

[
1D1

∆×D2
Λ

]
⊗
[⊕

Γ

1NΓ
∆Λ
⊗ Γ(g)

]
∼=
⊕

Γ

1D1,2
Γ
⊗ Γ(g). (B27)

Here,

D1,2
Γ =

∑
(∆,Λ)|Γ∈∆⊗Λ

D1
∆ D2

Λ NΓ
∆Λ (B28)

is the number of ‘fusion channels’ of the kind ∆⊗Λ→ Γ
available to produce the irrep Γ using the irreps in the 2-
spin Hilbert space. In short, Eq [B27] tells us that there
exists some unitary matrix W which block diagonalizes
V1(g)⊗ V2(g)

W [V1(g)⊗ V2(g)]W † = Ṽ (g) (B29)

Ṽ (g) =
⊕

Γ∈∆⊗Λ

1D1,2
Γ
⊗ Γ(g). (B30)

When viewed as a matrix, W contains operations to both
reorder indices appropriately as well as use the CG co-
efficients to reduce the direct product of irreps form V1

and V2 block-by-block. If we operate W on both sides of
the Eq [B21] and call WJW † = K, we get

Ṽ (g)KṼ (g)† = K (B31)

The matrix elements of K can be written in terms of
those of J and CG coefficients.

KΓ,mΓ;cΓ
Γ′,mΓ′ ;cΓ′ =

[
CΓ;αΓ

∆Λ

]mΓ

m∆,mΛ

[
C
∗Γ′;α′

Γ

∆′Λ′

]mΓ′

m∆′ ,mΛ′

J
(∆,m∆;d∆),(Λ,mΛ;dΛ)
(∆′,m∆′ ;d∆′ ),(Λ′,mΛ′ ;dΛ′ )

(B32)

Eq [B31] is of the same form as Eq [B16] and we can use
Schur’s lemma again to constrain the elements of K,

KΓ,mΓ;cΓ
Γ′,mΓ′ ;cΓ′ = 0 if Γ 6= Γ′

∝ δmΓ,mΓ′ if Γ = Γ′. (B33)

Note that cΓ is a collective index of compatible
(d∆, dΛ, αΓ) that runs over the DΓ different fusion chan-
nels mentioned above. Also, note that we use the con-

vention
[
CΓ;αΓ

∆Λ

]mΓ

m∆,mΛ

= 0 if Γ /∈ ∆⊗Λ. Finally, we can

undo the transformation of W and get the elements of Ĵ .
Since it is important, we expand cΓ:

J
(∆,m∆;d∆),(Λ,mΛ;dΛ)
(∆′,m∆′ ;d∆′ ),(Λ′,mΛ′ ;dΛ′ )

= K
Γ;(d∆,dΛ,αΓ)
(d∆′ ,dΛ′ ,βΓ)

[
C∗Γ;αΓ

∆Λ

]mΓ

m∆,mΛ

[
CΓ;βΓ

∆′Λ′

]mΓ

m∆′ ,mΛ′
(B34)

Plugging in Eq [B34] into Eq [B20], we get the general
form of the symmetric 2-spin operator.

Ĵ = K
Γ;(d∆,dΛ,αΓ)
(d∆′ ,dΛ′ ,βΓ)

[
C∗Γ;αΓ

∆Λ

]mΓ

m∆,mΛ

[
CΓ;βΓ

∆′Λ′

]mΓ

m∆′ ,mΛ′

|∆,m∆; d∆〉〈∆′,m∆′ ; d∆′ |
|Λ,mΛ; dΛ〉〈Λ′,mΛ′ ; dΛ′ |. (B35)

This can be greatly simplified using Eq [B26]

Ĵ = KΓ;cΓ
dΓ
|Γ,mΓ; cΓ〉〈Γ,mΓ; c′Γ|. (B36)

Where, we have once again reintroduced the short hand
notation cΓ to denote the fusion channels labeled by com-

patible (d∆, dΛ, αΓ) to produce Γ. K
Γ;(d∆,dΛ,αΓ)
(d∆′ ,dΛ′ ,βΓ) are now

the free parameters. In this form, we can clearly see the
similarity with the symmetric 1-spin operator Eq [B19].
This helps us see the general picture with arbitrary n-
local operators. In a fully reduced basis of the n-spin
Hilbert space, matrix elements of symmetric operators
can only act on the outer multiplicity space of each ir-
rep.

Appendix C: Detecting the irrep of the eigenstates

In this appendix, we give details of how we deter-
mine the irrep a given eigenstate transforms as. If

U(g) =
⊗L

i=1 Vi(g) is the many-body representation of
the on-site symmetry, we want to find out the irrep Γ
that an eigenstate |ε〉 or more generally, a set of degen-
erate eigenstates {|ε〉a} transform as

U(g)|ε〉a =

|Γ|∑
b=1

Γ(g)ab|ε〉b (C1)

This is an easy task for the symmetry group SU(2),
where, all we need to do is operate the eigenstates with
the total angular momentum operator,

~S2
tot =

∑
a=x,y,z

(
L∑
i=1

Sai

)(
L∑
i=1

Sai

)
(C2)

~S2
tot|ε〉 = j(j + 1)|ε〉 (C3)

This way, given an eigenstate that transforms as an irrep
of SU(2), we can extract the quantum number j which la-
bels the irrep. For general finite groups, we are not aware
of an equivalent technique. However, we now present a
strategy that works well for the group S3 in the form of
the following theorem.

Theorem 1. Given a normalized vector |ε〉, 〈ε|ε〉 = 1,
that transforms as some irreducible representation of S3,
Γ = 1,1′ or 2, we can determine Γ using the following
two real numbers,

X = 〈ε|U(x)|ε〉,
A = Real(〈ε|U(a)|ε〉),
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where, a and x are the two generators of S3 with presen-
tation 〈a, x|a3 = x2 = 1, xax = a−1〉. Specifically,

A = −0.5 =⇒ Γ = 2

(A,X ) = (1, 1) =⇒ Γ = 1

(A,X ) = (1,−1) =⇒ Γ = 1′

Proof. Let us first consider the case when |ε〉 is some vec-
tor in the 2D irrep 2. We can expand this vector in the
orthonormal eigenbasis of the generator a of the 2 repre-
sentation, |ω〉, |ω∗〉, with eigenvalues ω, ω∗ respectively,

where ω = e
2πi
3 (see Appendix. B).

|ε〉 = cos θ|ω〉+ sin θ|ω∗〉. (C4)

Acting on it by U(a),

U(a)|ε〉 = ω cos θ|ω〉+ ω∗ sin θ|ω∗〉
〈ε|U(a)|ε〉 = ω cos2 θ + ω∗ sin2 θ

Real(〈ε|U(a)|ε〉) = Real(ω)(cos2θ + sin2 θ)

=⇒ A = Real(ω) = −0.5

Let us now consider the case when |ε〉 transforms as either
of the 1D irreps. Since the representation of the generator
a is simply 1 for both 1D irreps, we simply have

U(a)|ε〉 = |ε〉 (C5)

=⇒ A = 〈ε|U(a)|ε〉 = 1 (C6)

Thus, we can see that A can separate the 2D irrep 2 form
the 1D irreps. Also, A = −0.5 is necessary and sufficient
for |ε〉 to transform as 2. Furthermore, if A = 1, we can
determine which 1D irrep |ε〉 transforms as by consider-
ing the transformation under the generator x whose rep-
resentation is ±1 for Γ being 1 or 1′ respectively. Thus,
if A = 1,

U(x)|ε〉 = ±|ε〉
=⇒ X = 〈ε|U(x)|ε〉 = ±1

implies |ε〉 transforms as 1 or 1′ respectively. This con-
cludes the proof.

In our numerics, we diagonalize our Hamiltonian in the
1D irrep sector by projecting it into the appropriate basis.
As discussed above, this means that we need to restrict
to the basis states that are left invariant under the action
of U(a) =

⊗L
i=1 V (a)i. To see how this is done, consider

the action of operator U(a) on a many-body basis state
labeled by Sz eigenvalues on each spin

U(a)|m1,m2, . . . ,mL〉 = ωm1+m2+...+mL |m1,m2, . . . ,mL〉
= ωS

z
tot |m1,m2, . . . ,mL〉 (C7)

We need ωS
z
tot = 1 which means

Sztot =

L∑
i=1

mi = 0(mod 3). (C8)

Since 3L−1 of the 3L basis states satisfy the condition of
Eq .C8, this helps us diagonalize an L site Hamiltonian
for the price of L− 1.

Appendix D: Spin glass diagnostics for S3 subgroups

In this appendix, we give details of how the spin-glass
(SG) order parameter used in Sec. III B was constructed
and also numerical evidence for the assertion that the
high disorder region at κ = 0 does not in any form spon-
taneously break the S3 symmetry.

First, let us list the elements of S3 =
{1, a, a2, x, xa, xa2} and its five subgroups written
in terms of the generators a, x defined in Sec. II and
Appendix. B:

1. Z3 = {1, a, a2},
2. Z2A = {1, x},
3. Z2B = {1, xa},
4. Z2C = {1, xa2},
5. {1}.

For each subgroup H ⊂ G, we design a SG diagnostic
that detects SSB of G→ H and takes the form

χSGH =
1

L− 1

L∑
i 6=j=1

|〈ε|OH;iOH;j |ε〉−〈ε|OH;i|ε〉〈ε|OH;j |ε〉|2.

(D1)

OH are local Hermitian order parameters that are chosen
to have the following properties under symmetry trans-

formation by U(g) =
⊗L

i=1 V (g)i
1. OH transforms trivially under H:
U(g)OHU†(g) = OH , ∀g ∈ H.

2. OH transforms non-trivially under G/H:
U(g)OHU†(g) 6= OH , ∀g /∈ H.

Note that χSGH is invariant under the redefinition OH →
OH + ξ1. It can be checked that the following operators
satisfy the above properties
• OZ3

= Sz

• OZ2A
= SzSx + SxSz = 1√

2

0 1 0
1 0 −1
0 −1 0


• OZ2B

= V (a)OZ2A
V †(a) = 1√

2

 0 ω 0
ω∗ 0 −ω
0 −ω∗ 0


• OZ2C

= V †(a)OZ2A
V (a) = 1√

2

0 ω∗ 0
ω 0 −ω∗
0 −ω 0


• O{1} = Sx

Note that it is important to make sure that the
disconnected part of the two point correlation func-
tion, 〈ε|OH;i|ε〉〈ε|OH;j |ε〉 is subtracted when construct-
ing χSGH . In previous work like Ref8, the local order pa-
rameter σz transformed as a non-trivial irrep of G/H (Z2

in their case). It is then automatically guaranteed that
〈ε|σzi |ε〉 = 0. Similarly, the local order parameter used
in the main text to detect S3 → Z3 SSB, Szi transforms
as a non-trivial irrep of S3/Z3

∼= Z2 which also ensures
〈ε|Szi |ε〉 = 0 and hence we leave out of the definition of
χSGZ3

. This would not be true if we used a different OZ3

like Sz+ξ(Sz)2 or even Sz+ξ1 both of which are equally
good to detect S3 → Z3 SSB but would need subtraction
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of the disconnected part. Similarly, the other SG di-
agnostics we used namely OZ2A/B/C

and O{1} also need
subtraction.

Fig. 10 shows the different SG diagnostics as a function
of λ for κ = 0, 1 averaged over eigenstates across disorder

realizations. It can be seen that only χSGZ3
, which detects

SSB S3 → Z3 approaches a value that increases with
system size in the region discussed in Sec. III B. The value
of other SG diagnostics becomes increasingly smaller or
approaches a constant value with system size for all λ
and κ indicating that SSB to that residual subgroup has
not taken place in the eigenstates.
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FIG. 10. (Color online) SG diagnostics for different sub-
groups versus λ for κ = 0 and κ = 1 with spline fit (solid
for κ = 1, dashed for κ = 0). 243 eigenstates per disorder
realization that transform as 1D irreps sampled for 800 (7,8
sites), 879 (9 sites) and 715 (10 sites) disorder realizations

respectively. The plot for χSG
Z3

is also shown in the main text.
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