
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological Andreev bands in three-terminal Josephson
junctions

Hong-Yi Xie, Maxim G. Vavilov, and Alex Levchenko
Phys. Rev. B 96, 161406 — Published 18 October 2017

DOI: 10.1103/PhysRevB.96.161406

http://dx.doi.org/10.1103/PhysRevB.96.161406


Topological Andreev bands in three-terminal Josephson junctions

Hong-Yi Xie, Maxim G. Vavilov, and Alex Levchenko
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

We study the emergent band topology of sub-gap Andreev bound states in the three-terminal Josephson junc-
tions. We scrutinize on the symmetry constraints of the scattering matrix in the normal region connecting
superconducting leads that enable for the topological nodal points in the spectrum of Andreev states. When the
scattering matrix possesses time-reversal symmetry the gap closing occurs at special stationary points that are
topologically trivial as they carry vanishing Berry fluxes. In contrast, for the time-reversal-broken case we find
topological monopoles of the Berry curvature and corresponding phase transition between states with different
Chern numbers. The latter is controlled by the structure of the scattering matrix that can be tuned by a magnetic
flux piercing through the junction area in a three-terminal geometry. Topological regime of the system can be
identified by nonlocal conductance quantization that we compute explicitly for a particular parametrization of
the scattering matrix in the case where each reservoir is connected by a single channel.

Introduction. The Wigner-Dyson classes of Gaussian
random-matrix ensembles of orthogonal, unitary and sym-
plectic symmetry1–3 play a central role in mesoscopic physics,
as they describe the universal ergodic limit of disordered and
chaotic single-particle systems. The power of such random
matrix theory (RMT) description is that it enables to make
predictive statements about the properties of a system, such
as level statistics and level correlations, transport conduc-
tance and its fluctuations, etc., by circumventing the need for
a microscopic description of the system4. Study of normal-
superconductor hybrid mesoscopic devices carried out by Al-
tland and Zirnbauer5 led to the extension in applications of
RMT phenomenology in solid-state systems to include non-
standard Cartan’s symmetry spaces. This work paved the way
for a complete classification of gapped phases of noninteract-
ing fermions6–9 (see also recent reviews10,11). In any given
spatial dimension only five of the ten symmetry classes host
topologically nontrivial phases. The topology can be identi-
fied as a mapping from the properties of bands in the Brillouin
zone to a certain integral invariant such as a Chern number12.

The early surge for band topology was concentrated around
various lattice models: Haldane13, Kane-Mele14, Bernevig-
Hughes-Zhang15, Kitaev16, which has since been expanded to
include crystalline symmetries17. These initial ideas spread
across different physics disciplines and topological properties
are being discovered and extensively studied beyond crys-
tals. The list of examples include photonic arrays, coupled
resonators, metamaterials and quasicrystals18, colloids19, and
even amorphous media20, while some of the proposed lattice
Hamiltonians were realized with cold atoms21.

Most recently, it was proposed that topological properties
of various kinds can be effectively engineered and manip-
ulated in the multi-terminal Josephson junctions (JJs)22–26.
One of the most crucial aspects of this fruitful idea, from
the stand point of its experimental realization, is that such
band topology engineering does not require the material con-
stituents forming the junction to be topological. Rather the
topology emerges by design and is harbored by the sub-gap
Andreev bound states (ABS) localized in the junction. The
core essence of the idea can be summarized as follows. The
ABS spectrum in a two-terminal junction is a periodic func-
tion of superconducting phase difference. This is an equiva-
lent to a dispersion relation of a particle in one-dimensional
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FIG. 1: [Color online] (a) Schematics of a three-terminal Josephson
junction. Solid (dash) lines indicate electron (hole) propagation, ŝ(Φ)
is the normal-region scattering matrix that can be tuned by external
magnetic flux Φ, and r̂A is the Andreev reflection matrix. (b) Phase
diagram for ϕ = 0. For b ∈ [b−(a, 0), b+(a, 0)] there is a pair of
zero-energy states at Θ±, as shown in (c). (c) The example of a
gapless ABS spectrum for a = 0.3, b = 1/

√
2, ϕ = 0, and (d) gapped

spectrum for a = 0.3, b = 0.9, ϕ = 0.

crystal, where the superconducting phase difference plays the
role of momentum and its periodicity modulo 2π mimics a
Brillouin zone. Extending this analogy to a three-terminal
junction yields two-dimensional sheets of Andreev levels con-
trolled by two phase differences between superconducting ter-
minals. Remarkably, this system can realize an analog of
quantum spin Hall insulator as characterized by a quantized
conductance even though the underlying physics is very dif-
ferent. The four-terminal junctions can further realize three-
dimensional Weyl singularities in the ABS spectra that carry
topological Berry fluxes. The topological properties of the
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ABS spectra are determined by the details of the normal-
region scattering matrix connecting superconducting leads.
However, the precise requirements for the occurrence of band
topology are not yet well understood in general. We find
some exact analytical results for a particular realization of
a scattering matrix from the orthogonal and unitary symme-
tries in a limit where each superconducting reservoir is linked
by a single conduction channel. We find Weyl singularities
in the three-terminal setup when system lacks time-reversal
symmetry and fully explore topological phase diagram of the
model. These results may guide future experimental searches
and trigger further theoretical generalizations.

Scattering matrix formalism. Formation of the sub-gap
bound states in the JJs is the result of coherent multiple An-
dreev reflections that describe electron-to-hole conversion at
the superconductor-normal (SN) interface. In transport the-
ory the spectrum of such localized states can be found by the
Beenakker’s determinant formula27

Det
[
1 − γ(ε)r̂A ŝ∗(−ε)r̂∗A ŝ(ε)

]
= 0, (1)

where γ(ε) = exp(−2i arccos ε). For brevity we assume that
all superconducting terminals have the same energy gap ∆ and
choose to measure energies in unit of ∆ so that ε is dimension-
less. We also assume spin-rotation symmetry. Equation (1)
has transparent physical meaning. Indeed, the diagonal ma-
trix r̂A = eiθ̂ corresponds to Andreev reflections at the junc-
tion interfaces with θ̂ = diag{θ0, θ1, . . .} being the correspond-
ing phases of superconducting terminals, while γ(ε) captures
an additional phase shift due to the mismatch of electron and
hole quasimomenta. The scattering matrix ŝ(ε) [ŝ∗(−ε)] de-
scribes propagation of electron [hole] -like excitations in the
normal region of the junction between superconductors.

We begin our analysis by a brief recap of essential results
that follow from Eq. (1) in two-terminal junctions. In the
RMT limit, that neglects energy dependence of the normal-
region scattering matrices, there is one-to-one correspondence
between the spin-degenerate energy spectrum of ABS εk =

±
√

1 − Tk sin2 θ/2 and transmission eigenvalues of the scat-
tering matrix Tk, where index k labels conduction channels in
the junction k = 1, . . . ,N. For each channel, Andreev levels
come in opposite-energy pairs and each level is doubly de-
generate as a consequence of the Kramers theorem. The An-
dreev levels cross at θ = π for perfectly transmitting channels
Tk = 1, while exhibit avoided crossings for any finite trans-
parency Tk < 1 with the gap 2

√
1 − Tk. Physically the RMT

limit corresponds to the approximation L/ξ → 0, where L is
the length of the junction and ξ is the superconducting co-
herence length, that is justified for point-contact/quantum-dot
type junctions. Relaxing on this condition leads to appearance
of several qualitatively new features in the spectra of ABS. (i)
For a small but finite L/ξ, the Andreev levels decouple from
the continuum of states at phases θl = 2πl with l ∈ Z, that is
in contrast to the RMT result εk(θl) = ±1 and the energy of
decoupling δ is of the order δ ∼ (L/ξ)2. (ii) For a longer junc-
tion L/ξ & 1, the decoupling energy grows and a new pair of
levels emerge within the energy window ε ∈ ±[1 − δ, 1]. (iii)
Once L/ξ � 1 the Andreev levels start to densely populate

all the sub-gap region and form a band with small level spac-
ing. To capture the crossover regime to a long junction one
has to employ semiclassical methods based on either Eilen-
berger equation for ballistic junctions28 or Usadel equation
for diffusive ones29. (iv) Inclusion of spin-orbit interaction
couples the spin of the bound states to the superconducting
phase difference and lifts the Kramers degeneracy of the spec-
trum. This leads to additional features appearing both at zero
energy and at the gap edges. All these complexities attracted
much attention recently with a particular emphasis on three-
terminal22,26,30 and four-terminal23–25,31–33 junctions.

Andreev spectra. Three-terminal Josephson junctions, as
schematically shown in Fig. 1(a), are the main focus of our
work. Because of the overall gauge invariance one supercon-
ducting terminal can be considered at zero phase θ0 = 0 so that
the ABS spectrum in the device is controlled by remaining
two phases θ1,2 and particular properties of the scattering ma-
trix ŝ. Current conservation implies that ŝ is a unitary matrix:
ŝ−1 = ŝ†. Its size is determined by the sum of the numbers
of incoming modes in the leads. For simplicity we analyze
Eq. (1) for the energy-independent scattering matrix relevant
for the RMT limit. Furthermore, we assume that each super-
conducting terminal is coupled only by a single conducting
channel.

When system lacks time-reversal symmetry, unitarity is the
only constraint on ŝ. This corresponds to a circular unitary en-
semble in the RMT classification. Thus for a single-channel
limit of a three-terminal devices under consideration the nor-
mal region scattering matrix si j has size 3 × 3 and in general
can be determined by nine real parameters34:

s11 = aeiϕ11 , s12 = b
√

1 − a2eiϕ12 , s31 =
√

(1 − a2)(1 − c2)eiϕ31 ,

s13 =
√

(1 − a2)(1 − b2) eiϕ13 , s21 = c
√

1 − a2 eiϕ21 ,

s22 = −abc ei(ϕ12+ϕ21−ϕ11) +
√

(1 − b2)(1 − c2)eiϕ22 ,

s23 = −eiϕ13
[
ac
√

1 − b2 ei(ϕ21−ϕ11) + b
√

1 − c2ei(ϕ22−ϕ12)
]
,

s32 = −eiϕ31
[
ab
√

1 − c2 ei(ϕ12−ϕ11) + c
√

1 − b2ei(ϕ22−ϕ21)
]
,

s33 = ei(ϕ13+ϕ31)
[
−a

√
(1 − b2)(1 − c2) e−iϕ11 + bc ei(ϕ22−ϕ12−ϕ21)

]
,

(2)

where a, b, c ∈ [0, 1], and ϕ11,22,12,13,21,31 ∈ [0, 2π]. Interest-
ingly, for this case Eq. (1) can be written as a cubic antipalin-
dromic equation (γ − 1)(γ2 − 2Bγ + 1) = 0, which gives a flat
band solution ε = 1 and a dispersive band solution

ε(θ1, θ2) =

√
B(θ1, θ2) + 1

2
, (3)

where the B-function reads

B =
1
2

[
2a2 − (1 + a2)(b2 + c2 − 2b2c2)

− 4abc
√

(1 − b2)(1 − c2) cosϕ
]

+bc(1 − a2) cosϑ1 + (1 − a2)
√

(1 − b2)(1 − c2) cosϑ2

+
[
bc(1 + a2)

√
(1 − b2)(1 − c2) + a(b2 + c2 − 2b2c2) cosϕ

]
× cos(ϑ1 − ϑ2) + a(b2 − c2) sinϕ sin(ϑ1 − ϑ2). (4)
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Here ϑ1,2 = θ1,2 + φ1,2 are shifted superconductor phases with
φ1 ≡ ϕ12 − ϕ21, φ2 ≡ ϕ13 − ϕ31, and ϕ ≡ ϕ11 + ϕ22 − ϕ12 − ϕ21.
Consequently, there are only six independent parameters of
the scattering matrix {a, b, c, ϕ, φ1,2} that enter the spectrum
of ABS. Furthermore, φ1,2 only shift the phases of the leads.
Each band has its mirror image at ε→ −ε.

The presence of time-reversal symmetry imposes additional
constraints. In particular if in addition spin-rotation symme-
try is present, which corresponds to RMT circular orthogo-
nal ensemble, then scattering matrix is unitary and symmetric:
ŝ = ŝT . For a 3 × 3 matrix this implies only six independent
real parameters, which can be reduced from the parameteri-
zation in Eq. (2) by setting c = b and φ1,2 = 0, so that the
B-function in Eq. (4) is simplified to

B = a2 + (1 − a2)
[
b2 cos θ1 + (1 − b2) cos θ2

]
−2b2(1 − b2)(1 + a2 + 2a cosϕ) sin2

(
θ1 − θ2

2

)
, (5)

while the ABS spectrum is still given by Eq. (3).
This particular limit admits a complete analytical solution.
The Andreev energy spectrum has six potential stationary
points: Θ1 = (0, 0),Θ2 = (π, π),Θ3 = (π, 0),Θ4 =

(0, π),Θ+ = (θ0
1, θ

0
2), Θ− = (2π − θ0

1, 2π − θ
0
2), where θ0

1 =

arccos
[

2a2−F1(a,b,ϕ)
b2 F2(a,b,ϕ)

]
and θ0

2 = 2π− arccos
[
−1−a4+F1(a,b,ϕ)
(1−b2) F2(a,b,ϕ)

]
, with

F1(a, b, ϕ) = −2a(1−2b2) cosϕ(1+a2 +a cosϕ)+ (1+a2)2b2,
and F2(a, b, ϕ) = (1 − a2)(1 + 2a cosϕ + a2) so that θ0

1 ∈ [0, π]
and θ0

2 ∈ [π, 2π]. In general Θ1 is the maximum point with
energy ε(Θ1) = 1 and Θ2 a saddle point with ε(Θ2) = a. For
convenience we introduce functions

b+(a, ϕ) =

√
1 + a cosϕ

1 + 2a cosϕ + a2 , b−(a, ϕ) =
√

ab+(a, ϕ), (6)

such that b+(a, ϕ) ∈ [1/
√

2, 1] and b+(a, ϕ) ∈ [0, 1/
√

2] as
a changes in a range a ∈ [0, 1] for a fixed value of ϕ.When
b ∈ [b+(a, ϕ), 1], Θ3 is the minimum point with energy

ε(Θ3) =

√
1 − 2b2 +

(
1 + a2) b4 − 2ab2 (

1 − b2) cosϕ, (7)

Θ4 is a saddle point, and no solution exists for Θ±. When
b ∈ [0, b−(a, ϕ)], Θ4 is the minimum point with energy

ε(Θ4) =

√
b4 −

(
1 − b2) [a2 (

1 − b2) + 2ab2 cosϕ
]
, (8)

Θ3 is a saddle point, and no solution exists for Θ±. Finally,
when b ∈ [b−(a, ϕ), b+(a, ϕ)], Θ± are such that

ε(Θ±) =
a |sinϕ|√

a2 + 2a cosϕ + 1
, (9)

and Θ3,4 are saddle points. When ϕ = 0 there is a pair of
zero-energy states at Θ± as shown in Fig. 1(c). As ϕ passes
through zero, the energy gap closes and reopens. The gapped
phase is shown in Fig. 1(d), whereas the phase diagram in a
parameter space of {a, b} is shown in Fig. 1(b).
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FIG. 2: Phase diagram and the Chern number C12 of Andreev bounds
states for a three-terminal Josephson junctions in the case of broken
time reversal symmetry. We take b =

√
1 − c2 for simplicity. C12

as a function of parameters of the scattering matrix: (a) a and b for
ϕ = π, and (b) b and ϕ for a = 0.3, respectively.

We can further derive an effective low-energy Hamiltonian
by expanding the Andreev spectrum about Θτ (τ = ±), which
takes the form of massive Dirac fermions in two-dimensions
Ĥτ = V̂τ · P + Mσ̂3, where effective momentum P is a rota-
tion of δΘ ≡ Θ −Θτ: P = R̂τ(a, b)δΘ, σ̂i are Pauli matri-
ces operational in the basis of the two degenerate states, and
V̂τ = (vτ,1(a, b)σ̂1, vτ,2(a, b)σ̂2) the effective velocity. The ro-
tation matrix R̂τ and velocity components are determined by
the eigenproblem of the matrix Ĉτ with Cτ,i j ≡

1
4∂θi∂θ j B(ϕ =

0)|Θ=Θτ
: R̂τĈτR̂−1

τ = diag{v2
τ,1, v

2
τ,2}. Finally, the Dirac mass

M(a, b, ϕ) = ε(Θ±) [Eq. (9)] is positively defined for any
phase value of the scattering matrix so that this case is topo-
logically trivial.

In contrast, in the absence of time-reversal symmetry the
ABS bands become topologically nontrivial, in particular, due
to the condition b , c. This most interesting scenario can
be realized by applying a magnetic flux piercing the normal
junction area26. Depending on the choice of parameters and
fluxes in our model we find very rich behavior of the energy
bands. For a special case b =

√
1 − c2 and ϕ = π the spectrum

can be studied analytically and reveals nontrivial topology, as
exemplified in Figs. 2 and 3. Weyl points appear at ϑ0

1 = ϑ0
2 =

π for b = b±(a) with b±(a) ≡ 1±
√

a
2
√

1+a
. We define b0 = 1/

√
2

representing the time-reversal symmetric point. The Chern
number for the bands of ABS can be computed according to
the standard procedure by integrating Berry curvature over the
unit cell spanned by phases θ1,2

24–26,

C12 =
1

2π

" 2π

0
dθ1dθ2 B12, B12 = −2

∑
k

Im〈∂θ1ψk |∂θ2ψk〉,

(10)
where B12 is the Berry curvature with |ψk〉 being the bound
state k. For our model the Chern number as a function of a
and b reads [see Fig. 2(a)]

C12 =


0, a ∈ [0, b−) ∪ (b+, 1],

+1, a ∈ (b−, b0),
−1, a ∈ (b0, b+).

(11)

We note that the Chern number vanishes C12 = 0 at the time-
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FIG. 3: Energy spectrum of Andreev bounds states for a three-
terminal Josephson junctions in the case of unitary symmetry of the
scattering matrix in the normal region of the junction. We take the
same parameters as those in Fig. 2(a) and fix a = 0.3. (a) Chern
number as a function of b and (b)-(f) the Andreev spectra at b = 0.1,
b−, b0, b+, and 0.99, indicted in (a).

reversal-symmetric point b = b0 and takes opposite signs
C12 = sgn(b0−b) for b ∼ b0. In Fig. 2(b) we also show the nu-
merical result for the phase diagram of trivial-to-topological
quantum phase transitions as a function of b and ϕ for a fixed
parameter a.

Conductance and Chern numbers. As shown in Ref.24

the existence of Weyl points in the multiterminal JJs can be
probed by nonlocal conductance measurements that is ex-
pected to be quantized in the topological regime. Indeed, the
current flowing into the first lead as a result of applied sub-gap
voltage eV2 � ∆ to the second lead is of the form

I1(t) =
2e∆

~
∂θ1ε − 2eθ̇2B12 (12)

where by virtue of the second Josephson equation θ̇2 =

2eV2/~. The first term in Eq. (12) corresponds to the adia-

batic current and the second term is the first order correction
that is in a way an anomalous velocity component governed
by the Berry curvature B12. In this sense, the instantaneous
current can be used to directly assess the Berry curvature35–39.
When two incommensurate voltages are applied to both leads,
the two phases uniformly sweep an effective Brillouin zone of
ABS band structure. In the dc limit the adiabatic current av-
erages out to zero, whereas anomalous velocity component is
replaced by its average value. As a result, the current is linear
in the voltages Īα = GαβVβ and conductance is defined by the
Chern number

G12 = −
4e2

h
C12, (13)

with C12 taken from Eq. (11) within our model. A particular
example is depicted in Fig. 3(a). The corresponding shapes of
Andreev bands are displayed in Fig. 3(b-f). We do not dwell
into the detailed discussion on conditions required for observ-
ability of quantized conductances as both Landau-Zener nona-
diabatic conditions and inelastic relaxation processes play an
important role. This analysis was carried out in Ref.25 for the
four-terminal setup with an estimate that topological quanti-
zation becomes visible for voltages of the order . 10−2∆/e.

Summary and outlook. We considered a simple model of
a three-terminal Josephson junction that realizes band topol-
ogy of sub-gap Andreev levels. Weyl singularities appear
in the spectrum when the system lacks time reversal sym-
metry. The latter is captured by the properties of the scat-
tering matrix of the normal region connecting superconduct-
ing leads and can be tuned by external magnetic flux pierc-
ing the junction area. Topological regime is quantified by
non-vanishing Chern numbers that translate into a quantized
nonlocal conductance40. Three- and four-terminal Joseph-
son junctions have been recently realized in experiments41–43.
These advances open new avenues not only to study new
physics of topological mesoscopic superconducting systems
but also to explore opportunities in implementing these multi-
terminal devices into superconducting qubits to seek topologi-
cal protection in quantum computation, high fidelity gates and
potentially braiding operations by voltage pulses. It is also
important to clarify how such artificial multi-terminal “materi-
als” fit into the standard periodic table of topological semimet-
als as they are conceptually distinct. In terms of transport the-
ories it is of interest to investigate whether multi-terminal JJs
may also provide alternative platform to study properties of
Weyl semimetal related to chiral anomaly both within and be-
yond the linear response.
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tonics 8, 821 (2014).
19 Bohdan Senyuk, Qingkun Liu, Sailing He, Randall D. Kamien,

Robert B. Kusner, Tom C. Lubensky, Ivan I. Smalyukh, Nature
493, 200 (2013).

20 Adhip Agarwala and Vijay B. Shenoy, Phys. Rev. Lett. 118,
236402 (2017).

21 G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D.
Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

22 B. van Heck, S. Mi, and A. R. Akhmerov, Phys. Rev. B 90, 155450
(2014).

23 Tomohiro Yokoyama and Yuli V. Nazarov, Phys. Rev. B 92,
155437 (2015).

24 Roman-Pascal Riwar, Manuel Houzet, Julia S. Meyer, and Yuli V.
Nazarov, Nature Communications 7, 11167 (2016).

25 Erik Eriksson, Roman-Pascal Riwar, Manuel Houzet, Julia S.
Meyer, and Yuli V. Nazarov Phys. Rev. B 95, 075417 (2017).

26 Julia S. Meyer and Manuel Houzet, preprint arXiv:1705.02478.
27 C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
28 N. B. Kopnin, Phys. Rev. B 65, 132503 (2002).
29 Alex Levchenko, Phys. Rev. B 77, 180503R (2008).
30 C. Padurariu, T. Jonckheere, J. Rech, R. Mélin, D. Feinberg, T.
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