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Contact of a spherical tip with a flat elastic substrate is simulated with a Green’s function method
that includes atomic structure at the interface while capturing elastic deformation in a semi-infinite
substrate. The tip and substrate have identical crystal structures with nearest-neighbor spacing d
and are aligned in registry. Purely repulsive interactions between surface atoms lead to a local shear
strength that is the local pressure times a constant local friction coefficient α. The total friction
between tip and substrate is calculated as a function of contact radius a and sphere radius R, with
a up to 103d and R up to 4× 104d. Three regimes are identified depending on the ratio of a to the
core width of edge dislocations in the center of the contact. This ratio is proportional to αa2/Rd.
In small contacts, all atoms move coherently and the total friction coefficient µ = α. When the
contact radius exceeds the core width, a dislocation nucleates at the edge of the contact and rapidly
advances to the center where it annihilates. The friction coefficient falls as µ ∼ α(αa2/Rd)−2/3. An
array of dislocations forms in very large contacts and the friction is determined by the Peierls stress
for dislocation motion. The Peierls stress rises with pressure, and µ rises with increasing load.
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I. INTRODUCTION

The canonical geometry of tribology is a sphere con-
tacting a flat surface.1,2 This simple geometry is used
for tribological testing, is found in ball bearings and
many other mechanical devices, and is exploited in scan-
ning probe metrology such as atomic force microscopy
(AFM),3 colloidal probe measurements4 or in the surface
force apparatus (SFA).5 It is also often used to model
each asperity in multi-asperity contacts between rough
surfaces.6 In this paper we show that atomistic effects
can lead to complex, scale-dependent frictional behavior
even for this simple geometry.

Continuum analyses of sphere-on-flat sliding can be
found in many textbooks.1,2,7 These models use standard
elastic or plastic treatments of the bulk deformation com-
bined with some assumption about the nature of the local
interfacial shear strength. They then determine how the
average static friction Fs scales with the load Fz pushing
surfaces together and the contact area A.

One of the most common models, Cattaneo-Mindlin,2

assumes a local coefficient of friction, i.e. that the max-
imum local shear stress at the interface τmax is propor-
tional to the local pressure p: τmax = αp. If sliding occurs
whenever the local shear stress exceeds τmax, one finds
that the static friction obeys Amontons’ law: Fs = µFz,
where the coefficient of friction µ = α. In contrast, for
adhesive surfaces τmax is usually assumed to be indepen-
dent of pressure. In this case one finds a constant fric-
tional shear stress τfric ≡ Fs/A with τfric = τmax. Both
types of scaling have been observed in single-asperity fric-

tion experiments.1,5,8–13

In contrast to these classic continuum results, Hurtado
and Kim14,15 found that atomic surface structure could
lead to striking scale-dependent friction laws. They con-
sidered crystalline surfaces that locked together in perfect
registry to produce a load and area independent τmax.
The friction force on a circular contact of radius a was
calculated using a dislocation model. For small radius
τfric = τmax, but larger contacts advance by dislocation
motion and τfric decreases as a−1/2. At very large scales
there are many dislocations and τfric saturates once more
at the Peierls stress,16 τPeierls, for dislocation motion.

Experimental tests of Hurtado and Kim’s results are
complicated because they require atomically flat surfaces
with a wide range of curvatures that lock in registry. The
motivation of their work was to explain the higher fric-
tional stresses in small AFM tips than in larger SFA ex-
periments, but this difference can also be explained by
the very different mechanical properties of the contact-
ing materials in the references they cited.9–11,17 More-
over, these experiments were performed with unaligned
crystalline surfaces that were in general out of registry.

Testing Hurtado and Kim’s model numerically is also
challenging, because of the need to simulate large systems
while maintaining atomic-scale resolution in the contact.
Gao18 used a Peierls-Nabarro model of a dislocation field
at the interface to test Hurtado and Kim’s model. The
Peierls-Nabarro model was designed for lattice disloca-
tions within a uniform bulk crystal rather than the case of
contact with a curved surface. It simplifies atomic motion
to two-dimensional displacements of substrate atoms in
a periodic potential with a maxiumum shear stress τmax
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that is independent of load and area. Gao18 observed the
crossover from a constant τfric = τmax to a shear stress
that dropped as a−1/2.

More recently we used a Green’s function approach19,20

to capture the elastic response of a semi-infinite substrate
while following individual atoms in contacts up to 2048
atoms across.21 The results confirmed Hurtado and Kim’s
model for identical crystal surfaces, including the a−1/2

scaling at intermediate scales and the saturation of τfric
at large scales. The dimensionless control parameter is
the ratio a/bcore where bcore is the width of an interfacial
dislocation. We also considered the more typical case
of incommensurate contacts, where the crystalline sub-
strate and tip share no common periodicity. Rigid in-
commensurate surfaces cannot lock in registry, and τfric
is predicted22–24 to vanish as a→∞. However we found
that dislocations can allow large contacts to lock, yield-
ing a value of τfric ≈ τPeierls equal to that for very large
identical, aligned crystals.21

Hurtado and Kim’s model and previous numerical tests
considered systems with a constant local shear stress τmax

and simplified the problem by removing the local curva-
ture of the surface. At high loads and for nonadhesive
surfaces atomistic simulations show that the local fric-
tional stress is proportional to pressure,25–27 yielding a
constant local friction coefficient α = τmax/p rather than
a constant shear stress. Since the pressure varies from
zero at the contact radius to a maximum at the center of
the contact, there is a large variation in the local friction
force.

In this paper we present results from an explicit 3D
simulation of atoms on a sphere of radius R contacting
a flat elastic substrate. The purely repulsive interaction
between surface atoms naturally leads to a local friction
coefficient α. We find that results for different loads and
R can be collapsed when plotted against αa2/Rd where
d is the atomic separation. By considering the scaling
of τmax = αp with a we show that this dimensionless
parameter also corresponds to the ratio of a to a repre-
sentative dislocation core width, which now depends on
p. To isolate the effect of curvature, we also consider a
modified Peierls-Nabarro model where the surface is flat
but the local τmax follows the pressure distribution for
a Hertzian contact. This simple model shows the same
scaling of friction with sphere and contact radii as the
explicit simulation.

The Green’s function approach allows us to treat a/d
up to 103 and R/d up to 105. At small a there is a
constant coefficient of friction. At larger a, µ ∝ a−4/3

and we show that this power law can be derived from a
dislocation nucleation model. At the largest a, µ begins
to rise once more. In this regime, µ is related to the
Peierls stress for dislocations which grows with increasing
normal load.

II. SIMULATION METHODS

A. Explicit Atomistic Model

Our explicit simulations consider quasi-static sliding
of a rigid spherical tip over a flat semi-infinite elastic
substrate, as illustrated in Fig. 1(a). Holding the spheri-
cal tip rigid reduces the number of parameters, and this
geometry can be mapped to the sliding of two elastic,
curved surfaces in continuum theory.2 Continuum the-
ory assumes small surface slopes. The maximum slope in
a sphere on flat contact is a/R and we only show results
from the explicit model with a/R < 0.1.

The substrate is the (100) surface of an fcc crystal with
nearest-neighbor spacing d. As shown in Fig. 1(b), the
spherical tip is an identical, aligned crystal plane bent
into a sphere. Tip atoms form a square grid with the
same atomic spacing d in the x-y plane, and are displaced
in the z direction to lie on the spherical surface. Atoms
from opposing surfaces interact with a repulsive Lennard-
Jones (LJ) pair potential

VLJ = 4ε((σ/r)12 − (σ/r)6) + ε, for r < rc (1)

where r is the atomic separation and ε and σ charac-
terize the interaction energy and length scales, respec-
tively. Truncating the LJ potential at its minimum,
rc = 21/6σ, and shifting the potential to zero at this
radius ensures the potential is purely repulsive. In the
following, the length scale of interactions inside the sub-
strate and across the interface are assumed to be approx-
imately equal so that d = rc = 21/6σ. The main effects
of changes in σ/d are discussed below.

The elastic response of substrate atoms is calculated
using an efficient Green’s function (GF) method.19,20

This accelerates atomistic simulations of crystalline solids
by using linear response in regions where strains are
small. For elastic interactions within the crystal, we use
the GF for a continuous, semi-infinite, isotropic solid. To
map atomic forces onto this continuum description, we
use a homogeneous pressure on square patches of area
d2. The discrete Green’s function is obtained from a tri-
angulation of these patches and the analytical solution
for loaded triangles.28 This allows direct comparison to
past continuum theories and simulations14,18,21 and we
found similar results for anisotropic crystalline lattices.
A square region with L atoms per edge is treated explic-
itly. Contact is limited to the central region of size L/2
and a padding method is used to reproduce the response
of a semi-infinite solid.29,30

The Poisson ratio is set to ν = 0.5 to decouple nor-
mal and horizontal displacements2 and thus ensure that
the substrate and sphere remain commensurate during
normal loading. Following Hurtado and Kim, the stiff-
ness of the solid is characterized by the shear modulus G.
This is related to the Young’s modulus E and indentation
modulus E∗ ≡ E/(1− ν2) by G = E/3 = E∗/4.

In experiments, tips typically advance at much lower
velocities than simulations can access. To model quasi-
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FIG. 1: (a) We consider an idealized spherical tip sliding on a
flat elastic substrate with no adhesive interactions. Motion is
in the x-direction and the substrate surface is normal to the
z-axis. In the continuum picture the surfaces are smooth on
scales less than the sphere radius R. (b) Explict MD simu-
lations include atomic surface structure (Sec. IIA). A bent,
commensurate crystalline lattice most closely mimics the con-
tinuum picture. In the image, much of the rigid sphere has
been cut away to show the substrate atoms that experience a
repulsive force (in darker color)and are displaced downwards
to form a curved indentation. (c) In the lateral force model
(Sec. IIB), shear forces are applied directly to the substrate
atoms with a peak shear stress proportional to the local pres-
sure predicted by Hertz theory. There is no normal force on
the substrate and it remains flat. Ref. 21 used the same ge-
ometry but with a constant maximum shear stress to model
adhesive contacts.

static motion, the tip is displaced in small increments and
the resulting atomic displacements are determined by en-
ergy minimization.31 First, normal tip displacements are
applied to achieve the desired normal load. Then the
lateral friction force is measured as a function of lateral
displacement by making steps of 0.01d at fixed load. The
energy minimization tolerance on the global force vector
norm was less than 10−6ε/d per atom in the contact.
Tests showed that this tolerance ensured that the sys-
tem always remained in the local energy minimum. We
present results for R/d from ∼ 270 to 41000, correspond-
ing to ∼ 100nm to 12µm.

The repulsive LJ interaction between commensurate
surfaces (Eq. 1) produces a local friction that follows
Amontons’ law, i.e. the friction force is proportional to
the local normal force.32 This is because the stiff LJ po-

FIG. 2: Variation of the height of an atom as it moves over a
rigid substrate at a fixed normal force of 1.0ε/σ. The height

is periodic in the atomic spacing d = 21/6σ and the black
line indicates the minimum energy path between successive
minima. The lateral force is equal to the slope along this path
times the normal force and the local static friction coefficient
α equals the maximum slope along this path.

tential acts like a hard wall, effectively creating micro-
scopic ramps encountered by each atom along its sliding
path. Figure 2 shows the equilibrium height of a sin-
gle atom moving over a rigid substrate at a fixed normal
force of 1ε/σ. As for sliding on an inclined plane, the
lateral force needed to move the atom is just the normal
force times the slope of this surface. The static friction
coefficient is the maximum slope along the sliding path
(black line in Fig. 2). The LJ repulsion rises so rapidly
with decreasing separation that the slope of the sliding
path varies little with the magnitude of the normal force.
Thus the static friction for a single atom has a nearly
load independent coefficient of friction α = 0.7. As dis-
cussed previously,25,33 α is most sensitive to changes in
σ/d. Decreasing σ/d allows the atom to penetrate more
deeply between substrate atoms and thus increase the
slope of the sliding path and the value of α.

B. Lateral Force Model (LFM)

In a spherical contact, there is a spatially varying nor-
mal force on atoms that is approximately described by
Hertz theory.34–36 This leads to a spatially varying fric-
tion force on atoms. However the total friction coeffi-
cient for a rigid spherical tip is equal to the local fric-
tion coefficient α because all atoms advance in registry.
The friction coefficient can change if substrate elastic-
ity allows atoms to advance independently.14,15,18,21 The
elastic response also produces changes in the slope and
curvature of the substrate. To remove any influence of
these changes we considered a simpler model where the
surface remains flat. This lateral force model also allows
the effect of changes in σ/d and α to be explored.
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In the lateral force model, the spherical tip is replaced
by a lateral force field that only depends on the position
of substrate atoms in the x− y plane (Fig. 1(c)). There
are no normal forces or displacements. In a recent paper
we considered the case of adhesive interactions where the
lateral force was independent of normal load.21 Here we
modify the potential so it mimics the friction under the
explicit spherical tip where the normal force varies within
the contact but the local friction coefficient is constant.

To capture the periodic variations in force at the
atomic scale (Fig. 2), we use a simple sinusoidal force like
that used for the Frenkel-Kontorova chain and the two-
dimensional Peierls-Nabarro model.18,37 Pressure varia-
tions on the scale of the contact radius are included by
varying the magnitude of the sine wave with the distance
r from the tip center. The force applied to an atom at
position (x, y) relative to the tip center is

f(x, y) = τmax(r)d2
[
x̂ sin

(
2πx

d

)
+ ŷ sin

(
2πy

d

)]
.

(2)
Here, τmax(r) is an envelope function that gives the mag-
nitude of the maximum local frictional stress and goes to
zero outside the contact, r > a. In the explicit simula-
tions there is a constant local friction coefficient α and
the local normal force is approximately consistent with
the profile predicted by Hertz theory. We thus set

τmax(r) = αp0
√

1− (r/a)2 , (3)

where p0 is the Hertz prediction for the pressure in the
center of the contact and the factor of d2 in Eq. 2 converts
this to a force per atom. For a normal load Fz, p0 =
3Fz/2πa

2 and a3 = 3FzR/4E
∗.

Note that the tip radius R enters p0 even though there
is no explicit curvature in the lateral force model. In-
creasing the tip radius lowers the load required to achieve
a given contact radius and thus lowers the local pressure,

p0 =
2a

πR
E∗ =

3Fz

2πa2
. (4)

Thus the lateral force model captures changes in contact
forces in the explicit model without introducing vertical
surface distortions that are often ignored in continuum
theory.2 These effects limit us to a/R < 0.1 in the explicit
model but not in the lateral force model.

The local friction coefficient α enters as a multiplica-
tive factor of p0 in Eq. 3 so the lateral force model for a
given a only depends on α/R and not on α or R indepen-
dently. Results for µ/α at a given R can be mapped to
those for a different local friction coefficient with the ra-
dius scaled by the same factor. In the results section we
quote values of R corresponding to the same α = 0.7 as
the explicit model, but the collapse of data for different
R also provides a test of the scaling with α.

One important difference between the explicit and lat-
eral force models is the shape of the local potential. The
lateral force model is a simple sine wave, while the LJ po-
tential gives very sharp changes in slope near the minima

(Fig. 2). Despite this qualitative difference, we find that
the two models give nearly the same behavior. This is
a powerful confirmation that atomistic details only enter
through α and d.

In both models the component of the shear stress in
the y-direction is less than 1% except in special cases,
such as near the cores of defects where it may be of order
5%. As a result we only report local and total stresses
along the sliding direction x and τ will refer to the stress
in that direction.

Just as for the explicit model, quasi-static sliding is
simulated by iteratively translating the tip center rela-
tive to the bottom of the substrate. After each step of
0.01d in the +x-direction the energy is minimized as in
the explicit model. Minimization can be very slow for
large contacts when changes are dominated by disloca-
tion motion along the interface. Assuming α = 0.7, the
effective sphere radii studied with the lateral force model
span from 10 to 104d.

III. RESULTS

As in the case of adhesive contacts,14,15,18,21 we ob-
serve three regimes of frictional sliding as the contact
area increases. However the scaling behavior is different
because the local friction is proportional to normal load
instead of area. We give a brief overview of the regimes
and then analyze each in detail in a separate section.

In Regime I, characteristic of small contacts, there is
no appreciable elastic deformation on the length scale of
the contact during sliding. As illustrated in Fig. 3(a),
substrate atoms hop coherently past atoms on the rigid
tip, and the coefficient of friction equals the local value,
µ = α. In larger contacts, elastic deformation occurs and
slip is mediated by the nucleation of a lattice dislocation
that rapidly moves across the interface. This is Regime II
and is illustrated in Fig. 3(b). In Regime III, the contact
is large enough that many dislocations are arrested at
the interface. The static friction is set by the condition
for dislocations to unpin and move along the interface
(Fig. 3(c)).

Hurtado and Kim discussed these three regimes for ad-
hesive contact and used analytic arguments to identify
the scaling behavior in Regime II. Later work18,21 showed
that the key length scale is the characterisitic core width
of interfacial edge dislocations:

bcore ≡ d
G

τmax
(5)

where τmax is the maximum lateral stress between sur-
faces. For adhesive contact models τmax is assumed to be
independent of load. In contrast, the peak lateral stress
is proportional to the local pressure for the repulsive con-
tacts considered here. As a result, the core width varies
across the contact and diverges at the edge of the contact.
This variation is key to the different scaling behavior for
repulsive contacts that we describe below.
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FIG. 3: Schematic of (a) rigid slip (Regime I), (b) slip by dislocation nucleation (Regime II), and (c) slip by dislocation
unpinning (Regime III). Pictures show cross-sections along the sliding direction x at different displacements, with the top
snapshot corresponding to the maximum friction. Some atoms are labeled with darker colors to show relative motion. In (a),
the rigid asperity slides over the substrate and any lateral displacements in the substrate are too small to alter the registry of
atoms on opposing surfaces as the relative position of the tip increases by d from the first to third snapshot. In (b), atoms in
the top snapshot are pinned but a small displacement leads to the second snapshot where a dislocation loop nucleates near the
edges of the contact. The dislocation has Burgers vector b = dx̂ and line tangent ξ̂ = ŷ into the page at the front of the contact
(upside down T ) and ξ̂ = −ŷ at the back of the contact (T ). The dislocation glides through the contact and self-annihilates,
resulting in slip by a Burgers vector. In (c) the contact is so large that many dislocations become arrested in the contact and
further sliding of the asperity is required for them to self-annihilate.

We define a dimensionless parameter related to the ra-
tio of contact radius to the minimum core width, b0core,
which occurs in the center of the contact. Using the Hertz
prediction for pressure (Eq. 4),

a

b0core
= c

αa2

Rd
(6)

where for general ν the ratio of G to E∗ gives c =
4/(π(1 − ν)) and c = 8/π for ν = 0.5. Note that, as in
the lateral force model, the local friction coefficient and
radius only enter as α/R. When a/b0core is small, a dis-
location can not fit in the contact and the atoms should
advance coherently as in Regime I. Regime II should set
in for a/b0core > 1.

Figure 4 shows that the ratio defined in Eq. 6 is the
relevant parameter for Regimes I and II. For a given sim-
ulation we define the coefficient of static friction µ as
the ratio of the maximum lateral force to the load. All
results for µ/α in the explicit model and lateral force
model at different sphere radii collapse onto a universal
curve until they reach Regime III. Regime I corresponds
to a/b0core � 1 and µ/α ≈ 1. In Regime II, a/b0core � 1
and the friction coefficient drops as a power of contact
radius. The crossover between the two regimes occurs
over a broad range near a/bcore = 1 with noticeable sup-
pression of µ well below unity and the assymptotic power
law scaling reached by a/bcore = 10. The success of the

collapse in this figure shows that the lateral force model
captures the essential physics of the explicit model and
thus that curvature of the substrate and the shape of the
local periodic potential are not important. The following
sections analyze each of the three regimes in detail.

A. Regime I

In Regime I, all atoms advance coherently. From the
Peierls-Nabarro model of dislocations,16 bcore is the short-
est length scale over which the interfacial corrugation is
strong enough to strain the crystal so that the registry
changes by the Burgers vector d. If a contact has radius
a < bcore, the lateral displacement of atoms differs by less
than d and their contributions to the lateral force add in
phase. Since the core width is smallest in the center of a
repulsive contact, Regime I corresponds to a < b0core.

As the lateral displacement of the tip increases, the
lateral force on each atom rises. All reach the max-
imum local lateral force at the same time. Since the
maximum lateral force is just α times the local normal
force, summing over the contact gives a total static fric-
tion Fs = αFz. Thus the entire contact obeys Amontons’
law with a coefficient of friction equal to the local value
α. Figure 4 shows that µ/α is unity for small a/b0core and
has dropped by about 20% at a/b0core = 1
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FIG. 4: Static friction coefficient for non-adhesive surfaces
plotted against the ratio of the contact radius a to the dislo-
cation core width b0core in the center of the contact (Eq. 6).
Results are shown for the explicit atomistic model (open tri-
angles, asterixes and pluses) and lateral force model (closed
triangle, circle and square) as a increases at the indicated

sphere radius (σ = 2−1/6d). The lateral force model only de-
pends on α/R, and values of R in the legend correspond to
the same α = 0.7 as the explicit model. The three regimes
of different sliding mechanism are indicated at the top of the
figure. The friction is constant in Regime I, drops as a power
law in Regime II and rises in Regime III. A black dashed
line shows the power law of -2/3 expected in Regime II. Blue
dotted lines show the predictions for Regime III.

Another type of elastic deformation could be relevant
in Regime I. Even though contacting atoms move coher-
ently, substrate elasticity leads to an average lateral dis-
placement δ relative to the bottom of the substrate that
rises with the lateral force F . From continuum theory
the average stiffness is:

k ≡ F/δ = 8Ga/(2− ν) . (7)

If this stiffness is too low, the contact may advance in a
discontinuous series of sticks and slips.

Since all the atoms advance coherently, the lateral force
model for the contact in Regime I is a realization of the
single-particle Prandtl-Tomlinson (PT) model.18,26 The
PT model considers a single particle pulled by a spring
of stiffness k through a sinusoidal potential with period
d and maximum force Fs. The dimensionless constant

λ ≡ 2πFs/dk (8)

characterizes the ratio of interfacial stiffness to elastic
stiffness. The particle advances smoothly when λ < 1
and stick-slip motion occurs for larger λ.26 Given the

definition of λ, the transition corresponds to the point
where the mean lateral displacement at the static friction
force is d/2π.

We can calculate λ in Regime I using Fs = αFz and
the Hertz relation between a and Fz. This yields

λ =
π(2− ν)E∗

3G

αa2

dR
=
π2

4

a

b0core
(9)

Thus as long as the system is well within Regime I, one
has λ < 1, and the contact will advance smoothly.

The solid line in Figure 5 shows a typical force trace for
the lateral force model in Regime I. Because the substrate
is very stiff (λ < 1), there is little lateral displacement
of substrate atoms as the tip displacement ∆x increases.
The lateral force has the sinusoidal form of the interfacial
interaction for each atom in Eq. 2. For the explicit model
we also find that the lateral force in Regime I has the
same form as the force per atom, in this case the slope of
the surface in Fig. 2. Stick-slip will only occur in Regime
I if an additional compliance is inserted, such as a soft
atomic force microscope cantilever.26,38,39

Note that positive and negative values of the fric-
tion are sampled almost equally in the friction trace for
Regime I (a/b0core � 1). Thus the kinetic friction ob-
tained by time-averaging the force is nearly zero even
though the static coefficient of friction has its maximum
possible value, µ = α. This strong contrast between ki-
netic and static friction is common for systems that move
smoothly without stick-slip or other internal elastic in-
stabilities at the interface.26 Such instabilities play an
important role in Regimes II and III.

B. Regime II

1. Friction Versus Displacement

In Regime II, the tip advances in steps as dislocations
nucleate and sweep across the contact. Typical results
for the friction curves are shown as dashed and dotted
lines in Fig. 5. The total force (Fig. 5) grows linearly
at first, with a slope that approaches the continuum pre-
diction for the stiffness k (Eq. 7) as a/b0core increases. A
dislocation nucleates at the force maximum correspond-
ing to the static friction and then the force drops rapidly
as the dislocation moves to the center and annihilates,
advancing the tip by about d. This cycle repeats as the
tip advances, yielding a classic stick-slip force trace.

As a/b0core increases, the static friction coefficient µ de-
creases. At the same time, the fraction by which the force
drops during slip decreases. This means that the time-
averaged force, corresponding to the kinetic friction, ap-
proaches the static friction µ. By a/b0core = 6 the kinetic
friction is already about 2/3 of the static friction.
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FIG. 5: Friction normalized by maximum static friction αN
as a function of lateral tip displacement ∆x normalized by
nearest-neighbor spacing d for the lateral force model with
R = 535d and different values of a/b0core: 0.054 (solid line,
a/d = 4), 1 (dash-dotted line, a/d = 16), 6 (dashed line,
a/d = 43) and 64 (dotted line, a/d = 138). In Regime I
(solid line), atoms move in phase and the total lateral force
is proportional to the periodic force on each atom (Eq. 2).
The static friction coefficient µ = α and the kinetic friction,
corresponding to the time-average force, is nearly zero. At
a/b0core = 1, the static friction is depressed, sharp drops are
becoming evident and the kinetic friction has increased to
about a third of the static friction. In Regime II (dashed
and dotted lines), the tip begins to advance in discrete stick-
slip events associated with dislocation motion. The kinetic
friction approaches the static friction, while µ drops with in-
creasing a/b0core.

2. Local Stress

Fig. 6 shows the local shear stress at points along the
sliding (x) and transverse (y) axes for the lateral force
model with a/b0core = 6.23. Dashed lines in Fig. 6 show
the maximum local shear stress, which is just α times the
normal pressure from Hertz theory (Eq. 3). The actual
local shear stress must always be below this value. As the
lateral displacement of the tip rises, τ grows throughout
the contact. The black squares in Fig. 6 show the stress
τ b before dislocation nucleation at the force maximum
corresponding to the static friction. After the dislocation
sweeps across the interface, the stress drops to the curve
labelled τa in Fig. 6.

To understand the plots described above and the scal-
ing of nucleation with contact size we use the well-known
continuum elastic solutions for circular contacts.2 If the
contact advances uniformly with the tip so there is no
relative displacement between tip and substrate atoms,
the lateral stress is lowest in the center and diverges in-
versely with the square root of the distance from the edge
of the contact:

τ(r) =
Fx

2πa2

[
1− (r/a)

2
]−1/2

(10)

As in the case of a crack tip, this singularity is caused
by a discontinuity in boundary condition from constant

displacement inside the contact to zero stress outside. In
any physical system, the singularity is cut off at small
scales by atomic discreteness or by deviations from the
assumption of uniform displacement. Cattaneo-Mindlin
(CM) theory assumes the singularity is removed by slip
between tip and substrate in the outer rim of the contact
that reduces τ to αp. This local slip leads to a larger tip
displacement before sliding than expected from Eq. 7,
but the CM model predicts sliding of the whole tip starts
when µ = αp throughout the contact and thus that there
is a scale independent static friction coefficient µ = α.

The solid line in Fig. 6 compares the CM prediction
for the shear stress to τ b at the same lateral displace-
ment. Note the differences near the edges of the contact.
CM theory predicts zero slip between substrate and tip
atoms for |r| . 0.8a. Analysis of atomic configurations
in our simulations shows that the relative displacement
of substrate and tip atoms is nonzero throughout the
contact. Indeed the lateral stress results from a relative
displacement in the periodic potential of Eq. 2. The
nearly constant τ b in the central region means that there
is a nearly constant relative displacement. The displace-
ment increases as τ b rises near the edges of the contact.
However τ b cannot rise above the maximum value that
corresponds to a displacement of d/4, and any further
displacement lowers τ/τmax. Along the sliding direction
(Fig. 6(a)), τ remains close to τmax out to the edge of
the contact. Along the perpendicular axis (Fig. 6(b)),
the displacement continues to grow, causing τ b/τmax to
drop and even become negative.

The periodicity of the potential introduces a minimum
change in displacement ∼ d for τ to return to τmax. Since
the displacement can only change by d over a lateral dis-
tance bcore, the stress must change from maximum to
negative to maximum over a distance bcore. Neither d
nor bcore are included in the CM model, which assumes
any infinitesimal displacement is able to change τ to τmax.
As a result, the CM model predicts a singularity in the
derivative of the lateral displacement of substrate atoms
and a cusp in the predicted shear stress. In an atom-
istic system, the cusp is broadened over the local core
width. Eq. 5 gives the core width for an edge disloca-
tion which is a/6.23 at the center of the contact. This
is comparable to the range where τ b deviates from the
CM prediction in Fig. 6(a). Similar behavior is observed
throughout Regime II, but as a/b0core increases the range
over which there is a deviation from the CM prediction
becomes narrow and harder to observe in plots.

The breaking of radial symmetry in Fig. 6 is not ex-
pected from continuum theory.2,14 A uniformly-displaced
circular contact leads to a radially-symmetric stress in a
linear isotropic solid, and Cattaneo-Mindlin theory re-
tains this symmetry. Our results are also nearly sym-
metric at small tip displacements, but asymmetry be-
comes pronounced near the static friction. As seen in
Fig. 6, τ b rises more rapidly along y than along x and
reaches a higher maximum at a smaller radius. After the
maximum, the ratio τ b/αp, and thus the displacement of
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FIG. 6: Variation in shear stress for points along the (a) x-
axis (sliding direction) and (b) y-axis (transverse direction)
in the lateral force model. Diamonds show the shear stress τ b

(black, open) just before dislocation nucleation (∆x/d = 1.35
in Fig. 5), and just after nucleation and annihilation, τa

(red, closed). A dashed line shows the maximum local shear
stress τmax, which is α times the Hertz prediction for the
local pressure. Stresses are normalized by the peak value at
the origin, αp0, and distances by the Hertz prediction for the
contact radius. The solid line shows the Cattaneo-Mindlin
prediction for the shear stress. Here a = 43d, R = 535d, and
α = 0.7. This corresponds to Fz = 806Gd2, b0core = 6.9d and
a/b0core = 6.23.

atoms relative to the tip, changes more rapidly along y
than along x. All of these results indicate that the effec-
tive dislocation core width is smaller along the transverse
y-axis.

The negative values of stress for |y| near the edge of
the contact signal the onset of an instability. An increase
in tip displacement causes atoms to jump by d to create
a dislocation with Burger’s vector dx̂ along the sliding
direction. Along the sides of the contact (|y| ≈ a), this
corresponds to a screw dislocation (Burger’s vector along
dislocation line) while at the front and back of the contact
it is an edge dislocation (Burger’s vector perpendicular
to the dislocation line). Screw dislocations typically have
lower physical core widths than edge dislocations.16 This
explains the faster variations of τ b along y. The smaller
core width leads to less smoothing of the cusp predicted
by CM theory and a higher stress. These changes cause
dislocations to nucleate first along the y-axis. A similar
phenomenon is observed in sliding of elastomer spheres
on a hard substrate.40

The asymmetric nucleation of dislocations is illustrated
in Fig. 7 for contacts in Regimes II and III where dislo-
cations do not annihilate immediately. Screw-character
dislocations nucleate at the top and bottom of the con-

tact. They move toward the center with increasing tip
displacement until edge-character dislocation segments
nucleate at the front and back of the contact, resulting
in an oval dislocation loop (Fig. 7(a)). In Regime II, a
single unstable loop forms and continues to shrink until it
annihilates in the center of the contact. The tip has then
advanced by about d leading to a slip in the force trace
(Fig. 5). Near the transition between Regime II and III,
one or two dislocation loops can be stably pinned in the
contact (Fig. 7(a,b)). For the adhesive model studied pre-
viously the core width and Peierls stress are independent
of radius and the dislocation loop is strongly affected by
lattice anisotropy and dislocation character (Fig. 7(c)).
For the repulsive model considered here, the strong vari-
ation of core width with pressure leads to more circular
dislocation loops (Fig. 7(a,b)).

The explicit model shows qualitatively similar behav-
ior to the lateral force model, but curvature and atomic
height variations lead to further complexity. Fig. 8 shows
the shear and normal stress in a contact with the same
normal force and sphere radius used in Fig. 6. As before,
shear stresses are normalized by αp0 where p0 is the Hertz
prediction and distances are normalized by the Hertz con-
tact radius. In the lateral force model a is equal to the
Hertz prediction by construction, but atomistic effects
lead to small deviations in the explicit model.35,36 The
distribution τ b is obtained just before a dislocation nu-
cleates and τa is the stress just after a nucleation sweeps
through the interface. The corresponding normal pres-
sures pb and pa are also shown. With the same normal-
ization, the maximum local shear stress αp/αp0 = p/p0.

As shown in earlier work,35,36 at low lateral forces
the pressure is close to the Hertz prediction. The fi-
nite range of interactions and roughness associated with
atomic structure smear the pressure at the edge of the
contact and p goes to zero about 2d outside the Hertz
prediction for a. At higher lateral forces, a kink devel-
ops in the local pressure. Changes in lateral displacement
between tip and substrate atoms lead to vertical displace-
ments, because atoms move up the ramps illustrated in
Fig. 2. The peak in the shear stress is at the maximum
slope of the sliding path. The maximum height is past
this point, leading to smaller spacings from tip atoms and
a pressure bump in this outer region. The changes are
more pronounced for the y-axis and dislocations nucleate
at the sides of the contact not the front and back.

Another clear difference from the lateral force model is
the asymmetry between the front and back of the contact
in the explicit model. The curvature of the spherical
asperity leads to a change in surface slope that is not
included in continuum theory or the lateral force model.
The shear force τ is taken from the x component of the
force in Fig. 8, but the local normal and lateral directions
of the sphere surface rotate with the local slope. There
are higher values of Fx at the front of the sphere where
the local normal force resists sliding and lower values
of Fx at the back of the sphere where the slope assists
sliding.
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FIG. 7: Snapshots showing local shear stress relative to the
local maximum shear stress using the color map indicated by
the bar at the bottom of the figure. Dislocations are located
in regions where stress changes sign over the core width. Each

has Burgers vector ~b = dx̂ along the sliding direction and the
local orientation ξ̂ varies around the loop. Panels (a) and (b)
show the lateral force model near the crossover from Regime
II to Regime III (a/d = 126 and a/b0core = 70). Panel (a)
shows the first dislocation that forms, (b) shows a state just
before sliding where a second dislocation has formed. Af-
ter a small additional displacement the second dislocation
annihilates, and the system returns to the configuration of
panel (a). Panel (c) shows an example of the anisotropic dis-
location loops that form in the adhesive model of Ref. 21
with a/bcore = 126 and bcore = d. Panel (d) shows a case
from Regime III of the lateral force model (a/d = 510 and
a/b0core = 278). Two dislocation lines with predominantly

screw character (nearly horizontal so that ξ̂ ‖ b̂) have nucle-
ated near the top and bottom of the contact and terminate at
the contact edge. As dislocation lines move into the center,
they develop into closed loops.

In regions where the interfacial stress from Eq. 2 de-
creases with increasing displacement, an individual atom
is linearly unstable against a forward jump. Substrate
atoms near the edge of Fig. 6(b) are in this region where
stress drops and would jump by ∼ d relative to the tip
if they where not held back by elastic interactions with
their neighbors. When the width of the unstable rim is
approximately the local bcore, atoms in this region can
all advance by a lattice constant to create a dislocation.
The lateral force at the onset of nucleation is the static
friction and drops farther below α as a/bcore increases. A
scaling relation is derived in the next subsection.
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FIG. 8: Variation in stress across the contact for atoms along
the (a) x-axis (sliding direction) and (b) y-axis (transverse
direction) for the explicit model. Diamonds show the shear
stress τ b just before dislocation nucleation, and squares show
the stress τa just after nucleation and annihilation. Also
shown is the local maximum shear stress αp before and after
nucleation, where pb (triangles) and pa (asterixes) are mea-
sured locally from the force on an atom divided by the atomic
area d2. Lines give the Hertz prediction for αp (dashed) and
CM prediction for τ (solid). The Hertz prediction for contact
radius and αp0 are used to normalize position and stress, re-
spectively. As in Fig. 6, Fz = 806Gd2 and R = 535d. The
static friction is measured to be Fx = 222Gd2, and µ = 0.28.

3. Scaling of µ With Contact Size

Rice has presented an analysis of dislocation nucleation
along a crystalline plane.41 Hurtado and Kim applied
this analysis to the case of a circular contact with con-
sant maximum shear stress τmax.14 Nucleation occurs18,21

when the shear stress reaches τmax at a distance c0bcore
from the contact edge where c0 is a constant. Because
both τmax and bcore are constant, the analysis gives a fric-
tion stress τfric ∼ a−1/2 in Regime II, where the exponent
1/2 reflects the power law singularity in shear stress.18

For the repulsive case considered here, the variation in
maximum shear stress with pressure must be included,
and bcore → ∞ near the contact edge. This changes the
power law relating friction and contact radius.

To incorporate the variation in core width with radius
we calculate the relevant value, b∗core, self-consistently. In
particular we find the condition for the shear stress at a
distance c0b

∗
core from the edge of the contact to be equal

to τ∗max, the maximum shear stress associated with the
normal pressure at the same distance.
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Far from Regime I, nucleation occurs near the edge of
the contact where the stress singularity dominates. As-
suming c0b

∗
core � a, the stress at a distance c0b

∗
core from

the edge of the contact is dominated by the stress sin-
gularity. Using the analytic form for the stress in Eq.
10,

τ∗=
Fx

2πa2

[
1− (a− c0b∗core)2

a2

]− 1
2

≈ Fx

2πa2

[
2c0b

∗
core

a

]−1/2
where Fx is the total lateral force.2 One obtains Hurtado
and Kim’s result that Fx/πa

2 ∼ a−1/2 by equating τ∗ to
the constant τmax assumed for adhesive contacts:

Fx

πa2τmax
= 2

[
a

2c0bcore

]−1/2
. (11)

Our previous numerical fits21 would correspond to c0 =
0.18.

For the repulsive contacts considered here, we use
the Hertzian pressure distribution to determine αp at a
distance c0b

∗
core from the edge. Expanding Eq. 3 for

b∗core � a and using Eq. 4 for Fz, we find

τ∗max= αp0

[
1− (a− c0b∗core)2

a2

]1/2
≈ 3αFz

2πa2

[
2c0b

∗
core

a

]1/2
(12)

Equating this to τ∗ yields a prediction for the static fric-
tion coefficient:

µ = Fx/Fz = 6c0αb
∗
core/a. (13)

We can rewrite the expression for µ in terms of a/b0core
using Eq. 12 and the general relation between bcore and
τmax from Eq. 5. Multiplying Eq. 12 by a/dG to convert
the stresses to core widths we find

a

b∗core
=

a

b0core

[
2c0b

∗
core

a

]1/2
, (14)

and thus

2c0b
∗
core

a
=

[
2c0b

0
core

a

]2/3
=

[
2c0dR

cαa2

]2/3
, (15)

where the last relation follows from Eq. 6. The fric-
tion coefficient is readily obtained by substituting this
expression into Eq. 13. Normalizing by the local friction
coefficient α we find:

µ

α
= 3

[
2c0b

0
core

a

]2/3
= 3(2c0)2/3

[
cαa2

dR

]−2/3
. (16)

All of our results for the lateral force and explicit model
in Regime II (Fig. 4) are consistent with the power law
scaling predicted by Eq. 16. The fit line corresponds to
c0 = 0.22, which is comparable to the value of c0 = 0.18
obtained for an adhesive model in Reference 21. Exper-
imental results are typically plotted vs. load since a is
difficult to measure. Since a rises as the 1/3 power of the
load, we find

µ

α
∼ F−4/9z . (17)

C. Regime III

1. Spatial Distribution of Stress and Dislocations

In Regime III, a dislocation is nucleated at the con-
tact edge and starts to move towards the center of the
contact where the stress is lower. At some radius, the
shear stress drops below the Peierls stress τPeierls needed
to move the dislocation and it becomes arrested in the
contact. Additional lateral displacement of the tip raises
the local stress above τPeierls and depins the dislocation.
New dislocations are also nucleated at the edge of the
contact and move inward to create a growing array of
dislocations. The ultimate static friction is determined
by the stress needed to move this array of dislocations
towards the center where they annihilate. Because there
are a large number of dislocations, the friction remains
very close to the static friction and the kinetic friction is
nearly equal to the static friction.

Fig. 7(d) shows a snapshot of the dislocation array
just before sliding for a system in Regime III. In the
case shown, there are eight fully-formed dislocation loops
arrested in the contact. The higher energy of edge
dislocations16 means that dislocation loops tend to min-
imize that character, leading to an oval shape that is
elongated in the x-direction. There are also two screw
dislocations that have nucleated at the top and bottom
of the contact and are moving inward before forming
a complete loop. The total number of loops increases
with a/bcore and the precise pattern results from dislo-
cation interactions as well as variations in core energy
and Peierls stress with radius and dislocation character
(orientation), as discussed below.

Fig. 9 shows plots of the frictional shear stress exerted
on the substrate for atoms along the x and y axes of
the system shown in Fig. 7(d). In contrast to Fig. 6,
there are many stable dislocations in the contact and
the plot illustrates how the width of dislocations varies
across the contact. The stress is plotted at each atom
and the singularity that would occur at the core of each
dislocation (vertical blue lines) in the continuum limit
is cut off by the finite atomic spacing. On each side of
a dislocation, the magnitude of the stress rises rapidly
up to the bounds provided by ±τmax. There is a sharp
change in sign at the core center (vertical blue lines). The
number of atoms over which the magnitude of the stress
rises is proportional to the core width, and is about twice
as large along the x-axis as along the y-axis. This is a
further illustration that, as shown in Fig. 6 and found in
most systems,16 edge dislocations (perpendicular to x)
are wider than screw dislocations (perpendicular to y).
The plots also show that the core width of both edge
and screw dislocations increases with the distance from
the contact center. This is consistent with Eq. 5 and
the decrease in local pressure and τmax near the contact
edge.

The shear force for this system changes very little with
tip displacement, dropping less than 7% after a static
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friction peak. This is because the dislocation array is al-
ways nearly unstable. In Fig. 9(a), almost all dislocation
cores have atoms near the peak magnitude of the lateral
stress (dashed lines). A small increase in stress will cause
them to advance. There are a few small advances of indi-
vidual dislocations and then the central dislocation loop
becomes unstable, moves to the center and annihilates.
Then the process repeats.

2. Scaling of µ with tip and contact radii

In the classic Peierls-Nabarro model for grain bound-
aries, the Peierls stress of an edge dislocation falls expo-
nentially with core width.42 As shown below,

τPeierls = k1τmax exp(−k2bcore/d). (18)

where k1 and k2 are constants that depend on dislo-
cation character. In the adhesive model considered in
Ref. 21, all the parameters in Eq. 18 are independent
of contact radius. Regime III begins when the stress re-

quired to nucleate a defect, τnuc ∝ τmax [a/d]
−1/2

, drops
to τPeierls. Since bcore/d = G/τmax, the contact radius
needed to reach Regime III grows exponentially with in-
creasing substrate stiffness.

For the repulsive model considered here, τPeierls
changes with radius and load. This leads to different
scaling relations. The pressure rises in the center of the
contact, leading to an increase in τmax = αp and a de-
crease in bcore with decreasing distance from the center
of the contact. Both effects increase τPeierls, making it
harder to move dislocations in the center of the contact.
Using Eq. 6 we find b0core/d = R/cαa and a central Peierls
stress

τ0Peierls = k1αp0 exp(−k2R/cαa). (19)

To estimate the friction coefficient in Regime III we ne-
glect the variation in bcore and assume the local Peierls
stress is Eq. 19 with p0 replaced by the local normal
pressure. Then calculating the friction force from the
integral over the contact gives

µ/α = k1 exp(−k2R/cαa). (20)

The actual coefficient will be smaller because of changes
in bcore that can be included using numerical integration.
The transition between Regimes II and III should occur
when Eq. 20 and Eq. 16 are equal:

a

b0core
=
cαa2

dR
∝ exp(3k2R/2cαa). (21)

Thus the crossover to Regime III occurs at a friction co-
efficient that decreases exponentially with R/cαa and at
a contact radius that rises exponentially with this ratio.

One surprising conclusion is that µ increases with load
in Regime III. For fixed R, the contact radius rises with

load causing the exponential factor in Eq. 20 to rise to-
wards unity. This behavior is clearly shown in the lateral
force model results for R = 1900σ and 900σ in Fig. 4.
The dotted lines are fits using values of k1 and k2 ob-
tained below.

We are unable to explore Regime III with the ex-
plicit atomistic model because the transition occurs at
too large a value of a. To avoid complications from
large surfaces slopes at the edge of the contact, the ratio
a/R < 0.1. Using α ≈ 0.7 and c = 8/π we find that
R/cαa = b0core/d & 6. This corresponds to µ/α . 0.004
and a/d & 3 × 104, which is about an order of magni-
tude larger than our largest simulations. The lateral force
model removes the constraint on a/R because there is no
surface curvature. This allows us to explore Regime III
and observe the increase in µ with load at large a/bcore.

3. Peierls Stress for Dislocations

To test Eq. 18 in our system, we performed an inde-
pendent set of simulations using flat surfaces with pe-
riodic boundary conditions. The period L ≥ 256d was
much larger than bcore and the appropriate periodic GF
was used.47 The dislocation was created by using a pe-
riodic potential like Eq. 2, but with a small change in
period or orientation that frustrates perfect registry be-
tween the two surfaces. The potential was chosen so that
registry is restored over most of the surface by creation of
a single dislocation with Burger’s vector dx̂ and the de-

sired line orientation ξ̂. Taking θ as the angle between ξ̂
and the x-axis, θ = 0◦ corresponds to a screw dislocation
and θ = 90◦ is an edge dislocation.

Once the system is equilibrated, the top surface is dis-
placed along x̂ to increase the shear stress. The stress re-
quired to move the dislocation is recorded as the Peierls
stress. Fig. 10(a) shows how τPeierls varies with bcore/d
for different angles. Panel (b) shows the angular varia-
tion of τPeierls at fixed bcore, where the case bcore/d = 1.8
corresponds to Fig. 9.

As expected from Eq. 18, the Peierls stress drops
roughly exponentially with bcore for edge dislocations.
The prefactor in the exponential depends strongly on the
orientation, with screw dislocations the most difficult to
depin. The Peierls stress shows additional peaks for edge
dislocations and for mixed character dislocations at 45◦.
Other angles have similar values of τPeierls and show a
very rapid drop with increasing core width.

The solid gray lines in Fig. 9 show the local Peierls
stress from Fig. 10 for (a) edge and (b) screw disloca-
tions at the local pressure. Even though the systems are
near the point where dislocations move, the stress at each
core is lower than the corresponding Peierls stress. The
stress is about half the expected Peierls stress for edge
dislocations, where the stress in the core is near τmax,
signalling a nearly unstable state. Note that the disloca-
tions sample all orientations from edge to screw and for
bcore/d = 1.8 most angles have τPeierls seven times smaller
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FIG. 9: Variation in shear stress (circles) across the contact for atoms along the (a) x-axis (sliding direction) and (b) y-axis
(transverse direction) for the lateral force model in Regime III. Stresses are normalized by αp0 and position by the Hertz
contact radius. Vertical solid lines indicate dislocation cores and dashed lines indicate the bounds on the local shear stress,
±αp. Horizontal red bars indicate the mean local stress acting on each dislocation and are determined by averaging the stress
an equal distance on both sides of the dislocation. A solid gray curve indicates the calculated Peierls stress for the given
pressure, which is larger for screw dislocations.

θ (degrees)
1 2 3 4

0.001

0.01

0.1

1

0° (screw)

9 0° (edge)27°

14°

45°

bcore=1.8d

0 20 40 60 80

τ Pe
ie

rls
/τ

m
ax

bcore=1d

bcore/d
5

(a) (b)

FIG. 10: The Peierls stress for edge and screw and mixed
character dislocations in the lateral force model as a function
of (a) core width and (b) dislocation character. The character

is labeled as the angle between the line direction ξ̂ and the
Burgers vector b = dx̂.

than for screw dislocations and less than half that for
edge dislocations. This is one reason the system in Fig.
9 is nearly unstable even though the edge and screw dis-
locations are below the independently calculated τPeierls.
A second is that the stress to move dislocations decreases
with increasing density of dislocations due to dislocation
interactions. In general, for both the case considered here
and the adhesive systems seen in Ref. 21, we find that the
onset of motion is close to, but smaller than, the Peierls
stress for edge dislocations.

We conclude by using these results to estimate the fric-
tion in Regime III. Fitting to the edge dislocation results
in Fig. 10 we find k1 = 1.5 and k2 = 1.6. As just dis-
cussed, the onset of motion occurs at about half of the
Peierls stress for edge dislocations. In addition, Eq. 20
uses the core radius at the center of the contact rather
than integrating over the changing core size. The blue
dotted lines in Fig. 4 show the prediction using a numer-
ical integration over the contact of half the Peierls stress
to account for these two effects. The lines clearly capture
the available data in the regime where µ rises. Larger sys-
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tems would be needed for a more complete test of this
scaling.

IV. CONCLUSIONS

We have considered the prototypical case of sphere on
flat contact over contact and sphere radii from nanome-
ters to micrometers. A previous study considered the
case of a constant shear stress within the contact, as is
often assumed for adhesive contacts. Here we use re-
pulsive interactions between identical crystals that nat-
urally produce a local shear stress that is proportional
to pressure, τmax = αp, as assumed in the Cattaneo-
Mindlin contact theory. Results from an explicit model
of a spherical tip are compared to a lateral force model
that removes the effects of curvature and has a different
local periodic potential. Despite these differences, results
from the two models fall on the same dimensionless plot
in Fig. 4. This supports the conclusion that the regimes
we identify are generic.

The key scaling parameter is the ratio of the contact
radius to the core width of edge dislocations. The core
width gives the minimum distance along the contact for
the registry between surfaces to change by an interatomic
spacing d. The core width decreases with increasing pres-
sure and we use the value b0core from the center of the
contact where the pressure is highest.

In Regime I, the contact size is less than b0core, so all
atoms must advance nearly in registry. The total friction
force is just the sum of periodic forces on each atom.
Each is proportional to the local normal force so we get
a constant coefficient of static friction µ = α. The kinetic
friction is the average of the periodic force and is nearly
zero.

In Regime II, the contact size is larger than b0core. The
large shear stress and low pressure at the edge of the con-
tact lead to nucleation of a dislocation there. The dislo-
cation is unstable and rapidly moves to the center of the
contact where it annihilates. This rapid instability is evi-
dent in plots of force vs. displacement which show classic
stick-slip behavior - gradual increases followed by rapid
drops. The drops decrease in size as a/b0core increases and
the kinetic friction approaches the static friction.

The Cattaneo-Mindlin theory does not include the
characteristic lengths d and b0core. As a result, it predicts
kinks in the shear stress and interfacial displacement. In
our simulations, these kinks are smeared over a width
corresponding to the local core width which depends on
radius and the character of the dislocation. Screw dislo-
cations at the top and bottom of the contact have nar-
rower widths than edge dislocations at the front and back
of the contact. As a result the stress field has higher
peaks at the top and bottom and screw dislocations nu-
cleate first. Recent experiments on elastomer tips find
a related instability nucleates at the top and bottom of
sliding contacts.40

A scaling relation was developed for µ/α in Regime II

by finding the radius where the shear stress at a distance
bcore from the edge of the contact equals the maximum
shear stress associated with the pressure at that same
radius. From Eq. 16, µ/α drops as the -2/3 power of
αa2/dR. This is in sharp contrast to the corresponding
result for adhesive contacts where the shear stress drops
as the -1/2 power of a and the sphere radius does not
matter. Expressing the scaling in terms of normal load,
µ/α drops as load to the -4/9 power.

In Regime III, many dislocations remain stuck in the
contact before the system becomes unstable. Stick-slip
friction is observed with kinetic friction close to the static
friction. The friction force is related to the Peierls stress
required to advance the dislocation array. Using standard
results for the Peierls stress we find µ/α ∝ exp(−R/cαa).
Thus increasing a by increasing the load leads to an in-
crease in friction coefficient. This interesting regime is
only evident for very large contacts (Eq. 19). A full
characterization of the dislocation arrays is complicated
because the Peierls stress varies with angle around each
dislocation loop and there are large, long-range interac-
tions between dislocations.

One important simplification in our work is use of
aligned, identical lattices on the two surfaces. This as-
sumption is necessary to satisfy the assumptions of Hur-
tado and Kim’s theory and is an interesting special case.
However real surfaces are likely to be misaligned, and
curvature and Poisson effects can lead to mismatch in
registry even when the initial surfaces are in registry.
These cases were considered in our previous study of ad-
hesive surfaces and we find similar results for repulsive
interactions. In cases corresponding to Regime I, lack of
registry leads to values of µ/α that are less than unity
and decrease with a. When a > bcore, misalignment leads
to dislocations without the nead for nucleation. The fric-
tion drops to the Peierls stress expected for Regime III.

The local shear stress between real surfaces may not
be simply proportional to load or area. For example,
many surfaces1,5,8,12,25,43 follow a linear combination:
τmax = τ0 + αp. The same three regimes of scaling will
occur for this general case, but there will be no simple
scaling of the total friction with area or load and no sin-
gle power law characterizing the relation between friction
and contact radius. Analysis of dislocations for this gen-
eral case may borrow from studies of bulk dislocations
with a pressure-dependent γ-surface (also known as the
generalized stacking fault energy).44,45

Our results focus on the quasistatic limit. Other ef-
fects may become important at finite velocity. For exam-
ple, Ref.46 considered quasi-1D incommensurate systems
pulled over a substrate at finite velocity. Superlubricity
was destroyed for systems longer than a critical length,
because the viscous drag force led to a change in lattice
constant and made the surfaces commensurate. While
this mechanism is different and the critical length di-
verges as velocity goes to zero, these results also show
the important role of elasticity in modifying friction.

Another important limitation of our results is that the
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substrate is treated in the elastic limit. Surface stresses
may lead to plastic deformation inside the bulk of the
contacting solids rather than at the interface. This would
depend on the loading configuration, orientations of slip
planes, and the relative strength of interactions across
the interface and in the bulk. It would be most likely for
identical materials contacting on a crystal plane where
slip is difficult.
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