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Fractional topological insulators (FTI) are electronic topological phases in (3 + 1) dimensions
enriched by time reversal (TR) and charge U(1) conservation symmetries. We focus on the simplest
series of fermionic FTI, whose bulk quasiparticles consist of deconfined partons that carry fractional
electric charges in integral units of e∗ = e/(2n + 1) and couple to a discrete Z2n+1 gauge theory.
We propose massive symmetry preserving or breaking FTI surface states. Combining the long-
ranged entangled bulk with these topological surface states, we deduce the novel topological order
of quasi-(2 + 1) dimensional FTI slabs as well as their corresponding edge conformal field theories.

I. INTRODUCTION

Conventional topological insulators (TI)1–4 are time re-
versal (TR) and charge U(1) symmetric electronic band
insulators in three dimensions that host massless sur-
face Dirac fermions. The topologically protected surface
Dirac fermion can acquire a single-body ferromagnetic
or superconducting mass by breaking TR or charge U(1)
symmetry respectively. Alternatively it can acquire a
many-body interacting mass while preserving both sym-
metries, and exhibit long-ranged entangled surface topo-
logical order5–8. On the other hand, fractional topologi-
cal insulators (FTI)9? –14 are long-range entangled topo-
logically ordered electronic phases in (3 + 1) dimensions
outside of the single-body mean-field band theory de-
scription. They carry TR and charge U(1) symmetries,
which enrich its topological order (TO) in the sense that
a symmetric surface must be anomalous and cannot be
realized non-holographically by a true (2 + 1)D system.
In this article, we describe the topological properties of
various massive surface states and quasi-(2 + 1)D slabs
of a series of FTI . In particular, we focus on the quasi-
particle (QP) structure.
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FIG. 1. Summary of the QP and gauge flux content in FTI
slabs. A pair of Pf∗ FTI slabs are merged into a fractional
Chern FTI slab F by gluing the two TR symmetric T -Pf∗

surfaces. Directed bold lines on the front surface are chiral
edge modes of the Pf∗ and F FTI slabs.

We focus on a series of fermionic FTI , labeled by inte-
gers n, whose magneto-electric response is characterized
by the θ-angle θ = π/(2n+ 1) (modulo 2π/(2n+ 1)) that
associates an electric charge of e∗/2 = e/2(2n+1) to each
magnetic monopole15, for e the electric charge of the elec-

tron. In particular, we consider FTI that support decon-
fined fermionic parton excitations ψ in the bulk, each car-
rying a fractional electric charge of e∗ = e/(2n+ 1). The
electronic QP decomposes as ψel ∼ ψ1 . . . ψ2n+1. The
(3 + 1)D TO is based on a discrete Z2n+1 gauge the-
ory11. The theory supports electrically neutral string-
like gauge flux Φ, so that a monodromy quantum phase
of e2πig/(2n+1) is obtained each time ψ orbits around it.
In other words, ψ carries the gauge charge g. The inte-
ger g and 2n+ 1 are relatively prime so that all local QP
must be combinations of the electronic QP ψel and must
carry integral electric charges and trivial gauge charges.

Generalizing the surface state of a conventional TI , the
surface of a FTI hosts massless Dirac partons coupling
with a Z2n+1 gauge theory. Unlike its non-interacting
counterpart whose gapless Dirac surface state is symme-
try protected in the single-body picture, a FTI is strongly
interacting to begin with and there is no topological rea-
son for its surface state to remain gapless. In this article
we focus on three types of gapped surface states – ferro-
magnetic surfaces (FS) that break TR , superconducting
surfaces (SCS) that break charge U(1), and symmetric
surfaces which generalize the T -Pfaffian surface state of
a conventional TI and is denoted by T -Pf∗. The topolog-
ical order for FTI slab with these surfaces are discussed
in section II, section III and section IV respectively. In
section V, we discuss, using an anyon condensation pi-
cuture, the gluing of a pair of T -Pfaffian surfaces. We
conclude in section VI with remarks on a complementary
way to understand these topological order16.

II. FERROMAGETIC HETEROSTRUCTURE

We begin with a slab that has opposite TR breaking
FS . In the FS , in addition to the single-body Dirac
mass m for the surface parton, the Z2n+1 gauge sector
also shows TR breaking signature. The Z2n+1 gauge the-
ory is only present inside the FTI , and when a flux line
Φ terminates at the surface, the TR breaking boundary
condition confines an electrically neutral surface gauge
QP , denoted by ζa, with gauge charge a at the flux-
surface junction (see fig. 1). This gauge flux-charge com-
posite, referred as a dyon δ = Φ × ζa, carries fractional
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spin hδ = a/(2n + 1) because a 2π-rotation about the
normal axis braids a gauge charges around Φ and results
in the monodromy quantum phase of e2πia/(2n+1). TR
conjugates all quantum phases so, a 6≡ 0 modulo 2n + 1
breaks TR .

The 1D interface between two TR conjugate FS do-
mains hosts a fractional chiral channel. For example, the
interface between two FS domains with opposite ferro-
magnetic orientations on the surface of a conventional
TI bounds a chiral Dirac channel17–19, where electrons
propagate only in the forward direction. Alternatively,
a TI slab with opposite TR breaking FS is topologically
identical to a quasi-(2 + 1)D Chern insulator20,21 and
supports a chiral Dirac edge mode. Similarly, in the FTI
case, the low-energy content of the fractional chiral chan-
nel between a pair of TR conjugate FS domains can be
inferred by the edge mode of a FTI slab with TR breaking
FS that is topologically identical to a quasi-(2+1)D frac-
tional Chern insulator22–25 or fractional quantum Hall
(FQH) state26. The chiral (1 + 1)D channel is charac-
terized by two response quantities27–35 – the differential
electric conductance σ = dI/dV = νe2/h that relates the
changes of electric current and potential, and the differ-
ential thermal conductance κ = dIT /dT = c(π2k2

B/3h)T
that relates the changes of energy current and temper-
ature. In the slab geometry, they are equivalent to the
Hall conductance σ = σxy, κ = κxy. ν = Ne/Nφ is also
referred to as the filling fraction of the FTI slab and as-
sociates the gain of electric charge (in units of e) to the
addition of a magnetic flux quantum hc/e. c = cR − cL
is the chiral central charge of the conformal field theory
(CFT)36 that effectively describes the low-energy degrees
of freedom of the fractional chiral channel.

Since the top and bottom surfaces of the FTI slab are
TR conjugate, their parton Dirac masses m and gauge
flux-charge ratio a have opposite signs. The anyon con-
tent is generated by the partons and gauge dyons. When
a gauge flux passes through the entire slab geometry
from the bottom to the top surface, it associates with
total 2a gauge charges at the two surface junctions. We
denote this dyon by γ = Φ × ζ2a, which corresponds
to an electrically neutral anyon in the slab with spin
hγ = 2a/(2n + 1). If a is relatively prime with 2n + 1,
the primitive dyon generates the chiral Abelian topolog-

ical field theory Z(2a)
2n+1

37,38, which consists of the dyons

γm, for m = 0, . . . , 2n, with spins hγm = 2am2/(2n+ 1)

modulo 1 and fusion rules γm × γm′ = γm+m′ , γ2n+1 =
γ0 = 1. In particular, when a = −1, γn now has spin
−2n2/(2n+ 1) ≡ n/(2n+ 1) modulo 1, which is identical
to that of the fundamental QP of the SU(2n+ 1) Chern-
Simons theory at level 137,38. This identifies the Abelian

theories Z(−2)
2n+1

∼= Z(n)
2n+1 = SU(2n+ 1)1, which has chiral

central charge cneutral = 2n.

The FTI slab also supports fractionally charged par-
tons ψ, each carrying a gauge charge g. The electrically

charged sector can be decoupled from the neutral Z(2a)
2n+1

sector by combining each parton with a specific number

of dyons λ = ψ × γ−n
2ug, where ua + v(2n + 1) = 1

for some integer u, v, so that the combination is local
(i.e. braids trivially) with any dyons γm. λ has frac-
tional electric charge qλ = e∗ and spin hλ = 1/2 +
n3ug2/(2n + 1) modulo 1. The 〈charge〉 sector con-
sists of the fractional Abelian QP products λm, where
λ2n+1 ∼ ψ2n+1 ∼ ψel corresponds to the local elec-
tronic QP . In particular, when a = −1 and g = −2,
hλ = 1/2(2n + 1) and therefore λ behaves exactly like
the Laughlin QP of the FQH state U(1)(2n+1)/2 with fill-
ing fraction ν = 1/(2n + 1) and chiral central charge
ccharge = 1. Combining the neutral and charge sectors,
the FTI slab with TR breaking FS has the decoupled
tensor product TO

F = 〈charge〉 ⊗ Z(2a)
2n+1, (1)

and in the special case when a = −1 and g = −2, it is
identical to the Abelian state U(1)(2n+1)/2 ⊗ SU(2n +
1)1, which has a total central charge c = 2n + 1. In
general, the filling fraction and chiral central charge are
not definite and are subject to surface reconstruction.
For instance, the addition of 2N electronic Dirac fermions
per surface modifies the two response quantities by an
equal amount ν → ν + 2N , c→ c+ 2N .

III. SUPERCONDUCTING
HETEROSTRUCTURE

Next we move on to superconducting heterostructures.
We begin with the fractional Chern FTI slab F in (1)
and introduce weak superconducting pairing, perhaps in-
duced by proximity with a bulk superconductor, without
closing the bulk energy gap. In the simplest scenario,
this condenses all parton pairs ψ2m, which form a La-
grangian subgroup39 – a maximal set of mutually local
bosons – containing the Cooper pair ψ2

el = ψ2(2n+1).
Since the parton pair ψ2 carries gauge charge 2g, which
is relatively prime with 2n + 1, the condensate confines
all non-trivial dyons γm, which are non-local and have
non-trivial monodromy with ψ2. As the neutral sector

Z(2a)
2n+1 is killed by pairing, the superconducting FTI slab

with TR conjugate FS has a trivial fermionic TO . It
however still carries chiral fermionic edge modes with the
same chiral central charge cF . On the other hand, these
fermionic channels also live along the line interface be-
tween TR conjugate ferromagnetic domains on the sur-
face of a weakly superconducting FTI . When the line
interface hits a TR symmetric SCS island (c.f. fig. 1
by replacing the T -Pf∗ surfaces by SCS ), these chiral
channels split and divide along the pair of SCS -FS line
interfaces. Both of these channels are electrically neutral
as charge U(1) symmetry is broken by the superconduc-
tor, and each of them carries half of the energy current
of F and has chiral central charge cF/2. For example,
the SCS -FS heterostructure on a conventional TI sur-
face holds a chiral Majorana channel with c = 1/2 along
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the line tri-junction17,18. In the specific fractional case
when a = −1 and g = −2, each SCS -FS line interfaces
holds 2n + 1 chiral Majorana fermions and is described
by the Wess-Zumino-Witten SO(2n+ 1)1 CFT with the
central charge c = (2n + 1)/2. Analogous to the con-
ventional superconducting TI surface40, SCS of FTI sup-
ports a zero energy Majorana bound state (MBS) at a
vortex core. Now that the condensate consists of par-
ton pairs, vortices are quantized with the magnetic flux
hc/2e∗ = (2n+ 1)hc/2e. Each pair of MBS forms a two-
level system distinguished by parton fermion parity.

IV. GENERALIZED T-PFAFFIAN* SURFACE
STATE

Lastly, we describe the T -Pf∗ surface state that pre-
serves both TR and charge U(1) symmetries of the FTI.
Generalizing the T -Pfaffian symmetric gapped surface
state of a conventional TI described in Ref.7, the FTI
version – referred here as T -Pfaffian∗ – consists of the
Abelian surface anyons 11j and Ψj , for j even, and the
non-Abelian Ising-like anyons Σj , for j odd. The in-
dex j corresponds to the fractional electric charge qj =
je/4(2n+ 1). The surface anyons satisfy the fusion rules

11j × 11j′ = Ψj ×Ψj′ = 11j+j′ , 11j ×Ψj′ = Ψj+j′ ,

Ψj × Σj′ = Σj+j′ , Σj × Σj′ = 11j+j′ + Ψj+j′ , (2)

and the spin statistics

h11j
= hΨj

− 1

2
=
j2

16
, hΣj

=
j2 − 1

16
modulo 1 (3)

so that 11j ,Ψj are bosonic, fermionic or semionic, and Σj
are bosonic or fermionic. The fermion Ψ4 is identical to
the super-selection sector of the bulk parton ψ, which is
local with respect to all surface anyons and can escape
from the surface and move into the bulk. TR symme-
try acts on the surface anyons the same way it acts on
those in the T -Pfaffian state for conventional TI 7,16. For
example, the parton combinations ψ2j+1 = Ψ8j+4 (and
ψ2j = 118j) are Kramers doublet fermions (resp. Kramers
singlet bosons), while Ψ8j (118j+4) are Kramers singlet
fermions (resp. Kramers doublet bosons). Moreover, for
identical reasons as in the conventional TI case, the T -
Pf∗ state is anomalous and can only be supported holo-
graphically on the surface of a topological bulk. For in-
stance, the bosonic TO of the T -Pf∗ state after gauging
fermion parity would necessarily violate TR symmetry.
We notice in passing that there are alternative surface
TO that generalizing those in Ref.5,6. However we will
only focus on the T -Pf∗ state in this article.

The FTI slab with a TR symmetric T -Pf∗ top sur-
face and a TR breaking bottom FS carries a novel quasi-
(2+1)D TO . Its topological content consists of the frac-
tional partons coupled with the Z2n+1 gauge theory in
the bulk and the T -Pf∗ surface state (see fig. 1). All
surface anyons are confined to the TR symmetric sur-
face except the parton combinations ψ2j+1 = Ψ8j+4 and

ψ2j = 118j . Moreover, the TR breaking boundary con-
dition confines a gauge QP ζa per gauge flux Φ end-
ing on the FS . On the other hand, there is no gauge
charge associate with a gauge flux ending on the T -Pf∗

surface because of TR symmetry. Thus a gauge flux
passing through the entire slab corresponds to the dyon
δ = Φ× ζa with spin hδ = a/(2n+ 1) modulo 1. The T -
Pf∗ state couples non-trivially to the Z2n+1 gauge theory
as the parton ψ = Ψ4 carries a gauge charge g. The gen-
eral surface anyons Xj , for X = 11,Ψ,Σ, must carry the
gauge charge z(j) ≡ n2gj modulo 2n + 1 and associate
to the monodromy quantum phase e2πiz(j)/(2n+1) when
orbiting around the dyon δ. For instance, as 2n ≡ −1
modulo 2n + 1, z(4j) ≡ gj counts the gauge charge of
the parton combination ψj .

The TO of this FTI slab is therefore generated by com-
binations of the T -Pf∗ anyons and the dyon δ. We denote
the composite anyon by

X̃j,z = Xj ⊗ δz+n
3ugj , (4)

where X = 11,Ψ for j even or Σ for j odd, z = 0, . . . , 2n
modulo 2n+ 1, and ua+ v(2n+ 1) = 1. They satisfy the
fusion rules

1̃1j,z × 1̃1j′,z′ = Ψ̃j,z × Ψ̃j′,z′ = 1̃1j+j′,z+z′ ,

1̃1j,z × Ψ̃j′,z′ = Ψ̃j+j′,z+z′ , Ψ̃j,z × Σ̃j′,z′ = Σ̃j+j′,z+z′ ,

Σ̃j,z × Σ̃j′,z′ = 1̃1j+j′,z+z′ + Ψ̃j+j′,z+z′ . (5)

They follow the spin statistics

h(1̃1j,z) = h(Ψ̃j,z)−
1

2
= h(Σ̃j,z) +

1

16

=
j2

16
+
az2 − n6ug2j2

2n+ 1
modulo 1. (6)

The j, z indices in (4) are defined in a way so that X̃j,0

are local with respect to the dyons δz = 1̃10,z and de-

coupled from the dyon sector Z(a)
2n+1. The T -Pf∗ sur-

face anyons belong to the subset Xj = X̃j,−n3ugj , which
is a maximal sub-category that admits a TR symmetry.
The electronic QP belongs to the super-selection sector
ψel = Ψ̃4(2n+1),0, which is local with respect to all anyons.
If one gauges fermion parity and includes anyons that as-
sociate −1 monodromy phase with ψel, i.e. if one includes
1̃1j,z, Ψ̃j,z for j odd and Σ̃j,z for j even, the 〈Ising〉 sector

generated by 1 = 1̃10,0, f = Ψ̃0,0, σ = Σ̃0,0 is local with
and decoupled from the 〈charge〉Pf∗ sector generated by
1̃1j,0. The TO of the FTI slab thus takes the decoupled
tensor product form after gauging fermion parity

Pf∗ = 〈charge〉Pf∗ ⊗ 〈Ising〉 ⊗ Z(a)
2n+1. (7)

Gauging fermion parity is not the focus of this article.
Nevertheless, we notice in passing that there are inequiv-
alent ways of fermion parity gauging, and in order for
the Pf∗ theory to have the appropriate central charge,
(7) needs to be modified by a neutral Abelian SO(2n)1
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sector16. However, the tensor product (7) is sufficient
and correct to describe the fermionic TO of the FTI slab
(with global ungauged fermion parity) by restricting to

super-selection sectors X̃j,z that are local with respect to
the electronic QP ψel. We refer to this fermionic TO as
a generalized Pfaffian state.

V. GLUING T-PFAFFIAN* SURFACES

The chiral channel F in (1) between a pair of TR con-
jugate FS domains divides into a pair of fermionic Pf∗ in
(7) at a junction where the two FS domains sandwich a
TR symmetric T -Pf∗ surface domain (see fig. 1). Conser-
vation of charge and energy requires the filling fractions
and chiral central charges to equally split, i.e. 2νPf∗ = νF
and 2cPf∗ = cF . For instance, in the prototype case
when a = −1 and g = −2, νPf∗ = 1/2(2n + 1) and
cPf∗ = (2n+1)/2. Similar to the aforementioned F case,
these quantities are subjected to surface reconstruction
ν → ν +N , c→ c+N .

In addition to the response quantities, the TO of F for
the FTI slab with TR conjugate FS is related to that of
the fermionic Pf∗ by a relative tensor product

F = Pf∗ �b Pf∗. (8)

This can be understood by juxtaposing the TR symmet-
ric surfaces of a pair of Pf∗ FTI slabs and condensing
surface bosonic anyon pairs on the two T -Pf∗ surfaces.
This anyon condensation41–43 procedure effectively glues
the two FTI slabs together along the TR symmetric sur-
faces (see fig. 1). The relative tensor product �b involves
first taking a decoupled tensor product ⊗ when the two
Pf∗ FTI slabs are put side by side. Among the TR sym-
metric surface anyons in (T -Pf∗)A⊗(T -Pf∗)B where A,B
refers to the two slabs, we condense the collection of elec-
trically neutral bosonic pairs

b =

{
11A4j11

B
−4j ,Ψ

A
4jΨ

B
−4j , 11

A
4j+2ΨB

−4j−2,

ΨA
4j+211B−4j−2,Σ

A
2j+1ΣB−2j−1

}
. (9)

All anyons that are non-local with respect to and braid
non-trivially around any of the bosons in b are confined.
This includes all anyon combinations X̃A

ja,za
X̃B
jb,zb

where

the dyon numbers za + n3ugja and zb + n3ugjb disagree
modulo 2n + 1. Physically, this ensures gauge fluxes
must continue through both A and B slabs, or equiv-
alently all gauge monopoles at the interface are confined
as they signify imbalances of gauge fluxes through the

two slabs. The new deconfined dyon γ = 1̃1
A

0,11̃1
B

0,1 con-
sist of a gauge flux that pass continuously across both
slabs with gauge QP ζa on each of the remaining top
and bottom TR breaking surfaces. A deconfined anyon
thus splits into a dyon component γz and a surface com-
ponent in (T -Pf∗)A ⊗ (T -Pf∗)B . Within the surface
part, all combinations that involve only ΣA or only ΣB

are confined by the ΨA
0 ΨB

0 condensate. Other confined

anyons include 11Aja11Bjb , ΨA
ja

ΨB
jb

, 11Aja+2ΨB
jb−2, ΨA

ja+211Bjb−2

and ΣAja±1ΣBjb∓1 for ja 6≡ jb modulo 8. The remaining
deconfined Ising pair splits into simpler Abelian compo-
nents

ΣAja±1ΣBjb∓1 = S+
ja±1,jb∓1 + S−ja±1,jb∓1, (10)

where each S± carries the same spin as the original Ising
pair but differs the other by a unit fermion S±×ΨA/B =
S∓. In general the two Abelian components are non-local
with respect to each other. For instance, the TR sym-
metric surface anyons S+ and S− are mutually semionic
when ja = jb = 0. We choose to include S+ in the con-
densate b in (9) while confining S−. Furthermore, the
condensate identifies the deconfined anyons that are dif-
ferent up to bosons in b.

11Aja11Bjb ≡ ΨA
jaΨB

jb
≡ ΨA

ja+211Bjb−2 ≡ 11Aja+2ΨB
jb−2

≡ S±ja±1,jb∓1 ≡ 11Aja+411Bjb−4 (11)

for ja ≡ jb mod 8 and ja, jb both even. Eq.(B2) are
just parton combinations. For instance, ψA = ΨA

4 11B0 ≡
11A4 ΨB

4 = ψB are now free to move inside both FTI slabs
after gluing. The TO after the gluing is generated by the
partons and dyons, which behave identically as those in
F of (1). This proves (8). The anyon condensation gluing
of the pair of T -Pf∗ states preserves symmetries for the
same reason it does for the conventional TI case7,16.

It is worth noting that a magnetic monopole can be
mimicked by a magnetic flux tube / Dirac string (with
flux quantum hc/e) that originates at the TR symmet-
ric surface interface and passes through one of the two
FTI slab, say the A slab. In the prototype a = −2 and
g = −1, the filling fraction νPf∗ = 1/2(2n + 1) of the
quasi-2D slab ensures, according to the Laughlin argu-
ment27, that the monopole associates to the fractional
charge q = 1/2(2n+ 1), which is carried by the confined
T -Pf∗ surface anyons 11A2 or ΨA

2 . This surface conden-
sation picture therefore provides a simple verification of
the Witten effect15 for θ = π/(2n+ 1).

Lastly, we noticed that in the band insulator case for
n = 0, F in (1) reduces to the Chern insulator or the
lowest Landau level (LLL), and Pf∗ in (7) is simply the
particle-hole (PH) symmetric Pfaffian state? ? ? . The
PH symmetry is captured by the relative tensor product
(8), which can be formally rewritten into

Pf∗ = F � Pf∗ (12)

by putting Pf∗ on the other side of the equation. Here,
the tensor product is relative with respect to some col-

lection of condensed bosonic pairs, and Pf∗ is the TR
conjugate of Pf∗. (12) thus equates Pf∗ with its PH con-
jugate, which is obtained by subtracting itself from the
LLL . In the fractional case with n > 0, (12) suggests a
generalized PH symmetry for Pf∗, whose PH conjugate
is the subtraction of itself from the FQH state F .
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VI. CONCLUSION

To conclude, we studied gapped FTI surface states
with (i) TR breaking order, (ii) charge U(1) breaking
order, as well as (iii) symmetry preserving T -Pf∗ topo-
logical order. We focused on FTI that supported frac-
tionally charged partons coupling with a discrete Z2n+1

gauge theory. We characterized the fractional interface
channels sandwiched between different gapped surface
domains by describing their charge and energy response,
namely the differential electric and thermal conductance.
The low-energy CFT for these fractional interface chan-
nels corresponded to the TO of quasi-(2 + 1)D FTI slabs
with the corresponding gapped top and bottom surfaces.
In particular a FTI slab with TR conjugate ferromag-
netic surfaces behaved like a fractional Chern insulator
with TO (1), and in the particular case when a = −1
and g = −2, its charge sector was identical to that of
the Laughlin ν = 1/(2n+ 1) FQH state. Combining the
TR symmetric T -Pf∗ surface with the FTI bulk as well
as the opposite TR breaking surface, this FTI slab ex-
hibited a generalized Pfaffian TO (7). Furthermore, we
demonstrated the gluing of a pair of parallel T -Pf∗ sur-
faces, which are supported by two FTI on both sides.
It was captured by an anyon condensation picture that
killed the T -Pf∗ TO and left behind deconfined partons
and confined gauge and magnetic monopoles in the bulk.

a. Acknowledgement In the following work Ref.16,
we also construct the T -Pf∗ state of the FTI from the
field theoretic duality approach. J.C.Y.T. is supported
by NSF Grant No. DMR-1653535. G.Y.C. acknowledges
the support from Korea Institute for Advanced Study
(KIAS) grant funded by the Korea government (MSIP)
and Grant No. 2016R1A5A1008184 under NRF of Korea.

Appendix A: Abelian Chern-Simons theory of dyons

The fractional topological insulator slab with time-
reversal conjugate surfaces has anyons which are dyons
and partons. The neutral sector consist of only dyons. A
dyon γ is composed of a number of Z2n+1 gauge charge on
each surface associated with an unit gauge flux through
the bulk. The dyons γm where m = 0, 1, . . . , 2n, with
1 = γ0 being the vacuum, form the anyon content of an

Abelian topological state denoted as Z(2a)
2n+1. They have

spins hγm = 2am2

2n+1 modulo 1 and satisfy the Z2n+1 fusion

rule γm × γm′ = γ[m+m′], where [m+m′] is the remain-
der between 0 and 2n when dividing m + m′ by 2n + 1.
For the case when a = −1, the Abelian topological the-

ory becomes Z(−2)
2n+1, which is actually identical to Z(n)

2n+1.

This is because the dyon e = γn has spin −2n2

2n+1 ≡ n
2n+1

modulo 1. The collection {el : l = 0, 1, . . . , 2n} is
of 1-1 correspondence with {γm : m = 0, 1, . . . , 2n}.
For instance γ = e−2 = e2n−1. At the same time,

Z(n)
2n+1 = {el : l = 0, 1, . . . , 2n} is the anyon content of

the Abelian Chern-Simons SU(2n+ 1)1 theory with La-
grangian density L2+1 = 1

4π

∫
2+1

KIJα
I ∧ dαJ , where αI

for I = 1, . . . , 2n are U(1) gauge fields, and

KSU(2n+1) =



2 −1
−1 2 −1
−1 2

. . .

2 −1
−1 2

 (A1)

is the Cartan matrix of SU(2n+ 1).

Appendix B: Anyon Condensation

Here we will elaborate how to glue the two TR sym-
metric surfaces of a pair of Pf∗ FTI slabs and condense
surface bosonic anyon pairs on the two TPf surfaces.
As before we take the decoupled tensor product of the
anyons in two Pf∗ TO, denoted (Pf∗)A ⊗ (Pf∗)B where
A,B refers to the two slabs. Then we choose a set of
bosons that braid trivially around each other.

First notice that dyon combinations γz ≡ 1̃1
A

0,z 1̃1
B

0,z

are not confined. A particle with charge “j” has gauge
charge n2gj, so our neutral pairs have gauge charge
n2gj×−n2gj. Thus the braiding phase with these dyons
is zn2gj − zn2gj = 0.

Our parton should continuously move from slab A to
slab B, so we should condense ΨA

4 ΨB
−4, the parton cre-

ation annihilation operator. Anything that braids with
it is confined. We can derive braiding statistics with the
ribbon formula, θA,B = hA×B − hA − hB . The braiding

phase from the anyon combination X̃A
ja,za

X̃B
jb,zb

around

ΨA
4 ΨB
−4 is is the same as (δA)za+n3ugja(δB)zb+n3ugjb

around ΨA
4 ΨB
−4. The parton carries “g” gauge charge

so this phase is g(za + n3ugja − zb − n3ugjb). This is
zero if the dyon number z + n3ugj is equal on the A
and B particle. This ensures gauge fluxes must continue
through both A and B slabs, i.e. confines gauge mag-
netic monopoles. This means that we are left with com-
binations XA

ja
XB
jb
γz. It also identifies ΨA

4 ΨB
−4 with the

vacuum, which identifies

11Aja11Bjbγ
z ≡ ΨA

ja+4ΨB
jb−4γ

z ≡ 11Aja+811Bjb−8γ
z

11AjaΨB
jb
γz ≡ ΨA

ja+411Bjb−4γ
z ≡ 11Aja+8ΨB

jb−8γ
z

ΣAjaΣBjbγ
z ≡ ΣAja+4ΣBjb−4γ

z

11AjaΣBjbγ
z ≡ ΨA

ja+4ΣBjb−4γ
z ≡ 11Aja+8ΣBjb−8γ

z

≡ ΨA
ja+12ΣBjb−12γ

z

Next we choose the fermion pair ΨA
0 × ΨB

0 . Notice Σ
braids with Ψ, so anything with just one Σ is confined.
This brings the identification to
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11Aja11Bjbγ
z ≡ 11Aja+4j11

B
jb−4jγ

z ≡ ΨA
ja+4jΨ

B
jb−4jγ

z

11AjaΨB
jb
γz ≡ 11Aja+4jΨ

B
jb−4jγ

z ≡ ΨA
ja+4j11

B
jb−4jγ

z

ΣAjaΣBjbγ
z ≡ ΣAja+4jΣ

B
jb−4jγ

z

Next we can condense ΨA
2 11B−2, which when braided

around 11Aja11Bjb or ΨA
ja

11Bjb gives 4(ja− jb)/16 which is not

confined if ja − jb = 0 mod 4. For ΣAjaΣBjb gives 4(ja −
jb)/16 + 1/2 which is not confined if ja − jb = 2 mod 4.
The identification is now

11Aja11Bjbγ
z ≡ 11Aja+4j11

B
jb−4jγ

z ≡ ΨA
ja+4jΨ

B
jb−4jγ

z

≡ 11Aja+2ΨB
jb−2γ

z ≡ 11Aja+2+4jΨ
B
jb−2−4jγ

z

≡ ΨA
ja+2+4j11

B
jb−2−4jγ

z

ΣAjaΣBjbγ
z ≡ ΣAja+2jΣ

B
jb−2jγ

z

Our ΣΣ pairs now split into simpler abelian compo-

nents

ΣAja±1ΣBjb∓1 = S+
ja±1,jb∓1 + S−ja±1,jb∓1, (B1)

where each S± carries the same spin as the original
Ising pair but differs from each other by a unit fermion
S±×ΨA/B = S∓. S+ and S− normally have non-trivial
mutual monodromy. We choose to condense the elec-
trically neutral S+

1,−1 and its multiples, while confining

S−1,−1. This means ΣA1 ΣB−1 is condensed. The Σ pair

around 11Aja11Bjb gives a phase of 2(ja − jb)/16 which is

zero if ja − jb = 0 mod 8. The Σ pair around 11AjaΨB
jb

gives a phase of 2(ja − jb)/16 + 1/2 which is zero if
ja − jb = 4 mod 8. The Σ pair around ΣAjaΣBjb gives
a phase of 2(ja− jb)/16± 1/4 which is zero if ja− jb = 2
or 6 mod 8.

This then completes the full condensate, and we have
the identification

11Aja11Bjbγ
z ≡ ΨA

ja,zΨ
B
jb,z

γz ≡ ΨA
ja+211Bjb−2γ

z

≡ 11Aja+2ΨB
jb−2,zγ

z ≡ S±ja±1,jb∓1γ
z

≡ 11Aja+411Bjb−4γ
z (B2)

for ja ≡ jb mod 8 and ja, jb both even. This ends up
being just the multiples of the parton 11A0 ΨB

4 together
with the dyons γz. Together they generate the theory F
of a FTI slab with two conjugate TR breaking surfaces.
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