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For decades the three-phonon scattering process has been considered to govern thermal transport in solids,
while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However,
recent quantitative calculations of three-phonon scattering have often shown significant overestimation of ther-
mal conductivity as compared to experimental values. In this work we show that four-phonon scattering is
generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted ther-
mal conductivity is reduced by 30% at 1,000 K after including four-phonon scattering, bringing prediction in
excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zincblende
BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong
as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering
reduces the predicted thermal conductivity from 2,200 W/m-K to 1,400 W/m-K at room temperature. The
reduction at 1,000 K is 60%. We also find that optical phonon scattering rates are largely affected, being
important in the applications such as phonon bottleneck in equilibrating electronic excitations. Recognizing that
four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess
thew significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase
space. Our work clears the decades-long fundamental question of the significance of higher-order scattering,
and points out new ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative
heat transfer.

Phonons are quasi-particles that quantize lattice vibrations.
They interactwith each other through scattering eventswith the
most significant scattering processes known as three-phonon
processes. Recently, thermal conductivity (κ) calculations
based on density functional theory have found incredible
agreement with measured κ values for a variety of systems and
made striking predictions of thermal processes despite consid-
ering only lowest order perturbative intrinsic scattering from
three phonon interactions[1–4]. However, a persistent funda-
mental question for decades has been: what is the impact of
four-phonon and higher-order scattering? Due to the lack of
formalism and computational power, four-phonon scattering
has been ignored in previous studies. However, this question
has become particularly relevant, since first principles meth-
ods have overestimated the measured thermal conductivities
of a number of materials [2, 3, 5–7]. For example, while some
predictions give reasonable accuracy with measured data at
low temperature, they overpredict significantly at higher tem-
perature, diminishing the predictive power for applications
such as thermal barrier coatings and high-temperature ther-
moelectrics [2]. Moreover, such deviations can become quite
large even at room temperature (RT) for some technologically
important materials such as c-BN [3, 5] and SnSe [6, 7]. As an
example for thermal management applications, Lindsay et al.
have predicted that the zincblende structure, boron arsenide
(BAs), may have a thermal conductivity ∼2,200 W/m-K at
room temperature, higher than the known best heat conductor
diamond [3]. This might open new opportunities for passive
cooling and other thermal management applications. The BAs
system has been synthesized, however the measured thermal
conductivity has only reached ∼200 W/m-K. [8, 9]. Extrin-
sic defects and grain boundaries are a possible cause for this
discrepancy, or higher order intrinsic scattering may become
significant in determining the upper limit of k in this material.

The prediction of four-phonon scattering has been pursued
for a long time. Lindsay et al. examined the phase space for

four-phonon scattering processes [10]. Turney et al. studied
the fourth and higher order anharmonicity of the interatomic
potential of argon, by truncating the potential in molecular dy-
namics (MD) simulations [11]. Sapna and Singh estimated the
four-phonon scattering rates in carbon nanotubes using an an-
alytical model involving approximations such as the Callaway
model, the Debye model, etc [12]. Despite those efforts, a
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FIG. 1: Three- and four-phonon scattering diagrams. a, Three-
phonon splitting and combination processes. b, Four-phonon split-
ting, redistribution, and combination processes. The shaded rectan-
gles represent first Brillouin zone (BZ). The phonon momentum is
~q with q standing for wave vector. The processes with momentum
conserved are Normal processes. The others with momentum non-
conserved are Umklapp processes, in which the resulting phonons are
folded back by reciprocal lattice vectors R.
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direct and rigorous calculation of four-phonon scattering rates
was not available until the recent work [13]. However, the
anharmonic force constants therein were obtained from clas-
sical force fields though, thus the results are only qualitative
and cannot be validated against experiments. In this work, for
the first time we have calculated four-phonon scattering rates
fully from first principles and examined its impact on ther-
mal conductivity and optical phonon lifetimes of BAs, Si and
diamond. We demonstrate that the four-phonon scattering re-
sistance can reduce their predicted thermal conductivities and
optical phonon lifetimes significantly, manifesting the general
impact of four-phonon scattering in solids.

Intrinsic phonon scattering is caused by lattice anharmonic-
ity [14]. From perturbation theory, the lowest-order anhar-
monic couplings involve three phonons: a single phonon may
split into two phonons, or two phonons may combine to create
a new phonon, as shown in Fig.1 a. In addition to these scatter-
ings, the second-order anharmonicity gives rise to four-phonon
processes given in Fig.1 b. The three- and four-phonon scatter-
ing rates for each phonon mode are calculated by summing up
the probabilities of all the possible scattering events involving
this mode. Each transition probability is calculated by Fermi’s
golden rule from density functional theory [13]. The computa-
tional cost is very high but can be mitigated as described in our
earlier work [13]. See Sections Methods and Computational
Challenge in the Supplemental Information [15].

We have obtained the scattering rates for each of the 24,576
(870 irreducible) phonon modes in the first BZ discretized
by a 16×16×16 q mesh from 10 to 1,300 K for BAs, Si and
diamond. The results as a function of phonon frequency at
300 K and 1,000 K are shown in Fig. 2 a-f. The insets show
the low-frequency behavior. Contradictory to the prevailing
general notion that four-phonon scattering is negligible, we
find that for many frequencies the four-phonon scattering is
comparable or even much stronger than the lower-order three-
phonon scattering, as highlighted by the blue ovals.

Most surprisingly, the four-phonon scattering in BAs is quite
strong, as shown in Fig. 2 a. This behaves against the general
notion of perturbation theory, in which the strength of four-
phonon scattering is driven by the magnitude of higher-order
terms of the Hamiltonian, which are small in BAs. The ori-
gin of the strong four-phonon scattering in BAs is illustrated in
Fig. 3 a. As shown inRef. [3], the number of three-phonon pro-
cesses is partly restricted by a large acoustic-optical (a-o) en-
ergy gap, which prevents two acoustic phonons from combin-
ing into an optical phonon as well as the reverse process since
the summation of the energies of two acoustic phonons cannot
reach that of the optical phonon. This coupled with closely
bunched acoustic branches contributes to weak three-phonon
scattering and the predicted ultra-high thermal conductivity in
BAs [3]. Further evidence of this can be found near 21 THz in
Fig. 2 a, in which the three-phonon scattering rates have a deep
valley. These phonons are the optical modes near the Γ point
and have high energy and small momentum. They can hardly
find two other phonon modes that satisfy energy conservation
and momentum conservation simultaneously. Such a large a-o
gap, however, does not forbid four-phonon processes between
acoustic and optical phonons. For example, at around 21 THz,
the possible number of three-phonon scattering configurations
is smaller than 20 while the number of four-phonon processes

is about 107 ∼ 108. For these four-phonon processes, 94% are
q + q1 → q2 + q3 and 6% are q → q1 + q2 + q3. Therefore,
the optical phonon relaxation time is brutally over-predicted
by the three-phonon picture. When the four-phonon term is
included, the relaxation time is reduced from 104 ps to 40 ps at
room temperature, see Supplemental Fig. S1 [15]. Since these
optical phonons near the Γ point are critical for interactions
with electrons and photons such as in laser heating [16] and
for infrared optical properties [17], the long lifetime predicted
from three-phonon scattering ismisleading, while four-phonon
scattering is critical and should be included.
As temperature increases to 1,000 K, the four-phonon scat-

tering of BAs becomes much more important especially for
the phonons with higher frequencies as highlighted by the
blue ovals in Fig. 2 b. The variation with temperature and
frequencies are shown in Fig. 3 b and c, from which we deter-
mine the scaling law of four-phonon scattering τ−1

4 ∼ T2ω4.
Compared to three-phonon scattering, four-phonon scattering
is more important at higher temperatures and for higher-energy
phonons as the phonon population increases with temperature
and the phase space increases with phonon energy (frequency).
Due to their simplicity, scaling laws are of great importance
in thermal nanoengineering as well. For example, the power
law of three-phonon scattering τ−1

3 ∼ Tω2 and phonon-defect
scattering τ−1

d
∼ ω4 has been widely used in understanding the

experimental thermal conductivity in advanced thermoelectric
materials [18, 19].
In the other two materials without phonon bandgaps, Si and

diamond, four-phonon scattering is not as strong as in BAs
but certainly not negligible. At 300 K, τ−1

4 is well below
τ−1

3 for most of the acoustic phonons. This obeys the general
notion in perturbation theory since the anharmonicity (the
higher-order terms of the Hamiltonian) is small for Si and
diamond. Nevertheless, the optical modes marked by the blue
ovals still have large four-phonon rates, and this may explain
why calculated infrared optical linewidths considering only
three-phonon scattering are narrower than experiments [17,
20]. As T increases to 1,000 K, four-phonon rates of the
low-frequency phonons remain insubstantial, however, higher-
energy longitudinal acoustic (LA) modes and all the optical
modes exhibit large τ−1

4 , comparable to τ−1
3 . The large τ−1

4 of
the heat-carrying LA phonons will have a substantial effect on
the thermal conductivity of thesematerials. In all thematerials
we note that the low-frequency limits for both three- and four-
phonon scatterings obey the law limω→0 τ

−1 = 0 resulting
from translational invariance, indicating the accuracy of our
four-phonon calculations. The same as that in BAs, the power
law fittings for diamond and silicon give τ−1

4 ∼ ω
4, which are

shown in Supplemental Fig. S2 [15].
We have also calculated κ beyond the relaxation time ap-

proximation (RTA) by exactly solving the phonon Boltzmann
transport equation (BTE) using an iterative scheme mixing
three-phonon interactions [1, 3]. In this work, due to the high
computational cost, the four-phonon scattering rates are com-
puted at the RTA level only and inserted into the iterative
scheme that determines the nonequilibrium phonon distribu-
tions from mixing of the three-phonon processes. This is
similar to employing phonon-isotope and phonon-boundary
scattering terms in the full BTE solution [1, 21]. We will show
that such an approximation is likely valid as the four-phonon
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FIG. 2: First-principles three-phonon (black dots) and four-phonon (red dots) scattering rates of BAs, Si and diamond at 300 K and
1,000 K. The insets are in log-linear scales to give a better view of the low frequency regions. Blue ovals indicate the regions where four-phonon
plays an important role. Green ovals in the insets indicate that our four-phonon results reproduce well the universal law limω→0 τ
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for four-phonon processes. The three-phonon process is dominated by intraband Normal scattering, while 4-phonon process is dominated by
inner and interband Umklapp scattering. b, Temperature dependencies of three-phonon and four-phonon scatterings of BAs. The curves cover
all the mode in the BZ, with each curve corresponding to a different mode. c, Power law fitting τ−1

4 = Aωη of the acoustic phonons in BAs.
The log-linear scale gives a clear view of the low frequency behavior, while the inserted linear-linear scale is for the view of the high frequency
behavior.

scattering is dominated by Umklapp processes. We also in-
clude phonon-isotope scattering [22] in these κ calculations of
naturally occurring materials.

The thermal conductivity κ of the naturally occurring mate-
rials are shown in Fig. 4 b. For diamond and Si the three-
phonon predictions agree well with measured data at low
temperature (<600 K for Si, <900 K for diamond), however,
significant deviations from experiment occur at high tempera-
tures. For example, at 1,000 K three-phonon scattering alone

over-predicts κ of diamond and silicon by 31% and 26% as
compared to experimental values, respectively. After includ-
ing four-phonon scattering, we find that the predicted thermal
conductivity agrees well with measurements throughout the
entire temperature range. Such reduction is beneficial for ther-
moelectrics and thermal barrier coatings where low thermal
conductivities are desired. As for naturally occurring BAs,
even at room temperature the thermal conductivity is reduced
significantly, from 2241 W/m-K to 1417 W/m-K, after in-
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FIG. 4: Thermal conductivities of naturally occurring BAs, Si
and diamond. Dashed lines give calculated κ3, while solid lines give
κ3+4. Note that these calculations employed the iterative solution of
the BTE, beyond the RTA. Symbols represent measured data: red
triangles [23], red squares [24], red circles [25], blue triangles [26],
blue squares [27], blue circles [28], and blue-diamonds [29]. No
experimental data are available for single-crystal BAs.

cluding four-phonon scattering. As temperature increases to
1,000 K, the reduction grows to over 60%. Nonetheless, the
room temperature intrinsic thermal conductivity of BAs is
still among the highest of known materials, and much higher
than common metals. Moreover, the well-known temperature
scaling κ ∼ 1/T at high temperature by only considering three-
phonon scattering can now be modified to κ ∼ 1/(AT + BT2)
after adding four-phonon scattering.

Here we discuss important physical details regarding four-
phonon scattering processes. More discussions on computa-
tional details can be found in Supplemental Information, i.e.,
the impact of broadening factors, q-meshes, interatomic cutoff
radius, translational invariance, force constant truncation, and
the role of Normal and Umklapp processes [15].

Phase space. For a particular mode, the scattering phase
space is the possible ways to find three- or four-phonon pro-
cesses that conserve energy and momentum (or differs by R
for Umklapp processes). Four-phonon scattering can provide
significant thermal resistance despite being higher order in
perturbation theory with much lower scattering probability
per scattering configuration than for three-phonon processes.
The origin is found to be the huge phase space allowed for
four-phonon scattering. The number of the possible scattering
configurations of four-phonon process using a 16 × 16 × 16
q-mesh for the materials examined here are on the order of
107 − 108, which is 4-5 orders more than the number of three-
phonon configurations for the same grid density.

Estimating the significance of four-phonon scattering. As
discussed above, four-phonon scattering becomes increasingly
important at higher temperatures in all materials; however, af-
ter careful examination of the three materials in this work, a
natural question is: How important is four-phonon scattering
generally in other solids? Like three-phonon scattering, four-
phonon scattering is governed by two factors: anharmonicity
of the energy surface and the scattering phase space. We

note that construction of both three- and four-phonon scat-
tering rates is nontrivial, each a complex interplay of ma-
trix elements, eigenvectors and frequencies combining vari-
ous phonon modes. However, based on the phonon scattering
formalism [13], we attempt to estimate the relative importance
of the fourth order anharmonicity. Yue et al. have done some
estimations by evaluating the fourth-order terms in Hamilto-
nians [30]. Roughly speaking, the nth order phonon scatter-
ing rate is proportional to τ−1

n ∼ |Vn |
2 · f n−2/ωn+1, where

Vn is the nth order transition matrix element ∼ Φn/mn/2.
Φn is the nth order force constant, m is the average atomic
mass, and f is the Bose-Einstein distribution approximated
as ∼ kBT/~ω, high temperature behavior. Approximating the
frequency as ω ∼

√
Φ2/m we get τ−1

n ∼ |Φn |
2 ·
√

m/|Φ2 |
n−1/2.

Thus, the relative importance of the nth order anharmonic-
ity to the third order anharmonicity is crudely evaluated as
τ−1
n /τ

−1
3 ∼ |Φn/Φ3 |

2/|Φ2 |
n−3. Note that this captures the in-

creasing importance of higher order scattering with increasing
temperature and only requires single calculations of a second,
third and higher order derivative of the potential energy.
Table I gives the relative strength of the fourth order an-

harmonicity (|Φ4/Φ3 |
2/|Φ2 |) for the materials studied in this

work and a low thermal conductivity zinc blende material,
CuCl (∼1 W/m-K at room temperature) [31, 32]. Note that
the temperature dependence is omitted. This simplistic for-
malism is intended to give a rough estimation for when higher
order scattering may be important in one material over an-
other. As shown in the table, the fourth order anharmonicity
is predicted to be significantly more important in CuCl than in
the high conductivity materials considered here. Our previous
work based on interatomic potentials directly demonstrated a
positive correlation between four-phonon scattering and anhar-
monicity [13]. In soft materials, such as those of interest for
thermoelectric and thermal barrier coating applications [4],
atoms can deviate significantly from equilibrium to sample
higher anharmonicity, fourth-order terms in their Hamiltoni-
ans can be quite large [30]. Note that |Φ4/Φ3 |

2/|Φ2 | is higher
in Si than in diamond; and Si also has fourth order scattering
that is relatively more important.
This simple formalism, however, does not account for the

phase space for three- and four-phonon scattering processes.
Thus, even though the fourth order anharmonicity is predicted
to be relatively less important in BAs as demonstrated in Ta-
ble I, the BAs conductivity is still significantly reduced by
the four-phonon scattering resistance (Fig. 4). In materials
where three-phonon scattering is weak due to dispersion fea-
tures (e.g., phonon bandgap, acoustic bunching [3]) that reduce
the phase space, we expect four-phonon scattering to also be
important, for instance in BSb [3] and BeSe [33].
In summary, we have rigorously calculated four-phonon

scattering rates and thermal resistance from fully first princi-
ples methods. Due to the large number of possible scattering
configurations, four-phonon processes play an important role
in determining intrinsic phonon transport. We find that four-
phonon scattering is surprisingly strong in zincblende BAs,
and reduces its thermal conductivity substantially from∼2,200
to∼1,400W/m-K even at room temperature when compared to
previous calculations. The room-temperature optical phonon
lifetime is reduced from 104 to 40 ps. These impacts in-
crease substantially with increasing temperature. Such strong
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TABLE I: Anharmonicity ratio |Φ4/Φ3 |
2/|Φ2 | to approximate the

relative importance of four-phonon scattering in Diamond, Si, BAs
and CuCl. Units of the representative nth order force constant are
eV/Ån. The representative force constant values are taken atΦ0,0,x,x ,
Φ0,0,0,x,y,z , and Φ0,0,0,0,x,x,x,x . The index 0 indicates the origin
primitive cell, see the supplemental information for more details [15].
The third order Φ0,0,0,x,x,x = 0 due to symmetries cannot be taken
as the anharmonicity.

material atom |Φ2| |Φ3| |Φ4| |Φ4/Φ3 |
2/|Φ2 |

Diamond C 44.2 95.0 224 0.128
BAs B 17.0 45.6 65.7 0.122
Si Si 13.6 33.9 50.8 0.165
CuCl Cu 1.93 13.1 48.0 6.956

four-phonon scattering in BAs originates from weak three-
phonon scattering that arises from properties of its phonon
dispersion coupled with fundamental conservation conditions.
These conditions do not as strictly restrict the available scat-
terings for four-phonon process. With four-phonon scattering
included, the predicted thermal conductivities of silicon and
diamond reduces κ by ∼30% at high temperature, and brings
the prediction in agreement with measured data throughout the
entire temperature range considered. Based on our findings of
the general and significant impact of four-phonon processes on
thermal transport and optic mode lifetimes, we expect future
predictions of these properties will incorporate this important
scattering mechanism, especially when considering engineer-
ing materials for energy transfer, conversion and storage ap-
plications.
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