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We describe a theoretical approach for finding spontaneously symmetry-broken electronic phases
due to strong electronic interactions when using recently developed slave-particle (slave-boson) ap-
proaches based on occupation numbers. We describe why, to date, spontaneous symmetry breaking
has proven difficult to achieve in such approaches. We then provide a total-energy based approach
for introducing auxiliary symmetry breaking fields into the solution of the slave-particle problem
that leads to lowered total energies for symmetry broken phases. We point out that not all slave-
particle approaches yield to energy lowering: the slave-particle model being used must explicitly
describe the degrees of freedom that break symmetry. Finally, our total energy approach permits
us to greatly simplify the formalism used to achieve a self-consistent solution between spinon and
slave modes while increasing numerical stability and greatly speeding up the calculations.

I. INTRODUCTION

The effects of strong electronic interactions and elec-
tronic correlations on materials properties is a subject
with a considerable history. The most celebrated text-
book example is the Mott transition where by increas-
ing the strength of localized electronic repulsions, the
electrons in the material lose band mobility and instead
localize on the atomic sites (i.e., loss of wave behavior).
However, electronic correlations also underlie many other
ordered electronic phases such as various forms of mag-
netism as well as superconductivity. A canonical model
Hamiltonian for correlated electron is the (extended)
Hubbard model where electrons can hop between local-
ized orbitals centered on atomic sites but multiple elec-
tronic occupancy of a given atomic site leads to a signif-
icant energy penalty U . By varying the ratio of U to the
band hopping parameters, one can cover the range from
weak to strong electronic interactions and correlations.1

The workhorse in realistic first principles calculations
in crystal and electronic structure calculations, Density
Functional Theory (DFT)2, is fundamentally based on a
description of non-interacting electrons, i.e., band theory.
Due to its simple structure, band theory approaches can
not capture the effects of dynamical electronic fluctua-
tions and localized correlations on electronic band spec-
tra. Extensions of DFT to go beyond local exchange-
correlation potentials and to include non-local Hartree-
Fock type electronic behavior, such as the DFT+U or hy-
brid functional approaches3,4, can capture certain effects
of electron-electron interactions especially for strongly
symmetry-broken situations. Nevertheless, these are
still band theory descriptions incapable of leading, e.g.,
to electron localization without resorting to symmetry
breaking.

More advanced computational many-body approaches
for simulation of electronic correlations are based on
Green’s functions methods. One type of approach is the

GW approximation to the electron self-energy5–7 which
is a fully ab initio approach that includes the physics
of non-local and dynamical electronic screening and pro-
duces accurate results for electronic band energies of a
wide variety of materials7,8. However, the GW method is
based on summation of a subset of many-body diagrams
(RPA diagrams) and thus does not capture a number of
physical effects; separately GW calculations are notori-
ously expensive in terms of computation time due to their
fully ab initio nature and lack of a particular basis set.
Another avenue of approach is represented by Dynam-
ical Mean Field Theory (DMFT)9,10 which can include
the effect of local interactions and dynamical fluctuations
by solving a model Hamiltonian with local interactions
exactly (i.e., all diagrams for the local interactions are in-
cluded). However, DFT+DMFT calculations on realistic
materials with large unit cells are still quite challenging
as they require large-scale parallel computations.

For all these reasons, approximate and efficient meth-
ods for solving correlated problems continue to be of in-
terest to the computational many-body community. One
set of methods of recent interest for solving Hubbard
models are slave-particle (slave-boson) methods. This
method that has a long background in condensed mat-
ter theory. These method have been used to study
cases with infinitely strong repulsive interactions.11–17

Dealing with finite interaction strengths was enabled by
Kotliar-Ruckenstein approach16 whose variants and mod-
ifications have been applied to study high-temperature
superconductors18 as well as multi-band models19–21 to
elucidate the effects of multiple orbitals, degeneracy and
Hund’s coupling.19,20 In these approaches, each bosonic
slave degree of freedom tracks the occupancy of a par-
ticular electronic configuration of a correlated site: once
multiple orbitals and multiple electron counts can ex-
ist on a site, the number of require bosons becomes
large. These methods can and have been used to de-
scribe spontaneously broken electronic symmetry (e.g.,
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magnetic) states.16,19,22. In addition, fully rotationally
invariant slave-boson formalisms have been designed that
permit spontaneous breaking of particle-number conser-
vation and superconducting solutions.23

A recent set of more economical slave-particle meth-
ods has been developed and have become of wider inter-
est, such as the slave-rotor method24,25 and its applica-
tion to nickelate oxides26 and the slave-spin method27–29

and its application to iron-based superconductors30. Re-
cently, we have developed a generalized version of these
methods that does not require the analogy with spin or
angular momentum and introduces multiple intermedi-
ate slave-particle models.31 These recent approaches use
slave degrees of freedom to track the electron occupation
number on a site, and its distribution among orbital and
spin channels, and thus require a much smaller number
of bosons per site.

However, in all the previous literature in which these
occupation number based methods has been used, spon-
taneous symmetry breaking has been achieved in multi-
orbital systems where both a Hubbard U as well as a non-
zero Hund’s J interaction have been operative.28,30,32

For a system where only the repulsion U operates,
spontaneous symmetry breaking has not been displayed
even when interaction-induced magnetism is a feature
of the actual ground state of the model Hamiltonian
(e.g., ground-state antiferromagnetic order for a half-
filled single-band Hubbard model). Indeed, as we show,
stabilizing a purely interaction induced symmetry-broken
phase is very difficult for slave-particle methods without
introduction of symmetry breaking fields. Our work de-
scribes this issue in detail and provides a total-energy
approach that naturally produces symmetry breaking.
We then show how one can make slave-particle self-
consistency between spinon and slave modes much more
efficient via a specific and exact decoupling of the two
modes.

II. THE SLAVE-PARTICLE APPROACH

In this section we review the key aspects of the slave-
particle formalism used in previous work to set up the
notation and language used in subsequent sections. The
general correlated-electron Hamiltonian we consider is an
extended Hubbard model given by

Ĥ =
∑
i

Ĥi
int +

∑
imσ

εimσd̂
†
imσd̂imσ

−
∑

ii′mm′σ

timi′m′σd̂
†
imσd̂i′m′σ . (1)

The d̂ are canonical fermion annihilation operators. The
indices i, i′ range over the localized sites in the system
(usually atomic sites), m,m′ range over the localized spa-

tial orbitals on each site, σ = ±1 denotes spin, Ĥi
int is

the local Coulombic interaction for site i, εimσ is the on-
site energy of the state labeled by imσ, and timi′m′σ is

the spin-conserving hopping element term connecting or-
bital imσ to i′m′σ. A commonly used interaction term
is given by the Slater-Kanamori form33

Ĥi
int =

Ui
2

(n̂2
i − n̂i) +

Ui − U ′
i

2

∑
m 6=m′

n̂imn̂im′

− Ji
2

∑
σ

∑
m 6=m′

n̂imσn̂im′σ

− Ji
2

∑
σ

∑
m 6=m′

(
d̂†imσd̂imσ̄d̂

†
im′σ̄d̂im′σ

+d̂†imσd̂
†
imσ̄d̂im′σd̂im′σ̄

)
(2)

While the Coulombic parameters Ui, U
′
i and Ji can in

principle depends the site index i, in practice in most
models they are assumed to be the same for all corre-
lated sites. Briefly, the U term describes repulsion be-
tween the same spatial orbitals on a site, U ′ repulsion
between different orbitals, and J measures the strength
of the Hund’s interaction between different orbitals with
the same spin state. The number operators are

n̂imσ = d̂†imσd̂imσ , n̂im =
∑
σ

n̂imσ , n̂i =
∑
mσ

n̂imσ .

The interacting Hubbard problem is impossible to
solve exactly and even difficult to solve approximately.
Some of the complexity is due to the fact that the in-
teracting fermions have both charge and spin degrees of
freedom. In slave-boson approaches11–17, one separates
the spin from charge degrees of freedom at each site by
introducing a spinless charged bosonic “slave” degree of
freedom on each site along with a spinful neutral fermion
termed a spinon. The spinon and slave boson annihila-

tion operators are indicated by f̂ and Ô operators, re-
spectively. Specifically, the electron field operators is de-
composed as

d̂imσ = f̂imσÔiα , d̂
†
imσ = f̂†imσÔ

†
iα . (3)

The index α is part of our generalized notation31 that
permits us to unify different occupation number based
slave-particle models. On each site, the α label disjoint
sets of localized i state imσ. The meaning of α depends
on the type of slave particle model chosen, and α refers
to a subset of the mσ indices that belong to a site i. For
example, if we use a slave-rotor model for the correlated
orbitals on a site24,25, then α is nil: Ôiα = Ôi. Namely,
we have a single slave particle on each site i that only
tracks the total number of electrons on that site. At the
opposite limit, we can have a unique slave boson for each
mσ combination on a site (the “slave-spin” method27,28),
so that in this case α = mσ.

In the slave-particle approach used in this work, as well
as prior literature on this class of methods24,25,27,28,31,
the Ô operators are not standard bosonic field annihila-
tion operators and thus do not obey canonical bosonic
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commutation relations. Instead, they simply lower the
number of particles, Ô|N〉 = |N − 1〉 (there is no fac-

tor of
√
N present). This is required for the type of

slave-boson approach we use to be faithful to the orig-

inal description: i.e., the matrix elements of d̂ and f̂ Ô
are identical between physical states and they both obey
fermionic commutation relations. The equality of ma-
trix elements is shown in the Appendix of Ref. 31 and
a separate demonstration of faithfulness is found in the
Appendix.

The introduction of slave bosons by itself does not
make solution of the Hubbard model any easier as more
degrees of freedom have been introduced to further en-
large the Hilbert space. To avoid sampling of unphys-
ical states in the enlarged spinon+slave Hilbert space
which have no correspondence to in the original elec-
tronic Hilbert space, one must ensure that the number of
slave particles and number of spinons track each other.
More precisely, Eq. (3) shows, spinon and slave particles
are created or annihilated at the same time so that only
state kets in the extended Hilbert space that obey this
condition are physical. Hence, one must ensure that

d̂†imσd̂imσ = f̂†imσ f̂imσ

and also that the subset of physical states |Ψphys〉 must
obey

(4)n̂iα|Ψphys〉 = N̂iα|Ψphys〉

where N̂iα is the number counting operator for the slave
particles and the correspond particle count for spinons is

n̂iα =
∑
mσ∈α

f̂†imσ f̂imσ . (5)

The constraint of Eq. (4) ensures that number of
slave bosons and spinons match exactly for each α
index.24,25,27,31

The key approximation that makes the slave-boson ap-
proach more tractable than the original problem is to as-
sume a separable form for the overall wave function of
the system which takes a product form |Ψf 〉|Φs〉 where
|Ψf 〉 is a spinor-only state ket and |Φf 〉 is a slave-only
state ket. This means one can only enforce the above
operator constraints on average:

〈n̂iα〉f = 〈N̂iα〉s (6)

where the spinon and slave averages for any operator Â
are defined via

〈Â〉f = 〈Ψf |Â|Ψf 〉 , 〈Â〉s = 〈Φs|Â|Φs〉 .

We point out that the matching condition of Eq. (6)
can go beyond simply setting the total number of spinons
and slaves equal at each site. When the index α is suf-
ficiently fine-grained, the matching is a much stronger
constraint: for example, if α distinguishes different spin

directions, then the number of spinons and slaves must
match for each spin direction separately. As we show
below, this is crucial for correctly describing situations
where symmetry is broken because it ensures that the
broken symmetry appears in both spinon and slave sec-
tors simultaneously.

This separability assumption means one must solve two
separate and easier eigenvalue problems

Ĥf |Ψf 〉 = Ef |Ψf 〉 , Ĥs|Φs〉 = Es|Φs〉
in a self-consistent fashion. In the simplest case of the
interaction Hamiltonian where U = U ′ and J = 0, the
spinon Hamiltonian is given by

Ĥf =
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
iα

hiαn̂iα

−
∑
ii′αα′

〈Ô†
iαÔi′α′〉s

∑
mσ∈α
m′σ∈α′

timi′m′σ f̂
†
imσ f̂i′m′σ (7)

while the slave-boson Hamiltonian takes the form

Ĥs =
∑
i

Ĥi
int +

∑
α

hiαN̂iα

−
∑
ii′αα′

 ∑
mσ∈α
m′σ∈α′

timi′m′σ〈f̂†imσ f̂i′m′σ〉f

 Ô†
iαÔi′α′ (8)

where the spinon averages 〈f̂†imσ f̂i′m′σ〉f renormalize the
slave boson hoppings (and vice versa). The slave boson
problem is one of interacting charged bosons without spin
on a lattice. Self-consistency refers to the fact that the
spinon Hamiltonian involves averaged quantities involv-
ing the slave wave function and vice versa. In addition,
the values of the Lagrange multipliers hiα must be cho-
sen to ensure average particle number matching as per
Eq. (6).

As stated above, the forms written in Eqs. (7) and
(8) are for the simplest “U -only” form of the interac-

tion term Ĥint. More generalized forms for Ĥf and

Ĥs that describe the generic multi-band case (where
U 6= U ′ and J 6= 0) can be found in Sections II.D.1-4
of Ref. 31. We note that these slave-boson methods have
successfully described multi-band cases and the effects
of Hund’s interactions on a number of physical proper-
ties (e.g., band narrowing, orbitally selective Mott tran-
sitions, magnetism, etc.)27,29,31,32 However, in our work
that follows below, we focus on the simplest case (U = U ′

and J = 0) which is already highly informative about the
shortcomings of these slave-boson approaches regarding
symmetry breaking: we will be using the simple forms in
Eqs. (7) and (8) in the remainder of this work.

III. SINGLE-SITE MEAN-FIELD
APPROXIMATION

In practice, the slave Hamiltonian of Eq. (8) represents
a many-body interaction bosonic problem that has no ex-
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act solution. In what follows, when solving numerically
for the ground state of a spinon+slave problem, we will
use a simple single-site mean-field approach: when deal-
ing with site i in the salve problem, we replace the Ôiα
slave operators on the other neighboring sites by their
averages 〈Ôiα〉s. For the spinon Hamiltonian, this boils
down to the simple replacement

〈Ô†
iαÔi′α′〉s → 〈Ô†

iα〉s〈Ôi′α′〉s

in the hopping term. The slave Hamiltonian turns into

Ĥs =
∑
i

Ĥi
int +

∑
α

hiαN̂iα

−
∑
ii′αα′

 ∑
mσ∈α
m′σ∈α′

timi′m′σ〈f̂†imσ f̂i′m′σ〉f

 ·
[
〈Ô†

iα〉sÔi′α′ + h.c.
]

(9)

which is a simple many-body system of isolated sites

where the bosonic Ôiα and Ô†
iα operators remove and add

bosons to the site from an effective bosonic mean-field
bath. We note that, for the simple model Hamiltonians
we will be using below in this approach, the quasiparticle
renormalization factor (or weight) Z is simply given by
Ziα = 〈Oiα〉2s.

IV. DIFFICULTIES OBTAINING SYMMETRY
BROKEN PHASES

In this section, we explain why the current implemen-
tation of mean-field theory fails to obtain proper sym-
metry broken phases. We use the example of the well-
understood one-dimensional Hubbard model at half fill-
ing. Consider the Hamiltonian:

Ĥ =
U

2

∑
i

(N̂2
i −N̂i)−

∑
i,σ

t(ĉ†i,σ ĉi+1,σ+ ĉ†i+1,σ ĉi,σ) (10)

where i is the site index, there is a single orbital per site,
there are two spin channels per site, and we consider
the case where we are at half filling (〈N̂i〉 = 1). The
ground state is well-known. For U = 0, the ground state
is non-magnetic and metallic. For U > 0 but finite, the
ground state is insulating and shows anti-ferromagnetic
correlations34 but has finite quasiparticle weight Z > 0.

The U = 0 and U >> |t|, the model’s solutions are
well-described by existing slave-particle mean-field im-
plementations. For the intermediate region U ∼ |t|,
we are aware of no published study using recent slave-
spin, slave-rotor or other formalisms from the same fam-
ily that has correctly obtained the correct AFM phase
for this model. Namely, the AFM solution does not ap-
pear to be a self-consistent ground state solution of the
spinon+slave coupled Hamiltonians. In addition to being

annoying, this is very worrisome since even a simple un-
correlated approach such as Hartree-Fock easily delivers
an AFM ground state.

To understand where the problem lies, consider the
spinon Hamiltonian of Eq. (7) and how one would achieve
symmetry breaking, e.g., spin symmetry breaking and
ordering, due to electron interaction effects. Since the
electron interaction is handled by the slave sector, the
only quantities that can be affected by the slave calcu-
lation that then feed into the spinon Hamiltonian are
the Lagrange multiplies hiα and the rescaling factors

〈Ô†
iαÔi′α′〉s of the spinon hopping.

In the simplest slave treatment, we have a single slave
particle on the site: for example, the slave-number or
slave-rotor treatments. In such a case, the α label is nil
so our Lagrange multipliers are only indexed by site hi
and the rescaling factors as well 〈Ô†

i Ôi′〉s. Obviously, no
spin symmetry breaking is possible in the spinon sector
since these variables do not depend on spin in any way.

When we move to more elaborate slave-particle models
where there are different slave modes for the different spin
channels, then one can imagine that symmetry breaking
is possible. For example, in our single orbital per site
1D Hubbard model, when we have one slave-particle for
each spin channel, then α = σ. We could now imagine
that the hiσ shift the on-site energies of the orbitals in
such a way to break spin symmetry, or that the hopping
rescaling factors are also spin dependent. In practice,
however, we have not found this to be the case: starting
from a strongly symmetry broken initial guess, the self-
consistency cycle between spinon and slave sectors drives
the system towards a paramagnetic solution and the two
spin channels become equivalent. Any initial magnetiza-
tion disappears upon self-consistent iteration.

We have analyzed this failure and discovered the fol-
lowing situation. If at some point the spinon system has
broken spin symmetry on a site i with net spin up, then
hi↑ > hi↓ is what makes this true. However, although
hi↑ > hi↓ favors higher spin ↑ occupancy in the spinon
sector (due to the negative sign in front of hiα in Eq. (7)),
it favors higher occupancy of the spin ↓ channel in the
slave sector (positive sign of hiα in Eq. (8)). The two
effects fight each other, and the final self-consistent solu-
tion has hi↑ = hi↓. An explicit example is provided by
the 1D single-band Hubbard model at half filling where
the dependence of slave and spinon occupancies on h are
shown in Figure 1. These plots are generated by provid-
ing ∆ni = ni↑ − ni↓ on some fixed site i as input to the

slave problem which yields ∆hi = hi↑ − hi↓ and 〈Ôiσ〉
which are then used to solve the spinon problem to get
the spinon ∆ni. The figures clearly show that the only
self-consistent solution where slave and spinon particle
numbers match is for ∆hi = 0 which is the symmetric
paramagnetic state.
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FIG. 1. ∆n = n↑−n↓ as a function of ∆h = h↑−h↓ on one site
of the 1D half-filled single band Hubbard model with U = 2
and t = 1. Upper figure is for the FM phase, and the lower
figure for the AFM phase. The ∆h dependence of the spinon
and slave occupancies are shown separately. Self-consistency
between the two requires zero occupancy difference.

V. SYMMETRY BREAKING FIELDS

In this section, we show how manually adding small
external symmetry breaking terms (“fields”) to the on-
site energies can lead to electronic symmetry breaking
and lower the energy of the self-consistent ground state.
In the next section, we will justify this apparently ad hoc
approach.

Adding additional symmetry breaking (“magnetic
field”) terms bimσ to the on-site energies of the orbitals
in the spinon Hamiltonian gives the simple modification

Ĥf =
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
iα

hiα
∑
mσ∈α

f̂†imσ f̂imσ

−
∑
ii′αα′

〈Ô†
iαÔi′α′〉s

∑
mσ∈α
m′σ∈α′

timi′m′σ f̂
†
imσ f̂i′m′σ

−
∑
imσ

bimσ f̂
†
imσ f̂imσ . (11)

We do not modify the slave Hamiltonian in any way in
this ad hoc approach.

We note that a symmetry breaking field indexed by

imσ can break symmetry between sites, between or-
bitals, and between spin directions (and any combination
thereof). It is critical to note that the nature and type of
symmetry breaking fields predetermines the types of so-
lutions one can describe: to generate more complex types
of symmetry breaking (e.g., superconducting order with
slave bosons23), one will first have to generalize the for-
malism to allow for the appropriate symmetry breaking
fields.

Addition of non-zero symmetry breaking fields
bimσ will modify the self-consistent solution to the
spinon+slave problem. To gauge if this improves the so-
lution, we monitor the total electronic energy and see
if it is lowered due to symmetry breaking. The total
energy is the expectation value of the original Hubbard
Hamiltonian of Eq. (1) with respect to the approximate
spinon+slave wave function |Ψf 〉|Φs〉, and is equal to

Etotal = 〈Ĥ〉 =
∑
i

〈Ĥi
int〉s +

∑
imσ

εimσ〈f̂†imσ f̂imσ〉f

−
∑

ii′mm′σ

timi′m′σ〈f̂†imσ f̂i′m′σ〉f 〈Ô†
iαÔi′α′〉s . (12)

(Please note that in order for the expectation value

of Ĥ to give the associated energy, the state must be
normalized which is most convenient to achieve by setting
〈Ψf |Ψf 〉 = 〈Φs|Φs〉 = 1.)

We now apply this approach to the one-dimensional
single band Hubbard model at half filling of Eq. (10).
Without loss of generality, we choose bi↑ = −bi↓ to break
spin symmetry on each site i. For ferromagnetic (FM)
order, we choose aligned symmetry breaking fields be-
tween neighboring sites bi+1,σ = biσ, while AFM order
requires staggered fields bi+1,σ = −biσ. Hence, the field
strength b for spin up at one site is sufficient so specify the
fields at all sites. We numerically solve the spinon+slave
self-consistent equations using the single-site mean-field
approximation described Section III. In essence, we are
searching over broken symmetry solutions parameterized
by b to find the lowest energy state. As we have pre-
specified FM (or AFM) order with one (or two) site(s)
per unit cell, we will only find such solutions; more com-
plex magnetic orderings will require more complex unit
cells and symmetry breaking fields with more degrees of
freedom.

We begin our analysis with the most coarse-grained
slave-boson representations that only describe the to-
tal electron count on each site (i.e., no information on
the spin configuration). These are the slave-rotor and
number-slave methods. The chief difference between
them is that the number count on a site can be any in-
teger in the slave-rotor method while the number-slave
corrects this by only permitting the electron count to
be among the physically allowed values (e.g., zero, one
or two for the single band Hubbard model). Figure 2
show the dependence of the total energy and quasipar-
ticle weight Z (i.e., renormalization factor) on the field
strength b within the slave-rotor approach. For the slave-
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FIG. 2. Total energy per site and quasiparticle weight Z
(renormalization factor)versus symmetry breaking perturba-
tion field strength b based on the slave-rotor method for the
half-filled single-band 1D Hubbard model with U = 2 and
t = 1.

rotor, increasing b increases the total energy of both AFM
and FM solutions: the non-magnetic solution is the pre-
ferred ground state. The strength of electronic correla-
tions, measured by how much Z deviates from its non-
interacting value of unity, also increases with b. This
b dependence is opposite to what one would expect for
the actual model system: a more spin-polarized system
should have smaller number fluctuations as occupancies
are driven towards one or zero and the electron config-
uration becomes better described by a single Slater de-
terminant. Finally, the slave-rotor predicts an abrupt
transition to a Mott insulator at finite b which is pecu-
liar (and wrong).

The number-slave results for total energy and Z versus
b, displayed in Figure 3, are somewhat of an improve-
ment over those of the slave-rotor but are still funda-
mentally flawed. The energy is still minimized by the
non-magnetic solution at b = 0 (although the energy rises
more gently with b) and Z drops with b (albeit more mod-
estly). The failure of the slave-rotor and number-slave
methods is tied to the fact that they do not consider the
spin degree of freedom.

FIG. 3. Total energy per site and Z versus field strength b
for the number-slave method for the single-band 1D Hubbard
model at half filling with U = 2 and t = 1.

Due to the simplicity of the single-band Hub-
bard model, the only remaining slave model is the
spin+orbital-slave approach (called “spin-slave” in the
literature27,28,35). On each site, the each spin channel
has its own dedicated slave particle. The energy versus
b plot in Figure 4 shows that we obtain an AFM ground
state since a minimum appears at finite b. The figure
also shows that the degree of electronic correlation is re-
duced with increasing b (and increasing strength of AFM
order) as the occupancies get closer to zero and one: the
system becomes less strongly interacting as b is strength-
ened. This is what we expect: with increasing AFM
spin-polarization, the electronic configuration of the sys-
tem is driven to extremes of occupation (zero or one for
each spin channel) meaning that one can describe the
system more accurately with a single (non-interacting)
Slater determinant. More details on the energetic behav-
ior versus b is provided by Figure 5 where the individual
components of the total energy are shown versus b. The
interaction energy (Hubbard U term) is reduced by the
spin symmetry breaking since for both FM and AFM or-
der the occupancies move away from half-filling where
occupancy fluctuation is largest. The band (hopping or
kinetic) energy rises with b due to the splitting of bands
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FIG. 4. Total energy per site and Z versus field b for the
spin+orbital-slave approach for the single-band 1D Hubbard
model at half filling with U = 2 and t = 1. Unlike the number-
slave and slave-rotor, correlations decrease with increasing b
for the AFM phase and slowly increase with b for the FM
phase.

upon symmetry reduction. Both behaviors are generic
and as expected. However, the reason the AFM order
shows a minimum total energy versus b is due to the
fact that Z becomes larger with b in this case: a larger
Z (i.e., larger 〈O〉) will enhance hopping and widen the
bands and thus offset the reduction of total band energy
due to the creation of spin polarization.

The take-home message of this section is that the in-
troduction of symmetry breaking fields can succeed in
stabilizing symmetry-broken ground states due to elec-
tronic correlations as long as the slave approach being
used is able to describe the symmetry breaking degree
of freedom (spin in the 1D single band Hubbard model).
We are thus motivated to improve upon the ad hoc na-
ture of the approach and put it on a firmer theoretical in
the next section.

FIG. 5.

VI. SELF-CONSISTENT TOTAL ENERGY
APPROACH

In this section, we justify the successful but ad hoc
approach of the previous section. Namely, we describe a
total energy functional that can be applied to any type of
slave-particle problem and which permits easy incorpo-
ration of the various types of desired constraints. Specifi-
cally, we show that the slave-particle approach is a varia-
tional approach to the interacting ground-state problem,
and we provide an explicit form for the variational en-
ergy functional. We also show that this viewpoint pro-
vides significant practical benefits for efficient solution
of the self-consistency problem between slave and spinon
sectors.

The form of the energy functional F is given by

F = Etotal + constraints

where Etotal is from Eq. (12) and the constraint terms
are enforced by Langrange multipliers.

Prior to the introduction of symmetry breaking fields,
the constraints we have enforced are that 〈Niα〉s = 〈n̂iα〉f
as well as the normalization of the spinon and slave wave
functions 〈Ψf |Ψf 〉 = 〈Φs|Φs〉. To incorporate symmetry
breaking fields, we choose to parametrize the functional
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F by target spinon occupancies νimσ: these numbers are
the occupancies that we are constraining the spinons to
obey, i.e., the constraints are 〈nimσ〉f = νimσ. The asso-
ciated Lagrange multipliers are bimσ. Hence the energy
functional has the form, where we write out Etotal ex-
plicitly,

F ({νimσ}) =
∑
i

〈Ĥi
int〉s +

∑
imσ

εimσ〈f̂†imσ f̂imσ〉f

−
∑

ii′mm′σ

timi′m′σ〈f̂†imσ f̂i′m′σ〉f 〈Ô†
iαÔi′α′〉s

− λf [〈Ψf |Ψf 〉 − 1]− λs[〈Φs|Φs〉 − 1]

−
∑
iα

hiα[〈n̂iα〉f − 〈N̂iα〉s]

−
∑
imσ

bimσ[〈n̂imσ〉f − νimσ] . (13)

The Lagrange multiplies λf and λs enforce normaliza-
tion of the spinon and slave wave functions, respectively
(these are necessary so that the expectation values of the
various Hamiltonian terms correspond to average ener-
gies). The hiα enforce particle number matching between
slave and spinon sectors. The bimσ enforce spinon par-
ticle matching to target values. As expected, when the
constraints are obeyed, F = Etotal.

The point of having a energy functional is that the
minimizing variational conditions, which generate desired
eigenvalue problems, are easily derived by differentiation.
In addition, the value of F provides a variational estimate
of the ground state energy. Setting the derivative versus
〈Ψf | to zero gives the spinon eigvenalue equation

0 =
δF

δ〈Ψf |
= Hf |Ψf 〉 − λf |Ψf 〉

where the spinon Hamiltonian is that of Eq. (11) which
includes the symmetry breaking fields. Similarly, the
minimum condition for |Φs〉 gives a slave eigenvalue prob-
lem with the slave Hamiltonian of Eq. (8).

The above formalism shows that, once all the con-
straints are obeyed, F ({νimσ}) = Etotal({νimσ}). The re-
maining task it to search over the target occupancies νimσ
to find the minimum total energy. While theoretically
straightforward, in practice such an approach is diffi-
cult and inefficient because for each specified {νimσ}, one
must find the fields bimσ that enforce those particular tar-
get occupancies: this requires solving the spinon+slave
problem a great many times.

Practically, it is better to use the bimσ as the in-
dependent variables and to minimize the energy over
the (formally, this corresponds to a Legendre transfor-
mation of F ). Hence, we now view νimσ as what-
ever mean spinon occupancies are generated by solu-
tion of the spinon+slave problem at fixed {bimσ} which
makes that corresponding constraint form always van-
ish. Hence, in what follows, we will use the symmetry
breaking fields as independent variables and consider the

total energy functional F ({bimσ}). Since we will always
be obeying the key constraints for a physical solution,
F ({bimσ}) = Etotal({bimσ}) will be true. Hence, mini-
mization of the total energy versus {bimσ} will coincide
with minimization of F .

In summary, we have rewritten the slave-boson prob-
lem as a constrained variational minimization problem.
When the constraints are obeyed, the minimization corre-
sponds directly to minimizing the total energy expression
of Eq. (12).

VII. SIMPLIFIED AND MORE EFFICIENT
SLAVE-PARTICLE APPROACH

Up to this point, the slave-particle approaches we have
developed require self-consistency between spinon and
slave sectors in a specific manner: not only do the spinon
expectations renormalize slave hopping terms (and con-
versely for slave expectations and spinon hoppings), but
a shared set of Lagrange multipliers hiα enforce particle
number matching 〈n̂iα〉f = 〈N̂iα〉s. The process of find-
ing the hiα is numerically challenging: the hiα appear
with opposite signs in the spinon Hf and slave Hs Hamil-
tonians meaning that increasing hiα decreases 〈n̂iα〉f but

increases 〈N̂iα〉s. Our general observation is that this
“fighting” over hiα between the slave and spinon sectors
leads to a time-consuming self-consistent process requir-
ing many iterations to reach convergence.

Accelerating this process requires a simple change of
variables that is motivated by three related observations:
(i) in the total energy functional of Eq. (13), the spinon
and slave number constraints are not treated symmetri-
cally because the spinons have the added bimσ terms, (ii)
in the spinon Hamiltonian of Eq. (11), we can add the
hiα and bimσ terms together into a single term whereas
the slave Hamiltonian of Eq. (8) only has the hiα terms,
and (iii) in the end, these Lagrange multipliers hiα and
bimσ do not appear in the total energy so rearranging
them in various ways does not change the total energy.

For the spinon Hamiltonian, we consider instead the
new symmetry breaking field given by the sum Bimσ =
hiα + bimσ. The spinon Hamiltonian is now

Ĥf =
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
imσ

Bimσ f̂
†
imσ f̂imσ

−
∑
ii′αα′

〈Ô†
iαÔi′α′〉s

∑
mσ∈α
m′σ∈α′

timi′m′σ f̂
†
imσ f̂i′m′σ (14)

while the slave Hamiltonian is unchanged

Ĥs =
∑
i

Ĥi
int +

∑
α

hiαN̂iα

−
∑
ii′αα′

 ∑
mσ∈α
m′σ∈α′

timi′m′σ〈f̂†imσ f̂i′m′σ〉f

 Ô†
iαÔi′α′ .
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FIG. 6. Comparison of the total ground state energies (in
units of t) for the single-band 1D Hubbard model at half fill-
ing based on the AFM Hartree-Fock solution, the PM slave-
spin solution, the symmetry broken (AFM) slave-spin ground
state solution, and the exact Bethe Ansatz (AFM) solution
as calculated using the method of Ref. 36.

The slave Hamiltonian Hs no longer shares a common
Lagrange multiplier with the spinon Hamiltonian Hf .

Operationally, this means that when we solve the slave
Hamiltonian problem, we are given specified 〈n̂iα〉f as in-
put, and we solve the slave problem while adjusting the
hiα so as to ensure that the slave-particle counts match
the input: 〈N̂iα〉s = 〈n̂iα〉f . However, when solving
the spinon problem in the presence of symmetry break-
ing fields Bimσ, there is no need to do particle number
matching: the Lagrange multiplier Bimσ simply make the
spinon particle counts match some free floating values.
In this way, particle number matching between the slave
and spinon sector is decoupled which grealy simplifies the
self-consistency process. Put another way, the symmetry
breaking fields Bimσ specify a set of desired spinon par-
ticle counts {νimσ}, and the slave sector is required to
match this particle numbers via the hiα Lagrange multi-
pliers.

We find that this simplified approach, which is equiv-
alent to the standard approach of having hiα appear in
both Hamiltonians, is much more efficient in numerical
calculations as it greatly speeds up self-consistency. In
this new approach, one achieves rapid self-consistency for
a given set of {Bimσ} which specify the spinon Hamilto-
nian and the target spinon occupancies νimσ. One can
then minimize Etotal({Bimσ}) over the Bimσ to find the
symmetry-broken ground state. In our experience, this
new approach requires ∼5-10 times fewer self-consistent
steps to reach the same level convergence.

Using this method, we can rapidly scan over B in a
stable, self-consistent way to obtain ground state ener-
gies. Figure 6 shows the dependence of the ground state
energy of the half-filled single-band 1D Hubbard model
as a function of U/t: for each U/t, we easily scan over

the new symmetry breaking field strength B to find the
AFM ground state energy. The figure shows energy ver-
sus U/t for the AFM state as well as the B = 0 non-
magnetic solution compared to the exact Bethe ansatz
solution for this problem.34 Overall, the comparison be-
tween the AFM slave-spin solution (which is insulating
in the spinon sector) and the exact Bethe ansatz is satis-
factory given the simplicity of the single-site mean field
slave model used here. As expected, the AFM slave-spin
method becomes very much like AFM Hartree-Fock in
the large U/t limit of very strong spin polarization since
both approaches essentially describe the system as a sin-
gle Slater determinant. We note that the non-magnetic
ground state has an incorrect evolution from a metal-
lic system at small U/t to a Mott-insulating phase at
U/t ≥ 10.

We provide a word of caution regarding the interpre-
tation of the results. The results show that in this par-
ticular situation, the slave-boson approach provides an
energy that is close to but below that of Hartree-Fock
and above the true ground-state energy. However, to
the best of our knowledge, there is no known principle
guaranteeing that these slave-boson methods give an up-
per bound to the total energy (e.g., in the same way
that Hartree-Fock does). Etotal in Eq. (12) does provide
a variational upper bound of the energy but in the ex-
tended spinon+slave Hilbert space. The state |Ψf 〉|Φs〉
is a valid and normalized state in the extended Hilbert
space so that Etotal, being the expectation of Ĥ for this
state, must be higher than the ground state energy in the
extended Hilbert space. However, the extended Hilbert
space includes both physical and unphysical states, and
there is no known guarantee that the ground-state energy
in the extended space coincides with the ground-state in
the subspace of physical states. Nevertheless, we note
that many useful electronic structure methods for solid
state systems (e.g., DFT with an approximate exchange-
correlation functional) do not obey strict bounds on the
total energy and yet can often outperform Hartree-Fock
(which does come with a bound). Hence, the question
of whether total energies from slave-boson methods lie
above or below the true ground state energy in more com-
plex physical systems is an interesting and open question.

VIII. CONCLUSION

We’ve shown how slave particle methods can be used to
obtain spontaneously symmetry-broken electronic phases
based on a total-energy approach. We have described
and tested our ideas on the classic 1D Hubbard model
Hamiltonian. Furthermore, we have shown how to enable
symmetry breaking via the use of auxiliary symmetry
breaking fields in a self-consistent way that greatly low-
ers the computational burden and stability from the stan-
dard slave-particle calculation. Further, we have demon-
strated that in order to obtain spontaneously symmetry-
broken phases in the spinon sector, the slave-sector must
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be allowed to break the corresponding symmetry explic-
itly by having different slave-modes for the different de-
grees of freedom which may undergo symmetry breaking.
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X. APPENDIX

We show, via a detailed derivation, that the slave-
boson representation is faithful by showing that canoni-
cal commutation relations are obeyed. By definition, the

commutators of the physical electron operators d̂imσ sat-
isfy fermionic anticommutation relations:

{d̂imσ, d̂†jm′σ′} = δijδmm′δσσ′ (15)

We show that this equality holds when we perform the

slave-boson substitution d̂imσ = f̂imσÔiα if we deal
only with physical states (i.e., states in the extended
spinon+slave Hilbert space where the number of spinons
and bosons match exactly). Namely, for an pair of phys-
ical states |p1〉 and |p2〉,

〈p1|{f̂imσÔiα, f̂†jm′σ′Ô
†
jβ}|p2〉 = δijδmm′δσσ′〈p1|p2〉 .

(16)
To prove the above equality, we begin by remembering

that α and β label disjoint sets of localized states each
specified by the combination of labels imσ describing the
site i, spatial orbital m, and σ. In addition, we have that
imσ ∈ α and jm′σ′ ∈ β. Also, by definition, the spinon

operators f̂ are fermionic field operators obeying can-
nonical commutation relations. As discussed in the main
text, the Ô operators are bosonic but are not canonical
field operators. The matrix representation of the lower-
ing Ô operator in the number basis is31

Ôiα =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
Ciα 0 0 . . . 0 0

 (17)

The number of slave bosons Niα is an integer obeying
0 ≤ Niα ≤ Miα where Miα is the maximum slave boson
count (i.e., maximum number of electrons) that can be
put into the set of orbitals α. For use below, we also have
the matrix representations

Ô†
iαÔiα =



|Ciα|2 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

 (18)

and

[Ôiα, Ô
†
iα] = (1− |Ciα|2) ·


1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 −1

 . (19)

To prove Eq. (16), we use the anticommutation prop-

erties of the f̂ to arrive at

{f̂imσÔiα, f̂†jm′σ′Ô
†
jβ} =

f̂imσ f̂
†
jm′σ′ [Ôiα, Ô

†
jβ ] + Ô†

jβÔiαδijδmm′δσσ′ . (20)

We examine the four cases of index combinations that
can occurs and show that in each case Eq. (16) holds.

(A) When i 6= j, the bosonic opeartors on different
sites commute by definition so the first term on the right
hand side of Eq. (20) is zero. And the second term is
zero since i 6= j, so Eq. (16) holds.

(B) When i = j but α 6= β, the bosonic operators
on the same site refer to disjoint set of states on the site
and commute by definition. So the first term on the right
hand side of Eq. (20) is zero. And the second term is also
zero since α and β are disjoint do not share any states
on the same site. So Eq. (16) holds.

(C) When i = j and α = β but (mσ) 6= (m′σ′), only
the first term on the right of Eq. (20) survives and equals

{f̂imσÔiα, f̂†im′σ′Ô
†
iα} =

f̂imσ f̂
†
im′σ′ · (1− |Ciα|2) ·


1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 −1

 . (21)

The action of the right hand side on any physical state
which has between 1 and Miα−1 particles is zero. When

acting on the state with zero particles, the action of f̂imσ
will kill the state and yield zero. When acting on the
state with the maximum number Miα particles, the ac-

tion of f̂†im′σ′ gives zero. So Eq. (16) holds.

(D) Finally, when all indices match (i = j, α = β,
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m = m′, σ = σ′), we have

{f̂imσÔiα, f̂†imσÔ
†
iα} =

f̂imσ f̂
†
imσ · (1− |Ciα|

2) ·


1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 −1



+



|Ciα|2 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

 . (22)

If the state imσ is empty, the action of f̂imσ f̂
†
imσ is the

identity operation on this state and adding the matrices
we find the identity matrix except for the bottom right
corner element which is |Ciα|2 instead of one; but this is
irrelevant since if imσ is empty, then the number of parti-
cles is less than the maximum Miα so this matrix element
is never accessed. If the state imσ is full, f̂imσ f̂

†
imσ kills

the state and we are again left with the identity matrix
except for the top left corner element being |Ciα|2; this
is irrelevant since if imσ is full, the number of particles
is greater than zero so this element is never accessed. So
Eq. (16) holds.
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