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While quantum anomalies are often associated with the breaking of a classical symmetry in the
quantum theory, their anomalous contributions to observables remain distinct and well-defined even
when the symmetry is broken from the outset. This paper explores such anomalous contributions
to the current, originating from the axial anomaly in a Weyl semimetal, and in the presence of a
generic Weyl node-mixing term. We find that apart from the familiar anomalous divergence of the
axial current proportional to a product of electric and magnetic fields, there is another anomalous
term proportional to a product of the electric field and the orientation of a spin-dependent node-
mixing vector. We obtain this result both by a quantum field-theoretic analysis of an effective Weyl
action and solving an explicit lattice model. The extended spin-mixing mass terms, and the enriched
axial anomaly they entail, could arise as mean-field or proximity-induced order parameters in spin-
density-wave phases in Weyl semimetals or be generated dynamically within a Floquet theory.

I. INTRODUCTION

Quantum anomalies represent a surprising deviation
from classical intuition, where a global symmetry of the
classical Lagrangian does not necessarily lead to a con-
servation law of the corresponding charge. This fact en-
tails profound and fundamental consequences in particle
physics such as non-conservation of baryon charge and
the appearance of instantons and θ-vacuum in quantum
chromodynamics.

Anomalies, including the chiral or axial anomaly1–4,
also appear in the field-theoretic descriptions of con-
densed matter models5,6 and give rise to “anomalous”
contributions to observable currents7,8. Most recently,
the condensed-matter chiral anomaly has been discussed
extensively in the context of Weyl semimetals, and its
signatures were experimentally observed in magneto-
transport of these materials9.

Arguably, the condensed matter axial anomalies are
less impressive than in particle physics as far as
symmetry-breaking is concerned. They oftentimes rep-
resent properties and “quantum symmetry breaking” of
a low-energy effective theory, while the origin of the
anomaly derives from a short-distance regularization,
where the low-energy theory is not quantitatively appli-
cable and chiral symmetry is poorly defined. Once the
full theory is restored, the symmetry of the low-energy
model is no longer tied to strong conservation laws. For
example, the non-conservation of charge attached to a
particular Weyl node in a Weyl semimetal is not par-
ticularly surprising once we recall that the Weyl nodes
are connected through the bottom of the band in the
full lattice band structure3,10. While the breaking of the
chiral symmetry in condensed matter systems is not un-
expected, the anomalous contributions predicted within
the low energy theory remain observable effects, for ex-
ample the anomalous Hall and chiral magnetic effects in
Weyl semimetals.

In fact, these “chiral-anomalous” contributions and
features generally survive even if there is no chiral sym-

metry to be broken even in the low-energy model. One
concrete way to express an anomaly in such a context
is by comparing the divergence of the classical Noether
current vs the associated Ward identity obtained from
the quantum theory. For example, even if Dirac mass
terms are included in a description of a Weyl semimetal
(which physically implies scattering between the Weyl
nodes that breaks chiral symmetry already at the classi-
cal level), one can still identify a well-defined anomalous
contribution, as was considered for example by Zyuzin
and Burkov in Ref. [5]. In this case, one finds classically
that ∂µj

µ
5 = −2imψ̄γ5ψ, whereas in the quantum theory

this is modified to become ∂µ〈j
µ
5 〉 = −2im〈ψ̄γ5ψ〉+A(x).

The presence of the anomaly function A(x) = (e2/2π2)E·
B is a hallmark of a quantum anomaly, which persists
even though the symmetry corresponding to jµ5 is already
broken at the classical level by the presence of a Dirac
mass.
Motivated by these considerations, we explore the

anomalous divergence of the Noether current in the pres-
ence of a generic node-mixing term in a Weyl semimetal.
Our main result, derived and discussed below, is that
the spin-dependent node-mixing terms do not affect the
“conventional” chiral anomaly, but give rise to another
anomalous term — Aspin(x) = − e

πE · Re (gm∗), where
the vector g defined in Eq. (12) below, determines spin-
mixing between the nodes and m is the complex Dirac
mass. As is the case with the conventional anomaly, the
presence of such an anomaly term can lead to anomalous
transport, which in this case is reminiscent of the chiral
magnetic effect.

II. CHIRAL ROTATION

We will begin by examining a low-energy theory of
Dirac fermions within the functional integral technique.
Our aim is to understand what electromagnetic response
can arise from the addition of new terms to the La-
grangian. To do so we employ the chiral rotation tech-
nique as first illustrated by Fujikawa4. Our starting point
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is the Dirac Lagrangian in imaginary time

L = ψ̄
[
i /D − /bγ5 − |m|eiαγ

5

−∆µνσ
µν
]
ψ ≡ iψ̄Dψ, (1)

where ψ̄ = ψ†γ0 denotes Dirac conjugation and we are
using Euclidean gamma matrices {γµ, γν} = 2gµν =
−2δµν , with µ, ν = 1, 2, 3, 4. We use the Feynman
slash notation /D = Dµγ

µ where Dµ = ∂µ + ieAµ is
the gauge covariant derivative. We also define the fifth
gamma matrix γ5 = γ1γ2γ3γ4 and the sigma matrices
σµν = (i/2)[γµ, γν ]. With these definitions the matrices
γµ are anti-Hermitian, while γ5 and σµν are Hermitian.
We defer a discussion of the specific origin of m and ∆
until later in the paper.
We now perform a chiral gauge transformation to re-

move the axial vector bµ from the fermionic action. Sub-
sequently, we make the following claims in the absence of
an external field. Firstly, the fermionic sector exhibits no
axial-vector dependent currents. Secondly, the Jacobian
introduced via the anomaly in the path integral measure
produces a current in response to the ∆µν term.
As pointed out by Fujikawa, when considering the chi-

ral anomaly it is important to specify which basis one is
using to define the functional integral4. In his original
work, Fujikawa used the basis states of the Euclidean op-
erator /D which is Hermitian. Here, the operator D is not
Hermitian, and so we follow the approach of Refs. [5 and
11]. We define the eigenfunctions and eigenvalues of the
operators D†D and DD† by

D†Dφn(x) = λ2nφn(x) and φ̃
†
n(x)DD† = φ̃†n(x)λ

2
n. (2)

These operators are manifestly Hermitian and thus their
eigenvectors form a basis. In defining the eigenvalues
as λ2n we have made use of the fact that the operators
D†D and DD† are positive semi-definite. Note that there
is a one-to-one correspondence between their non-zero
eigenvalues.
We then define the path-integral by expressing ψ and

ψ̄ in terms of the eigenfunctions of D†D and DD† respec-
tively as

ψ(x) =
∑

n

φn(x)an, ψ̄(x) =
∑

n

ānφ̃
†
n(x). (3)

With our basis states defined we now consider an in-
finitesimal chiral gauge transformation of the form.

ψ(x) = e−i ds b·xγ5

ψ′(x) and ψ̄(x) = ψ̄′(x)e−i ds b·xγ5

.
(4)

Under such a transformation the Lagrangian becomes

L′ = ψ̄′
[
i /D − (1− ds)/bγ5 − |m|ei(α−2 ds b·x)γ5

−∆µνe
−2i ds b·xγ5

σµν
]
ψ′. (5)

We must also include the contribution from the Jacobian
factor in the path integral measure which is introduced by

this transformation. To that end, let us consider the par-
tition function, which under the chiral rotation Eq. (4)
transforms as

Z =

∫
D[ā, a]e−S[ā,a] =

∫
D[ā′, a′](det J)−1e−S′[ā′,a′]

(6)
where S is the action corresponding to the Dirac La-
grangian Eq. (1), expressed in terms of the basis states
an, and S

′ is the action corresponding to the Lagrangian
Eq. (5). The new fields of integration a′n and ā′n are
implicitly defined in terms of the old via the relations

an =
∑

m

Unma
′
m, ān =

∑

m

ā′mŨmn (7)

with Unm =
∫
dxφ†n(x)e

−i ds b·xγ5

φm(x) and Ũnm =∫
dxφ̃†n(x)e

−i ds b·xγ5

φ̃m(x), being the matrix elements of
the chiral rotation operator in the a-basis. We can now
simply express the Jacobian determinant in terms of the

matrices U and Ũ as detJ = det ŨU .
We now reinterpret the Jacobian as a term in the ac-

tion via the relation det J = etr ln J . Thus, our partition
function becomes

Z =

∫
D[ā′, a′]e−S′[ā′,a′]−SJ ,

where SJ = tr ln J = tr ln Ũ+tr lnU . Using the fact that
ds is infinitesimal we rewrite the above as

SJ = −i ds

∫
dx(b · x)

[
I(x) + Ĩ(x)

]
, (8)

where

I(x) =
∑

n

φ†n(x)γ
5φn(x) and Ĩ(x) =

∑

n

φ̃†n(x)γ
5φ̃n(x).

(9)
This is where one encounters an anomaly. Let us first

note that I(x)+ Ĩ(x) is exactly analogous to the anomaly
function one encounters in computing the divergence of
the axial current. Now, the expressions in Eq. (9) can
readily be seen to be indeterminate. Naively, from the
completeness of the eigenstates φ and φ̃ we have

I(x) = Ĩ(x) = δ(4)(0)︸ ︷︷ ︸
∞

× tr γ5︸︷︷︸
0

.

This ambiguity is due to the continuum representation of
the path integral. In order to resolve it we must introduce
a proper regulator. Following Refs. [4 and 5], we evaluate

I and Ĩ by heat kernel regularization as follows

I(x) = lim
M→∞

lim
y→x

∑

n

φ†n(y)γ
5e−λ2

n
/M2

φn(x)

= lim
M→∞

lim
y→x

∫

k

tr eik·yγ5e−D†D/M2

e−ik·x, (10)

where we have used the completeness of the eigenfunc-
tions φn(x) and e−ik·x. The analogous expression holds



3

for Ĩ(x). This has the benefit of regulating the expres-
sion in a gauge invariant manner. The calculation of the
anomaly functions I and Ĩ is presented in the supple-
mental material12. If we define the Hodge dual of the
Maxwell tensor ∗Fµν = (1/2)ǫµναβFαβ and the real and

imaginary tensors ∆
R(I)
µν = ∆µν ±∆∗

µν we can express the

result of the limit of I + Ĩ in Eq. (10) as

−
e2

8π2
∗FµνFµν +

e

4π2
Re

[
∗Fµν∆R

µν + Fµν∆I
µν

]
, (11)

where we have assumed bµ to be constant.
∆µν in Eq. (1) can be conveniently parametrized by

the complex vector

gi = ǫijk∆jk + i
(
∆4i −∆i4

)
, (12)

where i, j, k are spatial indices and the first and second
terms are, respectively, purely real and imaginary due
to Hermiticity. We also define the complex mass m =
|m|eiα. This allows Eq. (11) to be written in terms of
vector quantities as

I(x) + Ĩ(x) = −
e2

2π2
E ·B+

e

2π2
E · (gm∗ + g∗m) . (13)

In the above we have assumed g to have plane wave
form. The first term in Eq. (13) is the conventional chi-
ral anomaly, while the second term describes a new effect
due to the added terms in the Lagrangian.
Note that the action in Eq. (8) is linear in ds. We can

thus perform a series of chiral gauge transformations to
remove the axial vector bµ from the electronic Lagrangian
so that it becomes

L = ψ̄′
[
i /D − |m|ei(α−2b·x)γ5

−∆µνe
−2ib·xγ5

]
ψ′. (14)

This corresponds to integrating the Jacobian in s from 0
to 1. The Lagrangian arising from the Jacobian is

LJ = ib · x

[
e2

2π2
E ·B−

e

π2
E ·Re [gm∗]

]
. (15)

Note that this result is unchanged if m and g, instead
of being constant, are taken to be plane waves with the
same four-momentum, i.e.

|m| → |m|e−iQ·xγ5

, ∆µν → ∆µνe
−iQ·xγ5

. (16)

We may then, for example, take Q = −2b. In this case,
the fermionic sector reduces to

L = ψ̄′
[
i /D − |m|eiαγ

5

−∆µν

]
ψ′. (17)

Since this has no dependence on bµ we have isolated the
axial vector dependent part of the current into the Jaco-
bian term LJ . Alternatively, consider the case where m

E

µ
b0

b0 m, g

k
z

b
z

0−b
z

FIG. 1. Two-band lattice model with a pair of Weyl nodes.
The nodes are located at (0, 0,±bz) in the Brillouin zone and
separated by an energy of 2b0.

and ∆ arise from the decoupling of short range interac-
tions in the appropriate channels. In that case they will
have Hubbard-Stratonovich Lagrangians

LHS =
1

λm
|m(x)|2 +

1

λ∆
∆µν(x)∆

µν (x). (18)

We can then absorb the chiral phase into the defini-
tions of the parameters without affecting the Hubbard-
Stratonovich term.
Now to illustrate the effects of Eq. (15) let us consider

the case of g = gzẑ. After analytic continuation back to
real time, the new term in the action reduces to

Sg =
e

π2

∫
dx b · x|m|gzEz cosα. (19)

This term has a form similar to the typical anomaly
where in place of the magnetic field B, we have
2Re (gm∗). As such, we expect this term should also be
capable of producing currents. As there are no fermion
operators in this term, we can obtain the induced cur-
rents by simply differentiating the action with respect to
the vector potential. Doing so we obtain a contribution

jJ =
δS

δA
=

e

π2
b0|m|gz cosαẑ. (20)

We thus arrive at the prediction of a current without an
external field. This is best understood in a way akin to
the chiral magnetic effect. As has been discussed in a
number of works, one can find zero or non-zero values
for the chiral magnetic effect depending on the order of
limits one uses in evaluating the result7,13,14. Taking the
frequency to zero before momentum corresponds to the
equilibrium case and as one would expect due to general
arguments one finds no current in the absence of an elec-
tric field. However, in the opposite limit, corresponding
to a near equilibrium DC transport one finds that there
is a current. In the same way, one can interpret Eq. (20)
as the response to a slow but non-zero frequency pertur-
bation by the ∆µν term in the action.

III. LATTICE MODEL

The “enriched” chiral anomaly as derived above is
something only sharply defined for unbounded linearly
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ǫn,k− ζb

ǫn

k + ζb

ǫn − Ωm

k + ζb

vi(k + ζb)

σze
−iζα

ǫn,k + ζb

ǫn

k− ζb

ǫn − Ωm

k− ζb

vi(k− ζb)

σze
−iζα

FIG. 2. Diagrams contributing to the susceptibility χi. The
symbol ⊗ indicates the current vertex vi(k), while the cir-
cle and square represent the vertices for m and g respectively.
The solid lines represent the Matsubra Greens’ function of the
lattice Hamiltonian in Eq. (21). ǫn is the internal fermionic
Matsubara frequency while Ωm is the external bosonic Mat-
subara frequency to be analytically continued to obtain the
retarded correlator. Internal loop momenta k and ǫn are
summed over as well the index ζ = ±1.

dispersing particles8. In reality the Dirac theory of the
previous section is only the low-energy description of
some bounded dispersion in the Brillouin zone. As such,
we need to establish that the predicted effects can be
observed within a lattice regulated model.

In order to verify the validity of the above conclusions
independent of the subtleties of the low energy theory,
we study the current response of a lattice model of Weyl-
fermions. Our purpose is to show that the current re-
sponse of the lattice system is in agreement with the pre-
diction of the low energy theory, Eq. (20).

In particular, we use the following inversion and time-
reversal symmetry breaking two-band lattice model15

H0 =
∑

k

c†k
[
ǫ(k) + d(k) · σ

]
ck (21)

with ǫ(k) = t1 sin kz and d(k) =(
sin kx, sin ky, 2 + cos bz −

∑
i cos ki

)T
, which is host

to a pair of Weyl fermions as depicted in Fig. 1. The
momentum-space separation of the nodes is given by
2b = 2bzẑ and the energy separation by b0 = 2t1 sin bz.
To this bare Hamiltonian we add the perturbations

Hm = m
∑

k

c†k+be
−iασzck−b + h.c., (22)

which corresponds to the mass term in the low-energy
theory of Eq. (1). The ∆µν term can be modeled as

Hg =
∑

k

c†k+bσzg(τ) · σck−b + h.c.. (23)

We wish to establish the existence of a DC current
in response to the combined terms m and g. In par-
ticular, we calculate the retarded susceptibility of the
current to m and g in the uniform limit χR

i (ω → 0) =
limω→0 limq→0 χ

R(ω,q). χR is obtained as the analytic

0.0

0.1

0.2

0.3
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b 0cos(α)

χ
(ω
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0
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q

→
0
)

×
1
0

2

T

0

10
−6

10
−5

FIG. 3. The susceptibility χ in the uniform limit versus b0,
which is simply related to the parameter t1 of Eq. (21) for a
range of temperatures T . The induced current grows linearly
with b0 cosα = t1 sin bz cosα as predicted by the low-energy
theory, and vanishes in the absence of a nodal energy separa-
tion.

continuation from Matsubara frequency of the object

χi(iΩm,q) =
δji(iΩm,q)

δmδg(−iΩm,−q)

=
δF [A, g,m]

δmδg(−iΩm,q)δAi(iΩm,q)

∣∣∣∣ g=0
m=0
A=0

, (24)

where F [A, g,m] is the free energy in the presence of
an external vector potential A and perturbations m, g.
Eq. (24) corresponds to the diagrams in Fig. 2 and de-
scribes the lowest order contribution of the m and g fields
to the current in the spirit of linear response theory.
As shown in Fig. 3, the induced current grows linearly

with the nodal energy separation and vanishes, as ex-
pected, when t1 = 0. We have also verified that in the
opposite order of limits (with ω → 0 taken first), corre-
sponding to the static equilibrium case, the current van-
ishes, as it must due to the Bloch’s theorem for sponta-
neous currents16–18.

IV. SUMMARY AND DISCUSSION

In this work, we have shown that the introduction of
node-mixing terms into a Weyl semi-metal can lead to
an additional anomalous divergence of the axial current
beyond the usual axial anomaly. The new contribution
does not modify the regular axial anomaly but appears
as an additional additive contribution. Furthermore, this
“enriched” anomaly allows for the driving of a current
in absence of an external electric field in the spirit of
the Chiral Magnetic Effect. We have derived this results
within the low-energy theory using Fujikawa’s chiral ro-
tation technique and also tested them by performing nu-
merical calculations in a particular lattice realization of
a Weyl semimetal.
In terms of realizing the effect discussed above, one

may note that Eq. (1) can be interpreted as a mean-field
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model subject to interactions in the appropriate chan-
nels as has been considered e.g. in 19. Without much
generalization we can write

L = L0 − λmψ̄e
iαγ5

ψψ̄e−iαγ5

ψ − λ∆ψ̄σ
µνψψ̄σµνψ.

(25)

A Hubbard-Stratonovich decoupling then leads to a
spacetime-dependent analog of Eq. (1). In a condensed
matter context we can write Eq. (25) in terms of spin, σ,

and valley, τi, degrees of freedom as

L = c†(∂τ + k · στz − b · σ − b0τz)c

− λme
iα (c̄τ+c) (c̄τ−c)− λ∆ (c̄g · στ+c) (c̄g

∗ · στ−c) .
(26)

We therefore interpret m as a charge-density wave, while
g describes a spin-density wave, since the valley degree of
freedom denotes a separation in momentum space. This
suggests that our model may potentially be realized in a
system of interacting Weyl electrons, where interactions
give rise to such density-wave orders. Alternatively, such
perturbations may be externally induced, e.g. in Floquet-
driven Weyl materials.
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