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We investigate the fate of hardcore bosons in a Harper-Hofstadter model which was experimentally
realized by Aidelsburger et al. [Nature Physics 11 , 162 (2015)] at half filling of the lowest band.
We discuss the stability of an emergent fractional Chern insulator (FCI) state in a finite region
of the phase diagram that is separated from a superfluid state by a first order transition when
tuning the band topology following the protocol used in the experiment. Since crossing a first order
transition is unfavorable for adiabatically preparing the FCI state, we extend the model to stabilize
a featureless insulating state. The transition between this phase and the topological state proves to
be continuous, providing a path in parameter space along which an FCI state could be adiabatically
prepared. To further corroborate this statement, we perform time-dependent DMRG calculations
which demonstrate that the FCI state may indeed be reached by adiabatically tuning a simple
product state.

I. INTRODUCTION

Interacting particles occupying topologically non-
trivial band structures have been a topic of high inter-
est in recent years due to the exotic many-body states
they can form. Such exotic topological phases can
be realized as lattice analogs1–4 of fractional quantum
Hall (FQH) states5,6, now understood to be first ex-
amples of a wider class of fractional Chern insulators
(FCIs) in general topological band structures2,4,7–12. De-
spite being very well characterized theoretically, FCIs
have not yet been realized experimentally. Ultracold
atoms in optical lattices are among the most promising
candidate systems to detect these topologically ordered
states13–16. As a more concrete direction, two experimen-
tal groups17,18 have implemented an optical lattice setup
in which bosons are governed by the Harper-Hofstadter
Hamiltonian19,20, which features a considerably flat low-
est band with nonzero Chern number, favoring the occur-
rence of an FCI state. While the aforementioned experi-
ments focused on single-particle properties, the study of
interacting particles in ladder systems described by this
Hamiltonian has been reported21 as a first step to observe
many-body physics in these setups.

The preparation of exotic many-body states in these
systems poses two main challenges. Firstly, in order to
engineer complex hopping matrix elements in the op-
tical lattices, the system has to be subject to a con-
stant periodic drive22–24. An expansion of the period-
ically time-dependent Hamiltonian in the inverse driv-
ing frequency25–27 leads to an effective time-independent
Floquet Hamiltonian that has the desired topologically
non-trivial properties28–32. This constant driving will, at
some time scale, lead to energy absorption which would
destroy a topological state and in the long term drive the
system to a featureless infinite temperature state33,34. To

remedy this problem, it has been argued that this behav-
ior may be preceded by a prethermalization region during
which the system is indeed governed by an effective time-
independent Hamiltonian and which extends to a time
that is exponentially long in the driving frequency35–41.
The second challenge is that ultracold atoms in an opti-
cal lattice typically represent an isolated quantum system
which prevents the system being cooled down in contact
to an external bath to reach its ground state. One way to
eliminate this problem is a (quasi-)adiabatic preparation
scheme42–44. It consists of a protocol by which a state
of the system that may be more easily prepared (e.g. a
condensate) is guided into the final topologically ordered
state by changing the properties of the optical lattice,
i.e. tuning parameters in the Hamiltonian describing the
system. In order to ensure that the final state after this
(quasi-)adiabatic evolution is indeed the ground state of
the final Hamiltonian, it is favorable that any phase tran-
sitions crossed during the evolution are continuous45,46.
At a first order transition, the system might otherwise
stay in a metastable initial state impeding the evolution
into the topologically ordered ground state.

In this work, we focus on the second challenge, i.e.
if it is possible to find a path in parameter space that
leads from a realistically preparable, trivial state into an
FCI state while only crossing continuous phase transi-
tions. We study a model Hamiltonian at 1/2 filling of
the lowest band motivated by the optical lattice setup of
Aidelsburger et al. reported in47. While we find a first
order transition into the FCI state when increasing a pa-
rameter from the original work47 that turns the band
structure trivial if sufficiently large, we propose an addi-
tional parameter in the model which allows reaching the
FCI phase upon crossing a continuous transition. This
modification introduces an additional chemical potential
in form of a superlattice. We perform explicit time-
dependent simulations for the adiabatic tuning of the sys-
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FIG. 1. Harper-Hofstadter model considered in this study.
The model has a four site unit cell containing sites with energy
offset −δ, 0 and δ and the hopping in y-direction is renormal-
ized according to J(1 + fx,y) (2). We chose φ0 = 0 to obtain
the hopping amplitude in this illustration as used throughout
this work. We also omit the phases of the hopping in this
depiction, each square plaquette is pierced by a flux of π/2.

tem from a trivial into the FCI state where we show that
the preparation scheme works for a path crossing the con-
tinuous transition while it is not possible when traversing
the first order transition. To study the model, we rely on
density matrix renormalization group (DMRG) compu-
tations on infinite cylinders of finite circumference48–50.

This paper is organized as follows. We introduce the
model and employed method in Sec. II and demonstrate
the appearance of an FCI state for the Hamiltonian in
Sec. III. In Sec. IV, we study the phase diagram of the
model and present the time-dependent calculations in
Sec. V.

II. MODEL AND METHOD

In this section, we introduce the model under consid-
eration. The Hamiltonian on the square lattice reads

H =− J
∑
x,y

{â†x+1,yâx,ye
i[π/2(x+y)−φ0] + h.c.

+ (1 + fx,y)â†x,y+1âx,y + h.c.}

+
δ

2

∑
x,y

[(−1)x + (−1)y]n̂x,y

+M
∑
x,y

(−1)px+py n̂x,y (1)

with â†x,y(âx,y) creating (annihilating) a boson on site
(x, y). We assume that the onsite interaction between
particles is much larger than the hopping J and work in
the limit of hardcore bosons restricting the occupation
number to n̂x,y = 0, 1. The parameters fx,y and pi are
given by

fx,y = −1

2

( κ

~ω

)2

{1− (−1)x+y cos(2φ0)}, (2)

FIG. 2. Additional energy offset between neighboring four site
plaquettes generated by the last term in Eq. (1). Compare to
Fig. 1.

and

pi =

{
0, if i ∈ 4N or i ∈ 4N + 1

1, if i ∈ 4N + 2 or i ∈ 4N + 3
(3)

Let us first focus on the terms with prefactors J and δ
which represent the effective Hamiltonian describing the
experiment in47. The hopping part describes the Hofs-
tadter model on a square lattice with a flux of φ = π/2
per plaquette as shown in Fig. 1 and the hopping in y-
direction is renormalized in second-order Floquet theory
by the site-dependent parameter fx,y given in (2). We
chose κ(~ω) = 0.58 as in the experiment in47. At the
single-particle level, the energy splits up into four bands
and the term proportional to the parameter δ introduces
a staggered potential along the x- and y-direction which
can be used to tune the band structure from a topologi-
cal to a trivial one. A phase transition occurs at δ ≈ 1.7
when the Chern number of the lowest band changes from
C = 1 for δ . 1.7 to C = 0 for δ & 1.747. In addition
to the effective Hamiltonian from47, we introduce a term
that generates an overall energy offset between neighbor-
ing unit cells in the last line of Eq. (1). A schematic
depiction is shown in Fig. 2.

We investigate the phase diagram of Hamiltonian (1)
using the DMRG algorithm48,49,51, on an infinite cylin-
der geometry44. This method allows us to variationally
determine the exact ground state for large system sizes.
Most of the computations in this work are performed on
a cylinder with a circumference of Ly = 8 sites.

III. FCI STATE AT δ =M = 0

One of the clearest signatures of the FCI state is the
quantization of the Hall conductivity σxy to fractional
values. Here, we determine the σxy by numerically con-
ducting a Laughlin-like charge pumping experiment52.
We cut the cylinder into two semi-infinite halves and
monitor the charge 〈qL〉 of the left half as we adiabat-
ically insert flux into the cylinder. Figure 3 shows a Hall
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FIG. 3. Charge 〈qL〉 of the left half of the system vs. in-
serted flux for a cylinder of circumference Ly = 8. After two
flux quanta (4π) have been inserted, one elementary charge
is pumped across the cut indicating a Hall conductivity of
σxy = 1/2.

conductivity of 1/2 in accordance with a Laughlin state
at filling ν = 1/244,53.

IV. PHASE DIAGRAM

After having established the emergence of the FCI
state for δ = M = 0, we now investigate the phase dia-
gram of the model (1). We first focus on δ > 0, M = 0
and then turn to the case of finite M .

A. δ > 0,M = 0

The simplest way to tune our model into a non-
topological state is increasing δ. At a finite value of
δ > 0, the band structure becomes trivial which will not
permit an FCI state to occur in this model. However,
the nonzero Chern number of the lowest band is merely
a necessary condition for the FCI and its stability might
break down even before the band structure becomes triv-
ial. We therefore investigate the state of the system for
increasing δ. Let us first consider a perturbative picture
of the ground state for large δ. In this limit, three of
the sites in the unit cell, namely the ones with energy
offset +δ and 0, are not part of the low energy subspace
of the Hilbert space. The particles will prefer to occupy
the sites with energy offset −δ due to the large energy
penalty on the remaining three sites. For large, but finite
δ, we can therefore write down an effective Hamiltonian
in the low energy subspace which expanded up to second
order in J reads

Hlow ≈ −J2/δ
∑

〈ij〉,i,j∈Λ−δ

a†iaj , (4)

where we have neglected a constant energy offset per site.
Here, Λ−δ denotes the set of lattice sites with chemi-

cal potential −δ and the Hamiltonian describes a reg-
ular hopping model of hardcore bosons on the square
lattice formed by the “−δ sites”. Note that the complex
phases in the hopping may be gauged away since the flux
through each square plaquette surrounded by the remain-
ing sites Λ−δ is 2π. The total filling factor of 1/8 leads to
a half filling of the effective low-energy subspace and the
ground state of this Bose-Hubbard model is well known
to be superfluid, spontaneously breaking the U(1) parti-
cle number conservation symmetry54.

In the following, we study the stability of the FCI state
in model (1) identified in Sec. III for increasing δ towards
this superfluid state and possible competing phases. We
detect phase transitions by studying the behavior of the
entanglement entropy, the correlation length or, in case of
a first-order transition, the energy of the ground state55.
The entanglement entropy S is defined as

S = −TrρL log ρL, (5)

where ρL = TrR |ψ〉 〈ψ| is the reduced density matrix of
the left half L of the cylinder. In Fig. 4(a) and (b), we
show S and the correlation length ξ for increasing delta
and observe that the FCI state at δ = 0 is stable in a
finite region for δ > 0. The clear discontinuities in ξ and
S indicate a first order transition which is further con-
firmed by the behavior of E depicted in Fig. 4(b). At
the transition point, we observe a crossing of the energy
of the low and high δ ground states. The blue dots show
the ground state energy of the FCI state while the yel-
low dots indicate the neighboring state. The data points
at values of δ at which the respective phase is not the
ground state of the system where obtained by initializing
the algorithm with the state of the respective phase and
converging to the local energy minimum in the Hilbert
space. This energy data clearly demonstrates a transi-
tion at δc ≈ 0.06. We do not observe any sign of a phase
transition for δ > δc up to values of δ � J which repre-
sent the regime in which the system is described by the
effective Hamiltonian of Eq. (4).

B. δ > 0,M > 0

Since we identified the finite-δ transition for M = 0
to be of first order, tuning into the FCI state from the
superfluid phase for large-δ along a path in parameter
space decreasing delta is not a favorable strategy. The
likelihood for the occurrence of a second order transition
might be enhanced if the state neighboring the FCI does
not spontaneously break any symmetries. Motivated by
this intuition, we introduce the term∝M in the Hamilto-
nian (1) which generates an alternating additional chem-
ical potential on every four-site unit cell of the original
Hamiltonian of the experiment.

Let us again consider the limit in which δ,M � J . By
adding the above term to the Hamiltonian, we obtain one
site with energy offset −δ−M per each eight sites in the
system (The green sites in the green squares in Fig. 2).
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FIG. 4. Correlation length ξ (a) and entanglement entropy S (b) as a function of δ for increasing DMRG bond dimensions χ.
The discontinuity in both quantities at the phase boundary of FCI and SF indicates a first order transition. (c) Ground state
energy per site around the transition between FCI and SF state. The crossing of the energy levels further corroborates the first
order nature of the transition.

The number of these sites is hence exactly the number of
particles and all other sites are at least δ or 2M higher
in energy, whichever of these numbers is smaller. In the
limit of δ,M →∞, these sites will therefore each be oc-
cupied by exactly one particle. Upon decreasing δ, the
particles will be allowed to hop around a four site plaque-
tte, but will still be localized and form a Mott insulating
(MI) phase. This phase does not spontaneously break
any symmetry and therefore constitutes a phase which
might feature a continuous transition into the FCI state.

In Fig. 5, we plot the correlation length ξ of the ground
state for δ = 0 and finite M . We observe a peak in ξ at
M ≈ 0.13, but no discontinuity as in the transition be-
tween SF and FCI. The behavior in ξ indeed points to
a continuous transition between the two phases. The

FIG. 5. Correlation length ξ for δ = 0 and finite M . The
peak in ξ and its increase towards higher bond dimensions
suggests a continuous transition between the large-M and the
FCI state. We also checked the Hall conductivity which is
quantized to σxy = 1 below the value of M at which the
system is entering the critical regime, e.g. for M < 0.1 for
χ = 400. Inset: Scaling of Mpeak, the position of the peak in
ξ vs. 1/χ to determine the transition point for χ→∞.

peak in ξ signals a critical point. In the region around
the point, the state cannot be faithfully represented with
finite DMRG bond dimension χ anymore and the corre-
lation length still grows with increasing χ. This entrance
into the critical region is as well reflected in the Hall
conductivity which is not quantized anymore when ap-
proaching the transition from the FCI side53.

We map out the full phase diagram of the model (1)
in the δ − M parameter plane shown in Fig. 6. The
FCI region proves to be stable in a finite parameter re-
gion and is separated by a second order transition from
the Mott insulating (MI) state without a spontaneously
broken symmetry. We observe a similar behavior of the

FIG. 6. Phase diagram in the δ −M plane. The FCI state is
stable in a finite region in the phase diagram. The first order
transition between FCI and superfluid is depicted by a solid
line, dashed lines denote continuous transitions.
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FIG. 7. Overlap (per site) of the time-evolved state |ψ(t)〉 with the actual ground state |ψ0〉 at the respective parameter when
tuning the Hamiltonian. (a) Fixing δ = 0 and tuning M from M0 = 0.25 to 0 for an infinite cylinder of circumference Ly = 8.
Note that M decreases to the right which means time increases. The overlap per site 〈ψ(t)| ψ0〉 increases for slower evolution
and reaches ∼ 0.9999 for TJ = 200 at M = 0. (b) Tuning the parameter δ from δ0 = 0.2 to 0 with M = 0 through the first
order transition on an infinite cylinder. The overlap per site sharply decreases when crossing the phase transition and cannot
be increased by a slower evolution. (c) Time evolution of the state on a finite square geometry of Lx ×Ly = 8× 8 sites for the
same path in parameter space as in (a). The overlap per site of the final state is significantly lower (∼ 0.973 for TJ = 200)
than in the case of the infinite system, but approaches unity for longer evolution times. In all calculations, the bond dimension
χ is chosen such that the value of the overlap has converged in χ.

correlation length as in Fig. 5 at the transition between
FCI and MI for finite δ. The transition into the super-
fluid with spontaneously broken U(1) symmetry is of first
order.

While the simulations presented in this work were con-
ducted for hardcore bosons, an experimental realization
of the model will have finite interactions. When releas-
ing the hardcore constraint, a sufficiently strong on-site
repulsion is required to stabilize the FCI phase. If the in-
teractions are strong enough, the transition between MI
and FCI remains continuous as indicated by numerical
simulations (not shown).

V. ADIABATIC TUNING

The continuous transition in the model from a trivial
insulating to an FCI state harbors the potential for an
adiabatic preparation of the topological state. To further
corroborate this possibility, we simulate the preparation
scheme along the line δ = 0 in the phase diagram by
means of time-dependent DMRG calculations. We use
the method introduced by Zaletel et al.50 which allows
us to treat the effective long-range interactions that occur
in a 2D DMRG setup56.

A. Infinite cylinder

We first study the system in the infinite cylinder ge-
ometry as before and time-evolve from an initial state
|ψI〉 to a final state |ψF 〉 under Hamiltonian (1) with the

time-dependent parameter

M(t) = M0(1− t/T ), 0 ≤ t ≤ T. (6)

We start the evolution with the ground state at M0 =
0.25 which is well separated from the transition into the
MI phase. In Fig. 7(a), we plot the overlap (per site) of
the time-evolved state with the actual ground state at
the respective parameter value. We observe a high over-
lap which steadily increases for longer ramp times. This
indicates that the adiabatic evolution may be performed
successfully for sufficiently long times.

In order to demonstrate the importance of crossing a
continuous rather than a first order phase transition in
the adiabatic preparation, we also calculate the time evo-
lution for a path from the superfluid phase to the FCI
phase traversing the first order transition. We therefore
set M = 0 and evolve δ from δ0 = 0.2 to 0 as

δ(t) = δ0(1− t/T ). (7)

The results are presented in Fig. 7(b). We clearly observe
that the adiabatic preparation is not successful along this
path in the phase diagram. The overlap significantly de-
creases at the transition point and it is not possible to
remedy this behavior by choosing a longer ramp time.
Instead, the overlap even decreases for longer times. The
jump in the overlap may be explained by the nature of
the first-order transition. As depicted in Fig. 4(c), the
energy levels of SF and FCI cross at the transition. When
(quasi-)adiabatically tuning the Hamiltonian parameters
from the SF side across the transition, the system then
tries to follow the (metastable) SF state and does not
evolve into a state with high overlap to the actual FCI
ground state. This scenario is further confirmed by the



6

larger decrease in overlap for longer ramp times, indi-
cating that the state follows the initial SF state better
for slower evolution. Since we show the overlap per site,
the total overlap for a system of N sites would amount
to ∼ 0.9N so that the final state would be far from the
desired FCI state.

B. Finite square geometry

We also simulate the preparation protocol on a finite
square geometry of 8 × 8 sites in order to be closer to a
potential experimental setup with edges. The results are
depicted in Fig. 7(c). The overlap of the final state with
the actual ground state is much less than in the infinite
cylinder geometry. This behavior can be explained by
the presence of gapless –or low energy for finite system
size– edge modes and is consistent with what has been
observed in Ref.44. However, our results indicate that
the FCI may still be prepared for sufficiently long ramp
times.

VI. CONCLUSION

We have investigated the Harper-Hofstadter Hamil-
tonian describing the cold atom experiment by Aidels-
burger et al.47 at half filling of the lowest band for hard-
core bosons. For the pure hopping Hamiltonian, we find
a topologically ordered fractional Chern insulator state
which remains stable for a finite staggered chemical po-
tential term with parameter δ which is present in the
original model. The increasing of this potential tunes
the band structure from topological to trivial. However,
the FCI state proves to be unstable at a potential of
δc ≈ 0.06 much below the value when the underlying

band structure becomes non-topological (δ ≈ 1.7) and
the system undergoes a first order phase transition into
a superfluid state. In addition to the staggered potential
from the original experiment, we introduce another pe-
riodic chemical potential term with parameter M which
tunes the system into a trivial Mott insulator. We map
out the phase diagram as a function of δ and M and find
that the transition from the Mott insulator into the FCI
state is of second order providing a path along which the
FCI state may be adiabatically prepared.

To demonstrate this adiabatic preparation scheme, we
explicitly simulate the time evolution of a trivial initial
state to the FCI state when slowly tuning the parame-
ters of the Hamiltonian. On an infinite cylinder, we find
an overlap per site of ∼ 0.9999 of the time-evolved state
with the FCI ground state for a ramp time of T = 200/J
which may be further improved by increasing the time.
When considering a finite square geometry, the final over-
lap reduces to ∼ 0.973 for otherwise equal parameters,
but a sufficiently slow tuning in an experiment should
still guarantee a topologically ordered final state. Our
protocol requires only a rather small modification of the
one already implemented experimentally.
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