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We discuss several bosonic topological phases in (3+1) dimensions enriched by a global Z2 sym-
metry, and gauging the Z2 symmetry. More specifically, following the spirit of the bulk-boundary
correspondence, expected to hold in topological phases of matter in general, we consider bound-
ary (surface) field theories and their orbifold. From the surface partition functions, we extract the
modular S and T matrices and compare them with (2 + 1)d toplogical phase after dimensional
reduction. As a specific example, we discuss topologically ordered phases in (3 + 1) dimensions
described by the BF topological quantum field theories, with abelian exchange statistics between
point-like and loop-like quasiparticles. Once the Z2 charge conjugation symmetry is gauged, the Z2

flux becomes non-abelian excitation. The gauged topological phases we are considering here belong
to the quantum double model with non-abelian group in (3 + 1) dimensions.
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I. INTRODUCTION

Symmetry and topology intertwine in many phases of
matter. Two prime examples are symmetry-protected
topological (SPT) phases and symmetry-enriched topo-
logical (SET) phases. In SPT phases, symmetries play a
crucial role, in that they are sharply distinct from triv-
ial phases (i.e., product states) only in the presence of
symmetries.1–5 On the other hand, topologically ordered
phases can be enriched by global symmetries. The sem-
inal example is the charge fractionalization of Laughlin
quasiparticles in the fractional quantum Hall effect. The
relevant global symmetry in this case is U(1) associated
to particle number conservation. Varieties of SET phases
have been discussed in the literature.6–8

A global symmetry in SPT or SET phases can be pro-
moted to a local symmetry through gauging. Such “gaug-
ing” (in the bulk) or “orbifolding” (on the edge) is a use-
ful tool to understand parent SPT and SET phases in
(2 + 1) dimensions.9–12 Gauging an SPT phase leads to
a topological phase; thus the SPT phase is the parent of
this topological phase. The topological class of the parent
SPT phase can be inferred from, and, in fact, has one-
to-one correspondence with the topological order (i.e.,
properties of anyons) which arises by the gauging proce-
dure. We can also gauge a global (discrete) symmetry G
in an SET phase, thereby giving rise to a new topologi-
cal phase. In particular, if the global symmetry acts on
emergent excitations (anyons) by permuting the anyon
labels13 in the parent SET, then gauging these symme-
tries will lead to more interesting ”twist liquids”.14–17

The focus of this paper is to generalize the above idea
to (3 + 1) dimensions and discuss gauging/orbifolding
global symmetries in (3+1)-dimensional bosonic topolog-
ically ordered phases. Starting from (3 + 1)-dimensional
topologically ordered phases with Abelian topological or-
der, which are described by (multi-component) BF theo-
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ries, we gauge a global Z2 symmetry and show that the
new topological phase is non-Abelian and related to a
non-Abelian quantum double model.

Previous work has constructed line defects in (3 + 1)-
dimensional topological phases.18–20 These semi-classical
defects are analogous to twist defects in (2+1)d topolog-
ical phases and can twist the anyon labels.21–28 In this
paper, we will fully gauge the discrete global symme-
tries so that these topological defects will become fully
deconfined loop-like excitations. Our method for deter-
mining the resulting (3 + 1)d topological phase relies on
the bulk-boundary correspondence. We work with the
(2 + 1)-dimensional surface theories of the bulk (3 + 1)d
BF theories, and consider the Z2 orbifold thereof. As in
the context of (1 + 1)-dimensional conformal field the-
ories (CFT), orbifolding a CFT amounts to considering
the partition functions in the presence of twisted bound-
ary conditions.29–32 By putting the surface theory on the
spacetime torus T 3 with proper boundary conditions in
time and two spatial directions, we derive the transfor-
mation properties of the twisted partition function under
the mapping class group (the large diffeomorphisms) of
T 3.33,34 This procedure allows us to read off the modular
S and T matrices, which encode the properties of anyons
in the gauged surface theory. This, in turn, allows us to
deduce the gauged bulk theory.

The rest of the paper is organized as follows: In
Sec. II A, we briefly review orbifold CFTs in (1 + 1)d.
We further elucidate this with a simple example in the
ZK quantum double model in Sec. II B. In Sec. III, we
consider three different topological phases in (3 + 1)d
and study the corresponding orbifolded surface theories.
In Sec. V, we discuss the bulk non-Abelian topological
phase that results from gauging Z2 symmetry and make
a connection with the surface orbifold theory. We sum-
marize our results in Sec. VI.

II. ORBIFOLDING THE (1 + 1)D BOUNDARY
THEORY

A. Summary of orbifold CFT in (1 + 1)d

Topologically ordered phases in (2 + 1)d are often
equipped (or enriched) with some global discrete sym-
metries. These symmetries may permute anyon labels,
but leave the S and T matrices invariant. Gauging the
discrete symmetry G will give rise to more interesting
topological phases.

A way to understand this new topological phase is
through studying the boundary theory. For a topolog-
ical phase, the gapless boundary state can be described
by a rational CFT C. Gauging the global symmetry in
the bulk corresponds to orbifolding the edge CFT by the
symmetry. By orbifolding by symmetry G, we project
out the symmetry non-invariant states and, simultane-
ously, add some twist sectors to the Hilbert space. For
the details of orbifold CFTs, see Ref. 29–32. The orbifold

CFT C/G can be understood by calculating the character
for each primary field. The characters are the partition
functions under the symmetry projection,

χhn = Trh(Pne−tH) (1)

where Pn is a projection operator, and h ∈ G defines the
twist in the spatial direction. Here, the projection oper-
ator Pn depends on the set of phase factors {ω} known
as the discrete torsion phases. E.g., if G is an abelian ZN
symmetry, the projection operator is simply written as

Pn =
∑N−1
k=0 ω−nkgk/N where g is the generator of ZN

and ω is the k-th root of unity. More generally, if G is a
non-Abelian group, we require g belongs to the central-
izer subgroup of h containing all g that commutes with h,
i.e., gh = hg. The character χhn can be understood as a
linear combination of partition functions with fixed twist
h in the spatial direction and all allowed twists g in the
time direction. This construction of the orbifold char-
acters is a reminiscence of the minimal entangled states
(MESs) in the corresponding (2+1)d bulk topologically
ordered phase. MESs form a convenient basis of the de-
generate ground states defined on the spatial 2-torus.

The characters form a complete basis for a reprsenta-
tion of the group of modular transformations. The mod-
ular S and T matrices for the orbifold CFT, which are
identical to the S and T matrices for the bulk topological
order, thus encode topological information of the topo-
logical phase.

One interesting example is the toric code model. It has
a global duality symmetry which exchanges the charge e
and flux m, while leaving ψ = e×m invariant. Gauging
the Z2 duality symmetry leads to a non-Abelian topolog-
ical phase. The calculation of the characters for the edge
orbifold CFT shows that S and T matrices are equivalent
to that for the Ising × Ising CFT and suggests that the
bulk topological phase has nine quasi-particles, including
the Ising-like anyon excitation.35,36

B. Orbifolding Z2 symmetry on the boundary of
the ZK quantum double model

Starting from an abelian topological phase, if we
gauge a global symmetry G, the resulting non-abelian
topological phase includes the following three types of
excitations:15 First, for the anyon in a which is invari-
ant under symmetry G, they remain as excitations in the
twist liquid. They can also couple with gauge charge and
form a composite particle. These excitations are abelian
excitations with zero gauge flux and called Type (1) exci-
tations. Next, for anyons {ai} which are not invariant un-
der symmetry, they need to group together to form a su-
perselection sector so that a1+a2+. . . is gauge invariant.
Such Type (2) excitations are non-abelian quasi-particles
with zero gauge flux. Finally, Type (3) excitations are
the most interesting ones: They carry non-trivial gauge
flux and correspond to non-abelian twist defects before
gauging. From the boundary field theory point of view,
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for these three types of excitations, we can construct the
corresponding characters on the boundary.

We now work out an example explicitly in order to
illuminate the general strategy: Z2 charge-conjugation
symmetry in the D(ZK) quantum double model. We here
consider the case when K is an odd number. The detail
for this method can be found in Ref. 37.

Our use of a gapless edge CFT deserves further com-
ment. For a single-component Chern-Simons theory,
there is a chiral gapless mode on the boundary, which
is stable and cannot be gapped out. This is because the
single component Chern-Simons theory is anomalous and
requires a gapless edge mode on the boundary to compen-
sate the anomaly in the bulk. Meanwhile, for the non-
chiral D(ZK) quantum double model without anomaly,
the boundary CFT can be gapped out if we do not im-
pose any symmetry. Although the gapless CFT is not
stable, it does encode topological data in the bulk. Thus,
we can use the “fine-tuned” gapless CFT as an interme-
diate step to study the bulk topological phase via the
bulk boundary correspondence. This is also true for the
(3 + 1)d topological phase.

The D(ZK) quantum double model has two fundamen-
tal quasi-particle excitations, e and m. All the quasi-
particle excitations can be written as eamb, where 0 ≤
a, b < K. e and m are self-bosons, and have non-trivial
mutual braiding statistics with braiding phase e2πi/K.

The D(ZK) quantum double model has a global Z2

charge-conjugation symmetry which exchanges eamb and
eK−amK−b. If K is an odd number, there is no quasi-
particle which is invariant under the charge-conjugation.

Once the Z2 symmetry is gauged, i.e., the global
charge-conjugation symmetry is promoted to a local
gauge symmetry, there is a Z2 bosonic charge j which
satisfies the fusion rule j×j = 1. On the other hand, the
Z2 flux σ is a non-Abelian quasi-particle. σ can combine
with Z2 charge to form the flux-charge composite quasi-
particle, τ = σ × j. The original abelian anyons eamb

will group together to form gauge invariant superselec-
tion sector eamb + eK−amK−b with quantum dimension
equal to 2.

Let us now take a look at the gauging procedure from
the boundary field theory point of view. The relevant
boundary theory is described by the following Lagrangian
density

L =
1

4π
(∂tφ

IKIJ∂xφ
J + ∂xφ

IVIJ∂xφ
J), (2)

where (t, x) are the spacetime coordinates of the bound-

ary; K = Kσx, ~Φ = (φ1, φ2) is a two-component bo-
son, and V is a symmetric and positive definite matrix
that accounts for the interaction on the edge and is non-
universal. This model has K2 characters and there is a
choice of interaction VIJ for which they take the form

BK
a,b(τ) =

1

|η(τ)|2
∑
s,t∈Z

q
1

4K (Ks+a+Kt+b)2 q̄
1

4K (Kt+a−Ks−b)2

(3)

character χ dχ hχ N
χI = 1

2
BK

0,0 + 1
2

∣∣∣ ηθ2 ∣∣∣ 1 0 1

χj = 1
2
BK

0,0 − 1
2

∣∣∣ ηθ2 ∣∣∣ 1 0 1

χa,b = 1
2
BK
a,b + 1

2
BK

K−a,K−b 2 ab
K

K2−1
2

χσ = 1
2

∣∣∣ ηθ4 ∣∣∣+ 1
2

∣∣∣ ηθ3 ∣∣∣ K 0 1

χτ = 1
2

∣∣∣ ηθ4 ∣∣∣− 1
2

∣∣∣ ηθ3 ∣∣∣ K 1
2

1

TABLE I. The quantum dimensions dχ, conformal dimen-
sions hχ, and the number N of characters χ from orbifolding
the charge-conjugate Z2 symmetry of Eq. (A1) when K is odd.
The conformal dimensions hχ are defined mod Z. For χa,b, if
a 6= b, we require 0 ≤ a < b ≤ K here. If a = b, we require
a ≤ (K− 1)/2.

where a, b ∈ Z mod K are the anyon labels, τ is the mod-
ular parameter of the spacetime torus, q = exp(2πiτ),
and η(τ) is the Dedekind eta function. The details of the
calculation can be found in Ref. 38 and is also summa-
rized in Appendix A.

The boundary theory Eq.(2) is invariant under the Z2

charge-conjugation symmetry

φ1,2 → −φ1,2. (4)

Once orbifolded by the Z2 symmetry, φ1,2 can become
−φ1,2 when the coordinates are taken around the time
and spatial directions on the (1 + 1)d torus. Therefore
orbifolding introduces anti-periodic boundary conditions
in the x and t directions. The partition function with
twisted boundary condition is labelled by Zµν , where
µ, ν = 0, 1

2 represents untwisted and twisted boundary
condition in, respectively, the time and space directions.
The twisted partition functions are given by32

Z
1
2 ,0 =

∣∣∣∣ ηθ2

∣∣∣∣ , Z0, 12 =

∣∣∣∣ ηθ4

∣∣∣∣ , Z
1
2 ,

1
2 =

∣∣∣∣ ηθ3

∣∣∣∣ , (5)

where θ2,3,4 are Jacobi theta functions defined by

θ2 =
∑
n∈Z

q
1
2 (n+ 1

2 )2 , θ3 =
∑
n∈Z

q
n2

2 , θ4 =
∑
n∈Z

(−1)nq
n2

2 .

(6)

One can readily check that under modular transforma-
tions,

Z
1
2 ,0

S←→ Z0, 12 , Z
1
2 ,

1
2
S←→ Z

1
2 ,

1
2 ,

Z
1
2 ,0

T←→ Z
1
2 ,0, Z0, 12

T←→ Z
1
2 ,

1
2 . (7)

We use these twist blocks and the original characters
BK
a,b to construct the characters for the orbifold CFT and

the result is shown in Table I. χI is the character for the
vacuum and χj is the character for Z2 charge, χa,b is the
superselection sector, χσ is the character for Z2 flux and
χτ is the character for charge-flux composite. From the



4

table we can see that the quantum dimension for a Z2 flux
σ is K, indicating that it is a non-Abelian quasi-particle.
The S matrix is

S =
1

D


1 1 2 K K

1 1 2 −K −K

2 2 4 cos[ 2π
K (ab′ + ba′)] 0 0

K −K 0 K −K

K −K 0 −K K

 (8)

where the total quantum dimension is D = 2K. The
topologica spin e2πih of anyonic excitations can be read
off from the (eigenvalues of the) T matrix.

A trivial example is K = 1. Before gauging, the bulk
has no topological order. After gauging the Z2 symme-
try, the S and T matrix is the same as that for the toric
code model, indicating the original phase is not a symme-
try protected topological phase (SPT).9 The twist fields
σ, τ have quantum dimension equal to one, and corre-
spond to the Abelian Z2 flux in the bulk. For K ≥ 3,
the gauged system has non-Abelian topological order in
the bulk. This non-abelian topological order can be de-
scribed by the D(DK) quantum double model, where DK

is the dihedral group of order 2K.16

III. GAUGING Z2 CHARGE-CONJUGATION
SYMMETRY IN (3+1)D ZK GAUGE THEORIES

In this section, we discuss gauging discrete symmetries
in (3+1)d topologically ordered phases. A specific exam-
ple we consider in this section is the topological ZK gauge
theory. It is the long wavelength limit of the deconfined
phase of the ZK gauge theory. A convenient description
of the topological ZK gauge theory is given by the single-
component (3 + 1)d BF theory, which is defined by the
following action

Sbulk =
K

2π

∫
M
b ∧ da (9)

where M is a (3+1)d spacetime manifold; a and b are a
one- and two-form, respectively; K is an integral parame-
ter (“level”). This action describes the simplest topolog-
ical phase in (3 + 1)d; its fundamental excitations are a
particle excitation e and a loop excitation m. They have
non-trivial mutual braiding statistics with the braiding
phase e2πi/K.

The BF theory (9) has Z2 charge-conjugation symme-
try:

b→ −b, a→ −a, (10)

and our goal in this section is to gauge this symmetry.
We will show that the resulting gauge theory has a non-
Abelian topological order.

Similar to the (2+1)d case, after gauging Z2 symmetry,
there will be a Z2 charge j which is a bosonic particle,
and a Z2 flux which, in (3+1)d, is a vortex-line excitation.

The original excitations eamb in the BF theory are not
Z2 symmetry invariant and will be grouped together. We
will denote them simply as eamb + eK−amK−b.

Our approach here is to generalize orbifolds of (1+1)d
edge theories discussed in Sec. II, and discuss orbifolds
of (2 + 1) gapless boundary theories. In particular, we
define a set of quantities which are analogous to the char-
acters defined for (1 + 1)d CFTs. These characters are
constructed by applying a projection operator on the par-
tition function, which is equivalent to imposing a twisted
boundary condition in the time direction. The characters
form a complete basis under SL(3,Z), the mapping class
group of T 3, and the T matrix takes a diagonal form.
By studying the characters on the boundary, we can ex-
tract information about the non-Abelian bulk topological
order.

A. The BF surface theory

Our starting point is thus the boundary of the BF the-
ory at level K, which can be described by the following
Lagrangian density34,39

L =
K

2π
(εij∂iζj)(∂tϕ)

− 1

2λ1
(εij∂iζj)

2 − 1

2λ2
Gij∂iϕ∂jϕ, (11)

where i, j = x, y, ϕ is a scalar, and ζi is a one-form field
(the temporal component of ζ is gauge-fixed to zero for
convenience). We fix the coupling constant λ1 and λ2

according to

(2π)2

K2λ1λ2
= 1, λ1 =

1

K
, λ2 =

(2π)2

K
. (12)

for convenience. The boson field ϕ is compact and satisfy
ϕ ≡ ϕ+2π. Hence, physical observables are exponentials

exp[imϕ(t, x, y)], m ∈ Z. (13)

The winding number of ϕ is quantized in the absence of
bulk quasiparticles, according to∮

dxi∂iϕ = 2πNi, Ni ∈ Z, (14)

where i = 1, 2 and i is not summed on the right hand
side. On the other hand, the gauge field ζi is compact,
meaning that physical observables are Wilson loops,

exp

(
im

∫
C

dxiζi(t, x, y)

)
, m ∈ Z, (15)

where C is a closed loop on ∂Σ = T 2. (Since the dif-
ferent components of ζi commute with each other, path-
ordering is unecessary.) The flux associated to ζi is quan-
tized, in the absence of bulk quasiparticles, according to∫

dxdy εij∂iζj = 2πN0 (16)
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where N0 is an integer.

The surface theory (11) is put on a flat spacetime three-
torus T 3, and Gij represents the spatial part of the met-
ric. For the properties of the the flat T 3, and our param-
eterization of the metric, see Appendix C. Our flat three-
torus is parameterized by six real parameters, R0,1,2 and
α, β, γ. For example, R0,1,2 are the periods in t, x, and
y directions, respectively. The mapping class group of
T 3, SL(3,Z), is generated by two transformations which
we call U1 and U2. Any SL(3,Z) transformation can be
written as Un1

1 Un2
2 Un3

1 · · · .40 We further decompose U1

as U1 = U ′1M , where U ′1 corresponds to a 90◦ rotation
in the τ − x plane and M is a 90◦ rotation in the x − y
plane. The transformation U ′1 can be viewed as the mod-
ular S transformation on the τ − x plane. Similarly, U2

can be introduced as the modular T−1 transformation on
the τ − x plane. Combined together, U ′1 and U2, which
transform the modular parameter τ = α + iR0/R1 as
τ → −1/τ and τ → τ − 1, respectively, generate the
SL(2,Z) subgroup of SL(3,Z) group. Further combined
with M , they generate the whole SL(3,Z) group. In the
following, we denote U ′1M by S and U2 by T −1.

The surface theory (11) can be studied in the presence

of the following twisted boundary conditions:

ϕ(t, x+ 2πR1, y) = ϕ(t, x, y) + 2π
(
N1 +

n1

K

)
,

ϕ(t, x, y + 2πR2) = ϕ(t, x, y) + 2π
(
N2 +

n2

K

)
,∫

dxdy εij∂iζj = 2π
(
N0 +

n0

K

)
, (17)

where N0,1,2 ∈ Z, and n0,1,2 = 0, . . . ,K − 1. We denote
the corresponding partition functions as

Zn0n1n2 = Zn0,n1,n2
zero Zosc (18)

where Zn0,n1,n2
zero and Zosc will be explained later. From

the bulk point of view, these (twisted) boundary con-
ditions correspond to insertion of Wilson loop and Wil-
son surfaces, i.e., bulk excitations. The bulk-boundary
correspondence implies that, by studying the partition
functions of the surface theories in the presence of these
boundary conditions, in particular, their transformation
law under SL(3,Z), one can extract properties of bulk
quasiparticles.41. The details for the calculation of sur-
face partition functions can be found in Ref. 34, where
the bulk-(gapless) boundary correspondence is also dis-
cussed. Here we directly write down the partition func-
tions for the surface. The zero mode part is

Zn0n1n2
zero =

∑
N0,1,2∈Z

exp
{
− πK2τ2

2r2R2
Ñ2

0 − 2r2πR2τ2

[
Ñ1 + βÑ2

]2
− 2r2πR0R1

R2
Ñ2

2

+ 2πiτ1KÑ0

[
Ñ1 + βÑ2

]
+ 2πiγKÑ0Ñ2

}
, (19)

where 2r2 = K, and we have introduced the notation

Ñµ := Nµ + nµ/K. (20)

For the oscillator part,

Zosc =

∣∣∣∣ 1

η(τ)

∣∣∣∣2 ∏
s2∈Z+

Θ−1
[βs2,γs2]

(
τ,
R1

R2
s2

)
, (21)

where Θ[a,b](τ,m) is the massive theta function (see Ap-
pendix B). The total partition function for each sector is
Zn0n1n2 = Zn0n1n2

zero Zosc. The modular S and T matrices
are given by

Sni,n′i =
1

K
δn1,n′2

e−
2πi
K (n′0n2−n0n

′
1),

Tni,n′i = δn0,n′0
δn1,n′1

δn2,n′2
e

2πi
K n0n1 . (22)

B. Gauging Z2 symmetry in the surface theory

In terms of the surface theory (11), the Z2 charge con-
jugation symmetry is implemented as

ϕ→ −ϕ, ζ → −ζ. (23)

We now gauge the Z2 symmetry. We consider the cases
of odd and even level K separately.

First, we include the twisted sectors obtained by twist-
ing boundary conditions in t, x, and y directions. The
partition functions for these sectors are denoted by V µ,ν,λ

where µ, ν, λ = 0 (1/2) represents the untwisted (twisted)
boundary condition, for t, x and y directions, respec-
tively. The partition functions with twisted boundary
condition in x, y, t directions can be readily computed
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character χ dχ hχ N
χI = 1

2
Z0,0,0 + 1

2
V

1
2
,0,0 1 0 1

χj = 1
2
Z0,0,0 − 1

2
V

1
2
,0,0 1 0 1

χa,b,c = 1
2
Za,b,c + 1

2
ZK−a,K−b,K−c 2 ab

K
K3−1

2

χσx = 1
2
V 0, 1

2
,0 + 1

2
V

1
2
, 1
2
,0 K 0 1

χτx = 1
2
V 0, 1

2
,0 − 1

2
V

1
2
, 1
2
,0 K 1

2
1

χσy = 1
2
V 0,0, 1

2 + 1
2
V

1
2
,0, 1

2 K 0 1

χτy = 1
2
V 0,0, 1

2 − 1
2
V

1
2
,0, 1

2 K 0 1

χσxy = 1
2
V 0, 1

2
, 1
2 + 1

2
V

1
2
, 1
2
, 1
2 K 0 1

χτxy = 1
2
V 0, 1

2
, 1
2 − 1

2
V

1
2
, 1
2
, 1
2 K 1

2
1

TABLE II. The characters for the single-component BF the-
ory after gauging the charge-conjugate Z2 symmetry when
K is odd: The quantum dimensions dχ, spin statistics θχ =
e2πihχ , and the number N of characters χ (hχ are defined
only modulo Z.)

and are given, respectively, by

V 0, 12 ,0 =

∣∣∣∣ η(τ)

θ4(τ)

∣∣∣∣ ∏
s2>0

Θ−1
[ 12 +βs2,γs2]

(
τ,
R1

R2
s2

)
,

V 0,0, 12 =
∏
s2>0

Θ−1
[βs2− 1

2 ,γ(s2− 1
2 )]

(
τ,
R1

R2
(s2 −

1

2
)

)
,

V
1
2 ,0,0 =

∣∣∣∣ η(τ)

θ2(τ)

∣∣∣∣ ∏
s2>0

Θ−1
[βs2,γs2+ 1

2 ]

(
τ,
R1

R2
s2

)
, (24)

(s2 is an integer). All the other twisted sectors can be
obtained by considering modular transformations:

V [µ],[ν],[λ] U ′1−→ V [ν],[µ],[λ],

V [µ],[ν],[λ] M−→ V [µ],[λ],[ν],

V [µ],[ν],[λ] U2−→ V [µ+ν],[ν],[λ], (25)

where [a] = a mod Z. In total, there are 7 sectors with
twisted boundary conditions. (To obtain this result, we
note several properties of the massive theta functions
Θ[a.b](τ,m), listed in Appendix B.)

We use the twisted sectors V µ,ν,λ and Za,b,c to build
up the characters of the gauged (2 + 1)d surface theory.
The result is listed in Table II. Here, the subscript h of χh
denotes the type of bulk excitations. As mentioned pre-
viously, the characters are constructed by inserting pro-
jection operators in the partition function. This is sim-
ilar to the construction of the minimal entangled state
(MES) defined for (3 + 1)d topological phases.41,42 By
summing up the multiplicity N for χh, we find that there
are (K3 + 15)/2 characters in total, the same as the bulk
ground state degeneracy on T 3. In Table II, dχ denotes
the quantum dimension for the character and can be ob-
tained from the first column (row) of U ′1 matrix (S matrix
for T 2). Under the transformation T , the character will
pick up a phase exp(2πihχ), where hχ encodes informa-
tion related to (3 + 1)d analogue of topological spins.

As in the (1+1)d edge theory, here we have the vacuum
I, Z2 boson j and superselection sector a, b, c. σx corre-
sponds to the bulk Z2 flux excitation which leaves a twist
in the x direction on the boundary. The character χσx
includes partition functions with twisted boundary con-
dition in the x direction. τx can be understood as com-
bining σx with Z2 charge j and therefore is a flux-charge
composite excitation. χτx is also linear combination of
partition functions with twist boundary in x direction.
χσy and χτy are the characters with twisted boundary
condition in y direction. χσxy is twisted in both the x
and y directions.

We now consider the U ′1 matrix which, after dimen-
sional reduction, is the S matrix for a (1 + 1)d CFT.
The U ′1 matrix encodes braiding information about bulk
excitations,

U ′1 =
1

2K


1 1 2 K K 0 0 0 0
1 1 2 −K −K 0 0 0 0
2 2 4 cos[ 2πK (ab′+ba′)] 0 0 0 0 0 0
K −K 0 K −K 0 0 0 0
K −K 0 −K K 0 0 0 0
0 0 0 0 0 K K K K
0 0 0 0 0 K K −K −K
0 0 0 0 0 K −K K −K
0 0 0 0 0 K −K −K K


(26)

From the first column (row) in the above matrix, we can
extract the “quantum dimension” of the bulk excitation
dχ shown in Table II. When K = 1, the characters for
the twist sectors have dχ = 1. In this case, it is easy to
verify that U ′1 matrix and hχ match up with that for the
ordinary (3+1)d Z2 gauge theory (the (3+1)d toric code
model). When K > 1, the characters for the twist sec-
tors have dχ > 1, suggesting that they are non-Abelian
excitations. We will discuss these non-Abelian braiding
statistics later in Sec. V.

We can similarly calculate the characters when K is
even. Unlike in the case of K odd, there are several ex-
citations in the original BF theory that are invariant un-
der Z2 symmetry operation. They will remain in the
gauged topological phase and can couple with the Z2 bo-
son to form composite excitations. They will also provide
species labels for σ and τ ; the characters are shown in
Table III. There are K3/2 + 60 characters in total, which
describes the ground state degeneracy in the bulk topo-
logical phase on T 3.

The new (3+1)d topological phase which we have ob-
tained by gauging the Z2 symmetry is the D(DK) quan-
tum double model, where DK is the dihedral group of
order 2K. The excitations for this quantum double
model are labeled by (C, ρ), where C denotes the con-
jugacy class and ρ denotes the irreducible representa-
tion of the normalizer group for each conjugacy class.
When K is odd, there are in total n+3

2 + n−1
2 × n+ 2 =

n2+7
2 excitations. When K is even, there are in total

(n2 + 3) × 2 + (n2 − 1) × n + 2 × 4 = n2+28
2 excitations.

These results are consistent with the calculation for the
boundary orbifold theory. For instance, when K = 3, D3

is equivalent to the symmetric group S3. There are eight
excitations in the D(S3) quantum double model, which
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character χ dχ hχ N
χI = 1

2
Z0,0,0 + V

1
2
,0,0 1 0 1

χj = 1
2
Z0,0,0 − V

1
2
,0,0 1 0 1

χiK
2
,0,0

= 1
2
ZK

2
,0,0 1 0 2

χi
0,K

2
,0

= 1
2
Z0,K

2
,0 1 0 2

χiK
2
,K
2
,0

= 1
2
ZK

2
,K
2
,0 1 K

4
2

χi
0,K

2
,K
2

= 1
2
Z0,K

2
,K
2

1 0 2

χiK
2
,0,K

2
= 1

2
ZK

2
,0,K

2
1 0 2

χi
0,0,K

2
= 1

2
Z0,0,K

2
1 0 2

χiK
2
,K
2
,K
2

= 1
2
ZK

2
,K
2
,K
2

1 K
4

2

χa,b,c = 1
2
Za,b,c + 1

2
ZK−a,K−b,K−c 2 ab

K
K3−8

2

χmσx = 1
2
V 0, 1

2
,0 + 1

2
V

1
2
, 1
2
,0 K

2
0 8

χmτx = 1
2
V 0, 1

2
,0 − 1

2
V

1
2
, 1
2
,0 K

2
1
2

8

χmσy = 1
2
V 0,0, 1

2 + 1
2
V

1
2
,0, 1

2 K
2

0 8

χmτy = 1
2
V 0,0, 1

2 − 1
2
V

1
2
,0, 1

2 K
2

0 8

χmσxy = 1
2
V 0, 1

2
, 1
2 + 1

2
V

1
2
, 1
2
, 1
2 K

2
0 8

χmτxy = 1
2
V 0, 1

2
, 1
2 − 1

2
V

1
2
, 1
2
, 1
2 K

2
1
2

8

TABLE III. The characters for the single-component BF the-
ory after gauging the charge-conjugate Z2 symmetry when K
is even: The quantum dimensions dχ, spin statistics θχ =
e2πihχ , and the number N of characters χ (hχ are defined
only modulo Z.)

agree with the above counting. Apart from the vacuum
sector and two charge (particle) excitations, all the other
five excitations are flux or flux-charge composite excita-
tions with non-Abelian fusion rules. These fusion rules
have been discussed in Ref. 41 and will not be analyzed
further here.

More generically, for all (3+1)d Abelian topological
phases considered in this paper, after gauging the Z2

symmetry, the new topological phases can always be
described by the quantum double model with group

G̃ = G o Z2, where G is the original abelian group. This
is because the Z2 symmetry acts on both the charge and
flux excitations independently and in the same way. If
G = ZK, i.e., the ZK gauge theory, the gauged model is
the D(DK) quantum double model.

IV. GAUGING Z2 SYMMETRY IN (3+1)D
ZK × ZK GAUGE THEORIES

In this section, we consider ordinary ZK×ZK topologi-
cal gauge theory in (3+1) dimensions with only particle-
loop braiding statistics. The excitations in this model can
be denoted by ea11 mb1

1 e
a2
2 mb2

2 , where e1, m1, e2, m2 are
the fundamental excitations of this model. This model
can be described by the two-component BF theory with
both components at level K.

The topological ZK × ZK gauge theory has a Z2 sym-

metry which exchanges

e1, m1 ↔ e2, m2. (27)

Gauging this symmetry will lead to a non-Abelian topo-
logical phase.

The surface theory of the topological ZK × ZK gauge
theory can be described by taking two copies of (11).
The surface partition function can then be written down
as

W l0,l1,l2
n0,n1,n2

= Zn0,n1,n2Zl0,l1,l2 (28)

where ni, li ∈ ZK and i = 0, 1, 2.
After orbifolding the Z2 symmetry, the partition func-

tion with anti-periodic boundary condition in the t di-
rection is

Y
1
2 ,0,0
n0,n1,n2 = V

1
2 ,0,0Z2K

2n0,2n1,2n2
(29)

where V [µ],[ν],[λ] is defined in the previous section and
Z2K
a,b,c represents the surface partition function for Z2K

gauge theory model. The term Z2K
2ni is obtained by iden-

tifying ni and li in Zn0,n1,n2Zl0,l1,l2 , which is imposed by
the Z2 symmetry.

The other twisted partition functions Y µ,ν,λn0,n1,n2
can be

obtained, starting from Y
1
2 ,0,0
n0,n1,n2 , by applying modular

transformations.
Schematically,

Y
1
2 ,0,0
m0,m1,m2

U ′1→ Y
0, 12 ,0
n0,n1,n2 ,

Y
0, 12 ,0
m0,m1,m2

U2→ Y
1
2 ,

1
2 ,0

n0,n1,n2 ,

Y
0, 12 ,0
m0,m1,m2

M→ Y
0,0, 12
n0,n1,n2 ,

Y
1
2 ,

1
2 ,0

m0,m1,m2

M→ Y
1
2 ,0,

1
2

n0,n1,n2 ,

Y
1
2 ,0,

1
2

m0,m1,m2

U ′1→ Y
0, 12 ,

1
2

n0,n1,n2 ,

Y
0, 12 ,

1
2

m0,m1,m2

U ′1→ Y
1
2 ,

1
2 ,

1
2

n0,n1,n2 . (30)

The explicit form of other sectors are obtained by re-
quiring them to be invariant (up to a phase) under U ′1
transformation. They are given by

Y
0, 12 ,0
m0,m1,m2 = V 0, 12 ,0

∑
p,q

Z2K
m0+pK,m1+qK,2m2

,

Y
1
2 ,

1
2 ,0

m0,m1,m2 = V
1
2 ,

1
2 ,0 ×

[
Z2K
m0,m1,2m2

+ (−1)m1Z2K
m0+K,m1,2m2

+ (−1)m0Z2K
m0,m1+K,2m2

+(−1)m0+m1+KZ2K
m0+K,m1+K,2m2

]
,

Y
0,0, 12
m0,m1,m2 = V 0,0, 12

∑
p,q

Z2K
m0+pK,2m1,m2+qK,

Y
1
2 ,0,

1
2

m0,m1,m2 = V
1
2 ,0,

1
2

∑
p,q

Z2K
m0+pK,2m1,m2+qK,

Y
0, 12 ,

1
2

m0,m1,m2 = V 0, 12 ,
1
2

∑
p,q

Z2K
m0+pK,2m1,m2+qK,

Y
1
2 ,

1
2 ,

1
2

m0,m1,m2 = V
1
2 ,

1
2 ,

1
2

∑
p,q

Z2K
m0+pK,2m1,m2+qK, (31)



8

character χ dχ hχ N
χ0
n0,n1,n2

= 1
2
Wn0,n1,n2
n0,n1,n2

+ 1
2
Y

1
2
,0,0

n0,n1,n2 1 2n0n1
K

K3

χ1
n0,n1,n2

= 1
2
Wn0,n1,n2
n0,n1,n2

− 1
2
Y

1
2
,0,0

n0,n1,n2 1 2n0n1
K

K3

χl0,l1,l2n0,n1,n2
= 1

2
W l0,l1,l2
n0,n1,n2

+ 1
2
Wn0,n1,n2
l0,l1,l2

2 n0n1+l0l1
K

K6−K3

2

χm0,m1,m2
σx = 1

4
Y

0, 1
2
,0

m0,m1,m2 + 1
4
Y

1
2
, 1
2
,0

m0,m1,m2 K m0m1
2K

K3

χm0,m1,m2
τx = 1

4
Y

0, 1
2
,0

m0,m1,m2 − 1
4
Y

1
2
, 1
2
,0

m0,m1,m2 K K+m0m1
2K

K3

χm0,m1,m2
σy = 1

4
Y

0,0, 1
2

m0,m1,m2 + 1
4
Y

1
2
,0, 1

2
m0,m1,m2 K m0m1

K
K3

χm0,m1,m2
τy = 1

4
Y

0,0, 1
2

m0,m1,m2 − 1
4
Y

1
2
,0, 1

2
m0,m1,m2 K m0m1

K
K3

χm0,m1,m2
σxy = 1

4
Y

0, 1
2
, 1
2

m0,m1,m2 + 1
4
Y

1
2
, 1
2
, 1
2

m0,m1,m2 K m0m1
K

K3

χm0,m1,m2
τxy = 1

4
Y

0, 1
2
, 1
2

m0,m1,m2 − 1
4
Y

1
2
, 1
2
, 1
2

m0,m1,m2 K K+2m0m1
2K

K3

TABLE IV. The characters for the topological ZK×ZK theory
in (3 + 1)d after gauging the Z2 symmetry: The quantum
dimensions dχ, spin statistics θχ = e2πihχ , and the number
N of characters χ (hχ are defined only modulo Z.)

character χ dχ hχ N
χ0
n0,n1

= 1
2
Wn0,n1
n0,n1

+ 1
2
Y

1
2
,0

n0,n1 1 2n0n1
K

K2

χ1
n0,n1

= 1
2
Wn0,n1
n0,n1

− 1
2
Y

1
2
,0

n0,n1 1 2n0n1
K

K2

χl0,l1,l2n0,n1
= 1

2
W l0,l1
n0,n1

+ 1
2
Wn0,n1
l0,l1

2 n0n1+l0l1
K

K4−K2

2

χm0,m1
σ = 1

4
Y

0, 1
2

m0,m1 + 1
4
Y

1
2
, 1
2

m0,m1 K m0m1
2K

K2

χm0,m1
τ = 1

4
Y

0, 1
2

m0,m1 − 1
4
Y

1
2
, 1
2

m0,m1 K 1
2

+ m0m1
2K

K2

TABLE V. The quantum dimensions dχ, spin statistics θχ =
e2πihχ and number N of characters χ from orbifolding Z2

symmetry of boundary of the ZK × ZK gauge theory in (2 +
1)d. This table matches up with Table IV after dimensional
reduction.

where p, q = 0, 1 and 0 ≤ mi < K. W l0l1l2
n0n2n2

and Y ννλm0m1m2

can be properly combined to construct the characters.
The result is summarized in Table IV. It is also instruc-
tive to consider the dimensional reduction. After dimen-
sional reduction, the complete results for the characters
on the (1 + 1)d edge are shown in Table V.

Finally, by noting the transformation properties of the
characters under U ′1 listed in Appendix D, we read off
the U ′1 matrix:

U ′1 =
1

D


e
2πi
K

(2n0n
′
1+2n1n

′
0) e

2πi
K

(2n0n
′
1+2n1n

′
0) 2e

2πi
K

(n0(n′1+l′1)+n1(n′0+l′0)) Ke
2πi
K

(n0m
′
1+n1m

′
0) Ke

2πi
K

(n0m
′
1+n1m

′
0)

e
2πi
K

(2n0n
′
1+2n1n

′
0) e

2πi
K

(2n0n
′
1+2n1n

′
0) 2e

2πi
K

(n0(n′1+l′1)+n1(n′0+l′0)) −Ke
2πi
K

(n0m
′
1+n1m

′
0) −Ke

2πi
K

(n0m
′
1+n1m

′
0)

2e
2πi
K

(n′0(n1+l1)+n′1(n0+l0)) 2e
2πi
K

(n′0(n1+l1)+n′1(n0+l0)) 2e
2πi
K

(n0n
′
1+n1n

′
0+l0l

′
1+l1l

′
0) 0 0

Ke
2πi
K

(n′0m1+n′1m0) −Ke
2πi
K

(n′0m1+n′1m0) 0 K
2 Pe

πi
K

(m0m
′
1+m1m

′
0) −K

2 Pe
πi
K

(m0m
′
1+m1m

′
0)

Ke
2πi
K

(n′0m1+n′1m0) −Ke
2πi
K

(n′0m1+n′1m0) 0 −K
2 Pe

πi
K

(m0m
′
1+m1m

′
0) K

2 PKe
πi
K

(m0m
′
1+m1m

′
0)


(32)

where D = 2K2 and P =
[
1 + (−1)m1+m′1 + (−1)m0+m′0(1 + (−1)m1+m′1+K)

]
.

A. Orbifolding phases with non-trivial three-loop
braiding statistics

For the ZK×ZK twisted gauge theory with non-trivial
three loop braiding statistics42–44, we can also construct
the surface partition function and calculate S and T
matrices.34 In this case, the quantum numbers n0 and
l0 are shifted according to

n0 → ñ0 = n0 + (l1n2 − l2n1)/K,

l0 → l̃0 = l0 + (n1l2 − n2l1)/K. (33)

This model also has the Z2 exchange symmetry, which
switches ni and li. Therefore we can gauge the Z2 sym-
metry. After orbifolding this symmetry on the surface,
for the characters χ0

n0,n1,n2
with ni = li, they are still the

same as for the untwisted ZK × ZK gauge theory. The
character χlini ( in the third row of Table VI) is modified

slightly, where W̃ denotes the surface partition function
for topological phase with three-loop braiding statistics

defined in Ref. 34 and the quantum numbers n0, l0 are

replaced by ñ0 and l̃0. The characters for twisted sec-
tors are still the same as before. The complete result is
shown in Table VI. The U ′1 matrix is very similar to the
ordinary ZK × ZK gauge theory defined in Eq.(32) and
the only difference is that for the braiding phase between
χlini , n0 and l0 are replaced by ñ0 and l̃0.

V. PHYSICS IN THE BULK

In this section, we will study the bulk physics and dis-
cuss the non-Abelian braiding statistics of loop excita-
tions.
a. Twist defects in (2+1)-dimensional topological

phases Before we discuss the (3+1)d case, it is instruc-
tive to review briefly the (2+1)d case.21–27 For theD(ZK)
quantum double model, we can introduce a twofold twist
defect which exchanges Abelian excitations eamb and
eK−amK−b. The twist defect is a point-like defect with
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character χ dχ hχ N
χ0
n0,n1,n2

= 1
2
Wn0,n1,n2
n0,n1,n2

+ 1
2
Y

1
2
,0,0

n0,n1,n2 1 2n0n1
K

K3

χ1
n0,n1,n2

= 1
2
Wn0,n1,n2
n0,n1,n2

− 1
2
Y

1
2
,0,0

n0,n1,n2 1 2n0n1
K

K3

χl0,l1,l2n0,n1,n2
= 1

2
W̃ l̃0,l1,l2
ñ0,n1,n2

+ 1
2
W̃ ñ0,n1,n2

l̃0,l1,l2
2 ñ0n1+l̃0l1

K
K6−K3

2

χm0,m1,m2
σx = 1

4
Y

0, 1
2
,0

m0,m1,m2 + 1
4
Y

1
2
, 1
2
,0

m0,m1,m2 K m0m1
2K

K3

χm0,m1,m2
τx = 1

4
Y

0, 1
2
,0

m0,m1,m2 − 1
4
Y

1
2
, 1
2
,0

m0,m1,m2 K 1
2

+ m0m1
2K

K3

χm0,m1,m2
σy = 1

4
Y

0,0, 1
2

m0,m1,m2 + 1
4
Y

1
2
,0, 1

2
m0,m1,m2 K m0m1

K
K3

χm0,m1,m2
τy = 1

4
Y

0,0, 1
2

m0,m1,m2 − 1
4
Y

1
2
,0, 1

2
m0,m1,m2 K m0m1

K
K3

χm0,m1,m2
σxy = 1

4
Y

0, 1
2
, 1
2

m0,m1,m2 + 1
4
Y

1
2
, 1
2
, 1
2

m0,m1,m2 K m0m1
K

K3

χm0,m1,m2
τxy = 1

4
Y

0, 1
2
, 1
2

m0,m1,m2 − 1
4
Y

1
2
, 1
2
, 1
2

m0,m1,m2 K 1
2

+ m0m1
K

K3

TABLE VI. The quantum dimensions dχ, spin statistics θχ =
e2πihχ and number N of characters χ from orbifolding Z2

symmetry of surface of ZK×ZK twisted gauge theory in (3 +

1)d. Here, ñ0 = n0 + (l1n2 − l2n1)/K and l̃0 = l0 + (n1l2 −
n2l1)/K.

a branch cut emanating from it. In Fig. 1, we depict
several pairs of twist defects, with branch cuts extend-
ing between them. When an anyon eamb (eK−amK−b)
is dragged around the twist defect, it is transformed to
eK−amK−b (eamb) when it passes through the branch cut.
Once the Z2 charge-conjugation symmetry is gauged,
twist defects, where were treated above as non-dynamical
objects, are deconfined Z2 flux excitations.14–16 These Z2

fluxes can leave twists on the boundary, which correspond
to the twist fields σ or τ on the boundary discussed in the
previous section. As we will see below, these Z2 fluxes
are non-Abelian excitations.

The non-Abelian braiding statistics of these twist de-
fects (before gauging) can be studied by calculating
the fundamental unitary exchange operations, called
B-symbols.25–27 Each B-move represents a counter-
clockwise permutation of a pair of adjacent defects, which
can result in a transformation of different ground states.
The B-operations can be generated by a sequence of F
and R-moves, and evaluated exactly once we specify the
splitting space of the twist defects.27 Here we show that
twist defects are non-Abelian objects by directly deform-
ing Wilson loop operators around a pair of twist defects
shown in Fig. 1. Let us consider a system with 2N twist
defects aligned on a line. The Hilbert space can be char-
acterized by the non-contractible Wilson loop operators
around the neighboring twist defects (Fig. 1 (a)). The
Wilson loop operators are represented as the powers of
fundamental e-loop and m-loop operators. It is impor-
tant to note that the neighboring Wilson loop operators
do not commute with each other due to the intersec-
tions (highlighted by brown dots). Therefore, the Hilbert
space can be spanned by the eigenstates of Wilson loops
{W1,W3, . . . ,W2N−1} where W2j−1 can be either e2j−1

σ1

W1 W3 W2NW2 W4 W2N-1

σ2

W1= eamb

B23

σ3 σ4

σ1 σ3
σ2 σ4

(a)

(b)

W2= eK-amK-bW1= eamb

σ1 σ3 σ2
σ4

FIG. 1. (a) The Wilson loop operator defined on a pair of
adjacent twist defects. The green loop is for the e-loop and
orange loop is for m-loop. The solid orange and green lines
denote the Wilson loop eamb and the dotted lines represent
eK−mmK−b. (b) The braiding process between σ2 and σ3.

or m2j−1:

e2j−1|n1,m1, . . . , nj ,mj , . . . , nN ,mN 〉

= e
4πimj

K |n1,m1, . . . , nj ,mj , . . . , nN ,mN 〉,
m2j−1|n1,m1, . . . , nj ,mj , . . . , nN ,mN 〉

= e
−4πinj

K |n1,m1, . . . , nj ,mj , . . . , nN ,mN 〉. (34)

On the other hand, Wilson loops {W2,W4, . . . ,W2N} act
on the basis states as

e2j |n1,m1, . . . , nj ,mj , . . . , nN ,mN 〉
= |n1,m1, . . . , nj + 1,mj , . . . , nN ,mN 〉,

m2j |n1,m1, . . . , nj ,mj , . . . , nN ,mN 〉
= |n1,m1, . . . , nj ,mj + 1, . . . , nN ,mN 〉. (35)

The non-commutative algebra between neighboring
Wilson loop operators leads to non-Abelian braiding of
twist defects.26,45 In Fig. 1 (b), we consider four twist de-
fects with W1 = eamb,W2 = I. If we exchange the twist
defects σ2 and σ3, the new branch cuts are connecting
(σ1, σ3) and (σ2, σ4). The Wilson loop W1 deforms
to W1W2 up to some phase with W2 = eK−amK−b and
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ea

mbea

mb

(a) (b)

(d)(c)

FIG. 2. Wilson loop or surface operators in the presence
of a twist defect. (a): A Wilson loop operator threading
through the branch sheet of a twist defect. A twist defect is
a loop (line)-like object with a branch sheet (represented by
a shaded region). The Wilson loop must intersect the branch
surface twice in order to close: the charge ea is conjugated
to eK−a at the first intersection and then back to ea at the
second intersection. (b): A Wilson surface (sphere) operator
wrapping around a twist defect loop. The surface operator
cannot shrink to nothing since there is a loop living inside.
(c): A Wilson loop operator threading through the branch
sheets of two twist defects. (d): A Wilson surface operator
threading though the branch sheets of twist defects. Here, for
pictorial simplicity, the dimensionally-reduced configuration
is shown.

the original state |0, 0〉 changes to |a, b〉. Fig. 1 (b) gives
a physical picture of this non-abelian braiding process.
More careful and rigorous study can be found by calcu-
lating the fundamental unitary exchange operations.25–27

b. Twist defects in (3+1)-dimensional topological
phases Similarly, we can understand the non-Abelian
braiding of twist defects in three spatial dimensions. As
shown in Fig. 2, the twist defect has a loop configura-
tion in three spatial dimensions and has a branch sheet
attached to it. Unlike in (2 + 1)d, this defect loop does
not need to pair up with another twist defect since it is
equivalent to a pair of extended defect lines that wrap
around a non-contractible circle on T 3. For any excita-
tion eamb, as it goes through the branch sheet, it will
become eK−amK−b.

For a system with a finite number of twist defects, the
Hilbert space is labeled by the non-contractible Wilson
loop and surface operators as shown in Fig. 2. In Figs. 2
(a) and (b), we show the Wilson loop and surface opera-
tors defined in the presence of a single defect loop, while
in (c) and (d), the Wilson operators are defined for a
pair of loops. By counting these Wilson operators, we
find that the quantum dimension of a defect loop is K2.
Therefore the extended defect line has quantum dimen-
sion K and matches up with that for the twist field on
the boundary theory in Table II.

Here we shall use (b) and (c) to construct a subspace of
the total Hilbert space and show that these loop excita-
tions have non-Abelian braiding statistics. As shown in

W1 W3

1 2 3 4

2 3
W2

FIG. 3. A subset of Wilson loop or Wilson surface operators
defined in the presence of twist defects.

ea
mb

1 2 3

FIG. 4. Braiding process between loop 2 and loop 3.

Fig. 3, the Wilson operators W2i−1 and W2j are defined
on a pair of defect loops. The adjacent Wilson operators
do not commute with each other. As in the 2d case, the
Hilbert space can be generated by acting with {W2j} op-
erators on basis states in which {W2j−1} is diagonal. The
braiding process of loop 2 and 3 is defined in Fig. 4. This
exchange process can be better understood if we look at
the dimensionally-reduced version in Fig. 5. Similar to
Fig. 1 (b), W1 under this process deforms into W1W2,
suggesting that a defect loop is a non-Abelian object.
Once Z2 symmetry is fully gauged, the defect loops will
be the intrinsic non-Abelian Z2 flux excitations. These
are loops in D(DK) that carry flux equal to the conjugacy
class of reflections in the dihedral group DK. They fuse
non-trivially because the composition of two reflections
can be either the identity or a rotation; braiding trans-
forms the system within the state space of these different
fusion outcomes. For the ZK × ZK gauge theory (both
with and without non-trivial three-loop braiding), using
similar method, we can also show that the twist defect
loop/Z2 flux excitations are non-Abelian objects.

VI. CONCLUSION

In this paper, we gauge the Z2 symmetry in various
Abelian topological phases in (3 + 1) dimensions. By
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ea

mb

ea
mb

mK-bmb

B23

1 2 3

1 23

mb

eK-a

mK-b

W1

W2W1

FIG. 5. Braiding process between loop 2 and loop 3 after
dimensional reduction.

making use of the bulk-boundary correspondence, we dis-
cuss the orbifold theory on the (2 + 1)d surface state.
We calculate the partition function on the (2 + 1)d torus
with twisted boundary conditions and group them into
characters. We further study how the characters trans-
form under modular the S and T transformations which
characterize the braiding statistics of particle and loops
excitations in the bulk. Based on the topological data
obtained on the boundary, we further analyze the de-
fect loops/Z2 flux excitations in the bulk and use the
Wilson loop algebra to show that these loop defects are
non-Abelian.

Recently, it was shown that Abelian topological phases
in (3+1) dimensions, such as the ZK and ZK×ZK gauge
theories discussed here, have flux line excitations carrying
Cheshire charge, topological charge that cannot be local-
ized to a point on the flux line or measured locally46.
Since many properties can be deduced from those of the
parent Abelian theory, the gauging procedure discussed
here may be an entry point for exploring the properties
of Cheshire charge in non-Abelian topological phases in
(3 + 1) dimensions.

All the (3 + 1)d topological phases in this paper, ob-
tained by gauging the Z2 symmetry, can be described by
quantum double models with a non-Abelian group and
their dimensional reductions are (2+1)d quantum double
models. In the future, it would be interesting to explore
non-Abelian topological phases in (3+1)d that go beyond
quantum double models.
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Appendix A: Edge CFT of (2 + 1)d abelian
topological phase

The effective edge theory of an abelian topological
phase can be described by the N -component bosonic field
theory:

L =
1

4π

(
∂t~Φ

T (x)K∂x~Φ(x)− ∂x~ΦT (x)V∂x~Φ(x)
)
,

(A1)

where the bosonic field ~Φ(x) is a compact variable

~Φ(x) ≡ ~Φ(x) + 2π~n, (A2)

and V is a symmetric and positive definite matrix that
accounts for the interaction on the edge. Unlike the K-
matrix, the information encoded in V is non-universal.

Here we follow the method used in Ref. 12 to quan-
tize this theory and construct the characters explicitly.

For each component of the bosonic field ~Φ, the canonical
commutation relation is given by

[φI(x), ∂xφ
J(x′)] = 2πi(K−1)IJδ(x− x′) (A3)

The K-matrix can be diagonalized and written as K =
UT ηU , where η is a signature matrix with ±1 in its di-
agonal entries. We can define a new multi-component

boson operator ~ϕ(x) = U~Φ(x) so that Eq. (A1) takes the
form

L =
1

4π

(
∂t~ϕ

T (x)η~ϕ(x)− ∂x~ϕT (x)∂x~ϕ(x)
)
, (A4)

where we assume (U−1)TVU−1 = I for simplicity. In
term of the new boson operator ~ϕ(x), the compactifica-
tion condition reads

~ϕ(x) ≡ ~ϕ(x) + 2πU~n (A5)

Each component satisfies the commutation relation:

[ϕI(x), ∂xϕ
J(x′)] = 2πiηIJδ(x− x′) (A6)

The mode expansion for ~ϕ(x) is given by

ϕI(t, x) = ϕI0 − (t− ηIIx)pI

+ i
∑
n 6=0

bIne
−in(t−ηIIx), (A7)
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where [ϕI0, p
I ] = iδIJ and [bIn, b

J
m] = 1

mδ
IJδn+m. The

Hamiltonian and the total momentum are

H0 =
1

4π

∫ 2π

0

dx ∂x~ϕ
T (x)∂x~ϕ(x)

=
1

2
~pT ~p− 1

24
tr (ηη) +

∞∑
n=1

n2~bT−n
~bn,

P0 =
1

4π

∫ 2π

0

dx ∂x~ϕ
T (x)η∂x~ϕ(x)

=
1

2
~pT η~p− 1

24
tr(η) +

∞∑
n=1

n2~bT−nη
~bn (A8)

where Tr(η) gives the chiral central charge. Since ~p is
the momentum conjugate to the zero modes ~ϕ0, the com-
pactification condition of ~ϕ(x) leads to the quantization
condition for ~p: ~p = (U−1)T ~m where mI ∈ Z. Notice

that ~m can be written as ~m = K~Λ + ~λ, where ~Λ and ~λ

are integer valued vectors. Here, ~λ lives in the unit cell
of the anyon lattice Γ∗ and characterizes different twist
boundary conditions for ~ϕ(t, x): From Eq. (A7), we read
off

ϕI(t, x+ 2π) = ϕI(t, x) + 2πηIIpI

= ϕI(t, x) + 2πηII
[
(U−1)T ~m

]I
= ϕI(t, x) + 2π[U~Λ]I

+ 2πηII [(U−1)T~λ]I (A9)

The part 2πηII [(U−1)T~λ]I represents the twisted bound-

ary condition. On the other hand, for ~λ = 0, ~p = ηU ~m,
this corresponds to the untwisted boundary condition.

Physically, ~λ’s represent different bulk excitations in the
(2+1)d topological phase. When there is a quasi-particle
excitation in the bulk, the edge theory is subject to the
corresponding twist boundary condition.

The partition functions of the edge theory on the
spacetime torus under the twist boundary conditions
form the characters. In total, there are |det(K)| char-
acters. The partition function for each character [λ] is
given by

χλ(τ) = Trλ
[
e2πiτ1P0e−2πτ2H0

]
(A10)

where τ = τ1 + iτ2. Under the T transformation,

χλ(τ + 1) = e2πi~λTK−1~λ/2χλ(τ). (A11)

where we neglect the overall phase −2πc/24. Under the
S transformation,

χλ(−1/τ) =
∑
λ′

1√
|det(K)|

e−2πi~λTK−1~λ′χλ′(τ). (A12)

Let us take a simple example given by K = Kσx, which
describes the D(ZK) quantum double model. This K-
matrix can be diagonalized as K = UT ηU , where U =√

K
2

(
1 1

1 −1

)
and η =

(
1 0

0 −1

)
. After diagonalizing the

K-matrix, there are two new bosonic fields, ϕ1 and ϕ2,
with the zero mode momentum

p1 =

√
1

2K
(Ks+ a+ Kt+ b),

p2 =

√
1

2K
(Ks+ a−Kt− b), (A13)

where ~ΛT = (s, t) ∈ Z2, 0 ≤ a < K and 0 ≤ b < K.
The characters for the D(ZK) quantum double model are
labeled by a and b, and given by

BK
a,b(τ) =

1

|η(τ)|2
∑
s,t

q
1

4K (Ks+a+Kt+b)2 q̄
1

4K (Ks+a−Kt−b)2 .

(A14)

There are K2 characters in total. Under T and S trans-
formations, these characters are transformed as

BK
a,b(τ + 1) = e2πi abK BK

a,b(τ),

BK
a,b(−1/τ) =

1

K

∑
a′,b′

BK
a′,b′e

−2πi a
′b+b′a

K . (A15)

Appendix B: Theta functions

The Dedekind eta function η(τ) is defined by

η(τ) := e
πiτ
12

∞∏
n=1

(1− qn), q := e2πiτ . (B1)
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The massive theta function Θ[a,b](τ,m) is defined by

Θ[a,b](τ,m) ≡ e4πτ2∆(m,a)
∏
n∈Z

∣∣∣1− e−2πτ2
√
m2+(n+a)2+2πiτ1(n+a)+2πib

∣∣∣2 (B2)

where

∆(m, a) ≡ 1

2

∑
n∈Z

√
m2 + (n+ a)2 − 1

2

∫ ∞
−∞

dk(m2 + k2)1/2 (B3)

The massive theta functions Θ[a.b](τ,m) satisfy

Θ[a,b](τ,m) = Θ[−a,−b](τ,m) = Θ[a+p,b+q](τ,m),

Θ[a,b](τ + 1,m) = Θ[a,b+a](τ,m),

Θ[a,b](−1/τ,m|τ |) = Θ[b,−a](τ,m), (B4)

where p, q ∈ Z.

Appendix C: Modular transformations on T 3

In this appendix, we collect some necessary ingredients relating to a flat three-torus T 3 and its mapping class
group.33 A flat three-torus is parameterized by six real parameters, R0,1,2 and α, β, γ. For a flat three-torus T 3, the
dreibein can be factorized as

eAµ =

 R0 0 0

0 R1 0

0 0 R2


 1 0 0

−α 1 0

−γ −β 1

 =

 R0 0 0

−αR1 R1 0

−γR2 −βR2 R2

 , (C1)

and its inverse is given by

e?A
µ =


1
R0

α
R0

αβ+γ
R0

0 1
R1

β
R1

0 0 1
R2

 , (C2)

such that eAµe
?
A
ν = δµ

ν and eAµe
?
B
µ = δAB . Here R0, R1, and R2 are the radii for the directions τ , x, and y, and

α, β, and γ are related to the angles between directions τ and x, x and y, and τ and y, respectively. The Euclidean
metric is then given by

gµν = eAµe
B
νδAB

=

 R2
0 + α2R2

1 + γ2R2
2 −αR2

1 + βγR2
2 −γR2

2

−αR2
1 + βγR2

2 R2
1 + β2R2

2 −βR2
2

−γR2
2 −βR2

2 R2
2

 , (C3)

and the line element is

ds2 = gµνdθ
µdθν

= R2
0(dθ0)2 +R2

1(dθ1 − αdθ0)2 +R2
2(dθ2 − βdθ1 − γdθ0)2, (C4)

where 0 ≤ θµ ≤ 2π are angular variables.
The group SL(3,Z) is generated by two transformations:

U1 =

 0 0 1

1 0 0

0 1 0

 , U2 =

 1 1 0

0 1 0

0 0 1

 . (C5)
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An SL(3,Z) transformation acts as follows on the dreibein and metric:

eAµ
L−→ (eLT )

A

µ = Lµ
ρeAρ,

e?A
µ L−→ (e?L−1)A

µ
= e?A

ρ(L−1)ρ
µ
,

gµν
L−→ (LgLT )µν = Lµ

ρLν
σgρσ, (C6)

for any SL(3,Z) element L = Un1
1 Un2

2 Un3
1 · · · . Under the U2 transformation, the metric transforms according to

gµν
U2−→ (U2gU

T
2 )µν =

R2
0 + (α− 1)2R2

1 + (γ + β)2R2
2 −(α− 1)R2

1 + β(γ + β)R2
2 −(γ + β)R2

2

−(α− 1)R2
1 + β(γ + β)R2

2 R2
1 + β2R2

2 −βR2
2

−(γ + β)R2
2 −βR2

2 R2
2

 , (C7)

which corresponds to the changes

α→ α− 1, γ → γ + β, (C8)

while R0, R1, R2, and β are unchanged.

On the other hand, the less trivial generator U1 can be decomposed as

U1 = U ′1M, U ′1 =

 0 −1 0

1 0 0

0 0 1

 M =

 1 0 0

0 0 −1

0 1 0

 (C9)

where U ′1 corresponds to the 90◦ rotation in the τ − x plane and M is the 90◦ rotation in the x − y plane. The
generator U ′1 acts on the metric as

gµν
U ′1−→ (U ′1gU

′T
1 )µν =

 R2
1 + β2R2

2 αR2
1 − βγR2

2 βR2
2

αR2
1 − βγR2

2 R2
0 + α2R2

1 + γ2R2
2 −γR2

2

βR2
2 −γR2

2 R2
2

 , (C10)

which corresponds to the changes

R0 → R0/|τ |, R1 → R1|τ |, τ1 → −τ1/|τ |2, γ → −β, β → γ (while R2 is unchanged), (C11)

where we have introduced

τ ≡ α+ ir01, r01 ≡ R0/R1. (C12)

Observe also that under R0 → R0/|τ | and R1 → R1|τ |, τ2 → τ2/|τ |2. Hence, U ′1 induces τ → −1/τ .

Finally, the transformation M acts on the metric as

gµν
M−→ (MgMT )µν =

 R2
0 + α2R2

1 + γ2R2
2 γR2

2 −αR2
1 + βγR2

2

γR2
2 R2

2 βR2
2

−αR2
1 + βγR2

2 βR2
2 R2

1 + β2R2
2

 . (C13)

The two transformations U ′1 and U2 correspond respectively to modular S and T−1 transformations in the τ−x plane,
generating the SL(2,Z) subgroup of SL(3,Z) group. Combined with M , they generate the whole SL(3,Z) group. In
the following, we denote U ′1M by S and U2 by T −1.



15

Appendix D: Transformation properties of the characters in the gauged ZK × ZK gauge theory

In this appendix, we list the transformation properties of the characters of the topological ZK × ZK gauge theory
after gauging the Z2 symmetry. From these transformation properties, one can construct the S matrix.

U ′1χ
0
ni =

1

2K2

∑
n′0n

′
1

e
2πi
K (2n0n

′
1+2n1n

′
0)(χ0

n′0,n
′
1,n2

+ χ1
n′0,n

′
1,n2

) +
1

K2

∑
n′0,n

′
1,l
′
0,l
′
1

e
2πi
K [n0(n′1+l′1)+n1(n′0+l′0)]χ

l′0,l
′
1,l2

n′0,n
′
1,n2

+
1

2K

∑
m′0,m

′
1

e
2πi
K (n0m

′
1+n1m

′
0)(χ

m′0,m
′
1,n2

σx + χ
m′0,m

′
1,n2

τx ),

U ′1χ
li
ni =

1

K2

∑
n′0,n

′
1

e
2πi
K [n′0(n1+l1)+n′1(n0+l0)](χ0

n′0,1,n2
+ χ1

n′0,1,n2
) +

1

K2

∑
n′0,n

′
1,l
′
0,l
′
1

e
2πi
K (n0n

′
1+n1n

′
0+l0l

′
1+l1l

′
0)χ

l′0,l
′
1,l2

n′0,n
′
1,n2

,

U ′1χ
mi
σx =

1

2K

∑
m′0,m

′
1

e
2πi
K (m0m

′
1+m1m

′
0)(χ0

m′0,1,m2
− χ1

m′0,1,m2
)

+
1

4K

∑
m′0,m

′
1

[
1 + (−1)m1+m′1 + (−1)m0+m′0(1 + (−1)m1+m′1+K)

]
e
πi
K (m0m

′
1+m1m

′
0)(χ

m′0,m
′
1,m2

σx − χm
′
0,m
′
1,m2

τx ),

U ′1χ
mi
σy =

1

2K

∑
m′0,m

′
1

e
2πi
K (m0m

′
1+m1m

′
0)
(
χ
m′0,m

′
1,m2

σy + χ
m′0,m

′
1,m2

τy

)
+

1

2K

∑
m′0,m

′
1

e
2πi
K (m0m

′
1+m1m

′
0)
(
χ
m′0,m

′
1,m2

σy + χ
m′0,m

′
1,m2

τy

)
,

U ′1χ
mi
σxy =

1

2K

∑
m′0,m

′
1

e
2πi
K (m0m

′
1+m1m

′
0)
(
χ
m′0,m

′
1,m2

σxy + χ
m′0,m

′
1,m2

τxy

)
+

1

2K

∑
m′0,m

′
1

e
2πi
K (m0m

′
1+m1m

′
0)
(
χ
m′0,m

′
1,m2

σxy − χm
′
0,m
′
1,m2

τxy

)
.
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