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Abstract 
Energy evaluation of charged defects is tremendously important in two-dimensional (2D) 

semiconductors for the industrialization of 2D electronic devices because of its close 

relation with the corresponding type of conductivity and its strength. While the method to 

calculate the energy of charged defects in single-layer one-atom-thick systems of 

equilateral unit cell geometry has been recently proposed, few-layer 2D semiconductors 

are more common in device applications. As it turns out, one may not apply the one-layer 

formalism to multi-layer cases without jeopardizing accuracy. Here, we generalize the 

approach to 2D systems of arbitrary cell geometry and thickness and use the few-layer 

black phosphorus (BP) to illustrate how defect properties, mainly group-VI substitutional 

impurities, are affected. Within the framework of density functional theory, we show that 

substitutional Te (TeP) is the best candidate for n-type doing, and as the thickness 

increases, the ionization energy is found to decrease monotonically from 0.67 eV 

(monolayer) to 0.47 eV (bilayer) and further to 0.33 eV (trilayer). While these results 

show the ineffectiveness of the dielectric screening at the monolayer limit, they also show 

how it evolves with increasing thickness, whereby setting a new direction for the design 

of 2D electronics. The proposed method here is generally suitable to all the 2D materials 

regardless of their thickness and geometry.  
 

*Authors to whom correspondence should be addressed. Electronic address: lixianbin@jlu.edu.cn; 
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westd2@rpi.edu. 

Introduction 

Two-dimensional (2D) materials are promising candidates for future high-

performance electronics and optoelectronics due to their intriguing properties [1-8]. One 

of the prerequisites for achieving this goal is to understand the properties of defect. This 

is not only because that native defects and unintentional impurities are usually 

unavoidable in real sample and can strongly affect the physical properties of materials but 

also because intentional doping is a primary means to control n- or p-type conductivity, 

which is a key ingredient for the design of optoelectronic devices [9-12]. This has 

prompted theoretical development of methods to study ionization energies (IE) or 

charged energies of defects in monolayer materials to overcome the drawback of energy 

divergence accompanied with the use of a conventional jellium approach [13,14]. Due to 

reduced dimensionality and screening, defects usually introduce deep (i.e., close to mid-

gap) levels in such materials [13,15,16]. However, the levels are found to be shallower 

when the monolayer material is placed in a dielectric environment such as on a substrate, 

which can strongly screen the Coulomb interaction between charges [15]. This suggests 

that controllable electrical conductivity should be easier to obtain in few-layer systems. 

Moreover, few-layer 2D materials or a monolayer on substrate is more practical in 

electronic devices instead of a freestanding monolayer [5,17-22]. Therefore, 

understanding defects in few-layer 2D materials is a significant goal for the fundamental 

understanding low-dimensional electronics. One possibility to tackle the physics of 

defects in multilayer could be the use of a supercell with extremely large vacuum size to 

mimic that the few layer is still thin enough compared to this vacuum size and the 

application of the existing monolayer formalism [13]. However, such calculations are 

usually prohibitive due to the associated computational cost. Thus, it is essential to 

update the formalism of IE of defects in 2D materials for systems with more than one 

layer under the condition of limited vacuum size.  

 

In this work, we derive a general formalism of charged energies based on Ref. [13] 

for not only one-atom-thick systems of unilateral geometry such as hexagonal boron 

nitride but also 2D systems of arbitrary thickness and geometry including one-molecule-
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thickness [such as MoS2 and black phosphorus (BP)], few-layer-thick, 2D systems on a 

substrate, as well as surfaces and interfaces. We apply this approach to calculate the IE of 

phosphorus vacancy (VP) and substitutional group-VI impurities (OP, SP, SeP, and TeP) in 

BP from monolayer up to trilayer. Due to the increased screening in thick layers, the IE of 

TeP is reduced from 0.67 eV for monolayer (ML-BP) to 0.47 eV for bilayer (2L-BP), and 

to 0.33 eV for trilayer (3L-BP). The results show that shallow dopants are more practical 

and easier to obtain in few-layer BP, and most likely in other few-layer 2D 

semiconductors as well. 

 

Method and Formulation 

The calculations were performed using the density functional theory (DFT) [23,24] 

with the Perdew-Burke-Ernzerhof approximation for the exchange-correlation functional 

[25], as implemented in the Vienna Ab-initio Simulation Package (VASP) [26,27]. Note 

that while advanced functionals could yield more accurate results [28,29], the 

methodology developed here is independent of the choice of functionals. The cutoff 

energy for the plane wave basis was 520 eV. The 3×2×1 Monkhorst-Pack mesh grid was 

used for k-point sampling and spin polarization was included. All atoms were relaxed 

until the Hellman-Feynman forces on individual atoms are less than 0.02 eV/Å. For 

charged defects, a homogenous counter charge (i.e., the jellium background) was used to 

maintain charge neutrality [9,30,31]. 

 

The formation energy of a defect α of charge q is given by [32], 

( ) ( )

( )

, ( , ) ( )

                 ( , )

f i i VBM F
i

i i VBM F
i

H q d E q d E host n μ q ε ε

E q d n μ q ε ε

Δ = − + + +

= Δ + + +

∑

∑
                                                   (1) 

where ( , )E q dΔ  is the total energy difference between the supercell with defect d , ( , )E q d , 

and the perfect supercell, ( )E host , in is the number of atoms exchanged when the defect is 

created, iμ is the chemical potential of each of the atoms exchanged, and Fε is the Fermi 

energy with respect to the valence band maximum (VBM) of the host material, VBMε . The 

defect transition energy is defined by the Fermi energy at which two different charge 
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states ( )and q q′ of the same defect d  have the same formation energy

( ) ( ), ,f fH q d H q' dΔ = Δ . Namely,  

( ) ( ) ( ) ( )/ , , /VBMε q q ε E q d E q d q q+ = Δ −′ ′⎡ ⎤⎦ ′Δ −⎣                                                            (2) 

A donor ionization energy, which evaluates the ability of defect to produce free carriers, 

is defined by ( )/ 0ε +  with respect to the conduction band minimum (CBM), CBMε , 

whereas an acceptor ionization energy is defined by ( )0 /ε −  with respect to VBM.  

 

The scheme leads to an energy error of  3
1E

V
δ ∝  for 3D materials, which means 

gradually converged energies with increasing cell size, but encounters a divergence with 

increasing vacuum size for charged defects for 2D materials [13,14]. The divergence 

originates from the long-range Coulomb interaction between charged defects and the 

compensating jellium charge. This difficulty is resolved by an extrapolation of the 

asymptotic IE expression provided in Ref. [13],  

                                        (3) 

where IE0  is the converged (converged with respect to variable cell size) ionization 

energy and sL is the in-plane equilateral cell size, i.e., s x yL L L= = , 2
sS L sinθ=  is the 

surface area with θ  being the angle between xL  and yL , and ZL  is the vertical cell size. 

This method has been shown to work well for defects in monolayer boron nitride [13]. 

However, direct application of Eq. (3) does not adequately describe the asymptotic 

behavior of two dimensional systems with certain thickness, such as 3L-BP studied here. 

 

Eq. (3) is derived in Ref. [13], from a formal expansion of the calculated ionization 

energy in a power series of  ( ) and , namely (for a more general expression, 

sL is replaced by  here), 

                                                                                           (4) 

By taking three separate physical limits, (1) , ; (2) 

( , )Z Z Z
s s

α q α' qIE S L IE L IE L
Sε L L ε sinθS

2 2

0 0 2
0 0

= + + = + +
24 24

xL y xL γL= ZL

xL

,,
( , ) i j

x Z i j x Zi j
IE L L c L L∞

=−∞
=∑

    x yL and L are fixed ZL → ∞
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, ; and (3) , the power expansion can be 

substantially reduced to, 

{, , ,
, ,

, , ,
,

( , ) ln( )

                    + 

x Z x
Z x x Z x

Z
x x x

c c c
IE L L c t L c

L L L L L

c c c
c L

L L L

−2 −2 −1 −2 −1 −1
0 −2 0 −12 2

−2 0 −1 0 −2 1
0 02 2

⎫⎛ ⎞1 1 ⎪= ⋅⋅⋅ + ⋅⋅ ⋅ + + + + + + + ⎬⎜ ⎟
⎪⎝ ⎠ ⎭

⎛ ⎞ ⎛ ⎞
⋅ ⋅ ⋅ + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

L
'

'

             (5) 

Eq. (3) is then arrived at by requiring that Z xL L>> >>1 . While the requirement that

Z xL L>>  is physically clear, it is not quite clear in which cases the largeness of xL  (or ZL  

for that matter) enables the dropping of terms proportional to 1

xL
, 2

1

xL
, etc. To gain a 

better understanding of which terms need to be kept for practical calculations, we revisit 

limit (1) in the more general situation of a charged defect in a dielectric slab of finite 

thickness. 

 

In this limit of ZL → ∞ at fixed xL and y xL γL= , the system can be considered as a 

charged slab with area S  and thickness d02  in a uniform jellium background, see Fig. 1. 

One may integrate the energy density ε ε2
⊥ 0

1
2

E  where 
Z

q z
E

Sε ε d L⊥ 0 0

⎛ ⎞1 2= −⎜ ⎟2 ⎝ ⎠

( )d z d0 0− < <  and ε2 0
1
2

E  where 
Z

zqE
Sε L0

⎛ 2 ⎞
= 1−⎜ ⎟2 ⎝ ⎠

,  Z ZL Lz d d z0 0
⎛ ⎞− < < − < <⎜ ⎟2 2⎝ ⎠

 to 

obtain the total electrostatic energy: 

  ( )total Z
Z Z

q d q dqE L d d
Sε ε Sε ε L Sε ε L

2 3 2 22
0 0

0 0 2
0 ⊥ 0 ⊥ 0 ⊥

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞1 1 1 4 1= − 4 − 2 1− + −1 + 2 −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟24 3 4 3⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
    (6) 

where ε0 is vacuum dielectric constant (i.e., the absolute dielectric constant as the relative 

dielectric constant of vacuum is 1) and ε⊥ is the out-of-plane dielectric constant (relative 

dielectric constant) of the 2D material (see the Appendix for details). As 

x y xS L L sinθ γL sinθ2= × × = , we find 

   ZL is fixed   x yL and L →∞ ,    x y ZL L and L →∞
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( )total Z
x x Z x Z

q d q dqE L d d
γL ε sinθ ε γL ε sinθ ε L γL ε sinθ ε L

2 3 2 22
0 0

0 02 2 2 2
0 ⊥ 0 ⊥ 0 ⊥

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞1 1 1 4 1= − 4 − 2 1− + −1 + 2 −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟24 3 4 3⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (7) 

From this limit, IE  should be dominated by the n
ZL  term,  [ ]n∈ −2,1 . Here, we explicitly 

see that as the thickness of the slab ( )02d  increases, the energy has greater contributions 

from  and  which vanish in the strictly 2D limit ( ). Also, worth noting is 

the presence of term 2
0 xd L∝  in Eq. (7). While this is an idealized system, we see that the 

thickness of the slab plays an important role as the appropriate physical distance to which 

we should compare xL  and ZL . Hence, Eq. (3) is expected to be valid when 

Z xL L d0>> >> . 

 

For the case of 3L-BP however, with 0 0.66 nmd = (thickness 02d ), neglecting 

quadratic terms in xL , even with a lateral dimension of 4 nm would constitute ignoring 

terms ~ 120 meV in the ionization energy. Furthermore, simultaneously requiring 

Z xL L>> , would drastically increase computational time. In order to obtain a tractable 

method for dealing with defects in this systems, we include in the fitting of the ionization 

energy terms which are up to quadratic in length, where we truncate the series as follows: 

, , , ,( )( , ) x
x Z Z

Z Z x x x

c c c cc LIE L L IE L
L L L L L
0 −2 −2 0 −1 0 −2 1

02 2 2

⎛ ⎞ ⎛ ⎞
= + + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                             (8) 

where ( )xc L  contains the logarithmic divergence xL  from Eq. (5), 

,
,( ) ln( )x x

x

c
c L t L c

L
−1 −1

0 −1= + +
'

' and 0 0,0IE c= (as ,x ZL L → ∞ , only 0,0c  survives and thus 

0,0c  equals to 0IE ). Instead of directly fitting all parameters simultaneously in Eq. (8), we 

define 

, , , ,( )( , ) ( , ) x
x Z x Z Z

Z Z x x x

c c c cc LIE L L IE L L L IE
L L L L L
0 −2 −2 1 −2 0 −1 0

02 2 2

⎛ ⎞
= − − − = + +⎜ ⎟

⎝ ⎠
                             (9) 

 consists of terms of , , , and , and it also equals to the 

-2
ZL -1

ZL ZL → ∞

( , )x ZIE L L ( , )x ZIE L L ZL−2
ZL−1

ZL1
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coefficient of the  term (right hand side of the equation). Their specific values can be 

obtained by fitting calculated  with increasing vacuum size  at different . 

Then is obtained as the intercept of  at  . Therefore, the difficult 

problem of taking the limits of and is transformed into a simpler 

problem of finding the intercept of . The results obtained using this way, 

denoted by method 1, are shown in Fig. 3(a-c) which will be detailedly discussed below. 

While this method gives consistent results, the number of calculations involved are 

laborious, which has motivated us to investigate a more approximate method to 

determine the ionization energy. 

 

In practical application, the requirement of large ZL  is much easier to obtain than that 

of large xL , as it only involves increasing the vacuum dimension, instead of the number of 

atoms. If we maintain Z xL L>> , we can drop the 
ZL

1
 and 

ZL2

1
terms from Eq. (8) which 

then reduces to: 

, , ,( , )x Z Z
x x x

c c c
IE L L IE L

L L L
−2 0 −1 0 −2 1

02 2

⎛ ⎞
= + + + ⎜ ⎟

⎝ ⎠
                                                                      (10) 

In order to obtain a more practical expression, which reduces the amount of computation 

required, we can approximate the value of the coefficient 

,
qc d d
γε sinθ ε

2

−2 0 0 0
0 ⊥

⎡ ⎤⎛ ⎞1= −4 − 2 1−⎢ ⎥⎜ ⎟24 ⎝ ⎠⎣ ⎦
 from the ideal case presented in Eq. (7), 

obtaining 

( ),( , )x Z Z 0 0
x x

c q 1IE L L IE L - 4d - 2d 1-
L γL ε sinθ ε

2
−1 0

0 2
0 ⊥

⎡ ⎤⎛ ⎞
= + + ⎢ ⎥⎜ ⎟24 ⎝ ⎠⎣ ⎦

                                    (11) 

which also includes the value of ,
qc
γε sinθ

2

−2 1
0

=
24

which is known exactly. When 

compared with Eq. (3) where  is the vacuum size, ( )Z Z 0 0
1L L - 4d - 2d 1-
ε⊥

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
'  in Eq. 

ZL0

( , )x ZIE L L ZL xL

IE0 ( , )x ZIE L L xL1 → 0

xL → ∞ ZL → ∞

( , )x ZIE L L

ZL
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(11) here may be considered as an effective vacuum size. Then can be obtained in the 

same way as that proposed in Ref [13]. Note that obtained in this way should be a 

function of the threshold of , denoted by , at which the terms of  and are 

considered to be negligible, namely, .  approaches the actual one at 

, so the real  can be deduced by making . Since the term of  

and  diverge faster and faster with increasing thickness  considering the ratio of 

,  should become larger with increasing thickness. This way to get actual 

is denoted by method 2. 

 

Two kinds of native defects (vacancy and interstitial) and four kinds of substitutional 

impurities (O, S, Se, and Te) are calculated here. In addition to Te substitution, the IEs 

for other defects in ML-BP are all obtained by Eq. (11) with  in this study. For 

Te substitution which is adopted to explore the dielectric effect in few-layer BP, the IEs 

in ML-BP, 2L-BP, and 3L-BP are all calculated using method 1 [Eq. (9)] and method 2 

[Eq. (11)]. The dimensions of the supercell size are 4× 4 , 5× 5 , 6× 6  for x yL L× , and (2 

nm – 5 nm), (2.5 nm- 8 nm) , and (3 nm – 8.5 nm) for ZL  in ML-BP, 2L-BP, and 3L-BP 

respectively. It should be noted that in our formulation y xγ L L= must remain unchanged 

during the extrapolation. 

 

Results and Discussions 

Figures 2(a)-(f) show the optimized atomic structures of native defects and 

substitutional impurities in ML-BP. Their formation energies, as a function of Fermi 

energy, are shown in Fig. 2(g). The native defects here include phosphorus vacancy (VP) 

and interstitial (Pi). As most BPs show p-type conductivity in the laboratory [4,5,33-35], 

four substitutional group-VI elements (OP, SP, SeP, and TeP) are considered here to 

explore the possibility of n-type conductivity. For VP, the top layer P atom, originally 

bonded to the vacant P atom in bottom layer, goes down in position to form fourfold 

coordination. In spite of that, the formation energy of neutral VP (= 1.96 eV) is still the 

IE0

IE0

ZL T
ZL 2

ZL− 1
ZL−

( )T
ZIE L0 ( )T

ZIE L0

T
ZL → ∞ IE0

T
ZL1 → 0 2

ZL−

1
ZL− d02

Zd L02 T
ZL IE0

nmT
ZL = 4
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largest. For Pi, the foreign P atom can bond to three host P atoms so its energy is 

relatively low. VP and Pi are acceptors with deep transition energies at VBMε + 0.36 and + 

0.48 eV, respectively. The group-VI elements, S, Se, and Te, on the other hand, favor 

twofold coordination, which leaves one dangling bond (DB) in the top-layer P. Hence, 

they are all donors. While the formation energy follows the trend, Te > Se > S, the donor 

levels at CBMε  – 0.67, – 0.69, and – 0.74 eV get deeper due to the increase of localization 

of P DB. Oxygen is somewhat an exception as the formation energy for charge neutral OP 

is negative now at -0.72 eV due to its exceptionally large electronegativity, which is 

reminiscent of the fact that BP is very easily oxidized by air. Due to the significantly 

increased localization of the P DB in OP, the donor level also drops significantly, 0.11 eV 

below the VBM. 

 

In view of the above results, the best candidate for n-type doping of ML BP are TeP 

( CBMε – 0.67 eV). However, these levels are still too deep to supply sufficient amount of 

carriers for electronic applications. (With a more accurate theoretical band gap, the 

situation is expected to only getting worse since the functional used here is known to 

systematically underestimate the band gap [36,37].) The depth here mainly comes from 

the weak screening of 2D semiconductors, leading to a stronger effective Coulomb 

attraction between opposite charges, compared to behavior in bulk material [15]. The 

screening, however, should get stronger as the layer thickness increases. For the clarity of 

discussion and for simplicity, in our study, defects are kept at the bottom of the first layer 

as in Fig. 2. Altering defect positions are expected to alter numerical results but not the 

conclusion.  

 

Figures 3(a)-(c) show the ( , )x ZIE L L  of TeP in ML-BP, 2L-BP, and 3L-BP, 

respectively. In ML-BP, the ( , )x ZIE L L  is nearly in linear divergence with increasing ZL  

at fixed xL , which means that the terms of 2
ZL−  and 1

ZL−  do not play a major role in the 

energy divergence. However, they indeed do that in 2L-BP and 3L-BP where the energies 

deviate from linear divergence at small ZL . The intercepts at xL1 → 0  of ( , )x ZIE L L  
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denote the real ionization energies, IE0 , which become shallower with increasing layer 

thickness: e.g., 0.67 eV, 0.47 eV, and 0.33 eV for ML-BP, 2L-BP, and 3L-BP, 

respectively. As shown in Fig. 3(d), IE0  is also obtained with method 2 [Eq. (11)]. In this 

way, the terms of 2
ZL−  and 1

ZL−  in Eq. (8) are ignored at T
ZL  (threshold of ZL , at which the 

terms of 2
ZL−  and 1

ZL−  are ignored) and IE0  is dependent of T
ZL , i.e., ( ) T

ZIE L0 . Direct 

extrapolation of the linear dependence in T
ZL1 of ( )T

ZIE L0  yields the actual value IE0  

(orange arrows in Fig. 3(d)), being 0.67 eV, 0.43 eV, and 0.37 eV for ML-BP, 2L-BP, 

and 3L-BP, respectively. The results are well consistent with that obtained with method 1. 

Note that the decreasing ionization energies is not only a result of the up/down shifts of 

the VBM/CBM, but also a result of weakened Coulomb attraction due to increased 

dielectric screening. Though both methods perform well, the first one needs more 

calculation resource than the second one since the latter only requires the calculation of 

three or four points for the linear extrapolation. Moreover, the slope of the linear 

dependence is extremely small for thin films and become larger with increasing thickness. 

This means that the value of ( ) ( )T T
Z ZIE L IE L '0 0−  is minimal for thinnest limitation. Fig. 3 

(d) shows that indeed this is the case for monolayer here, with energy difference between 

( ).  nmT
ZIE L0 = 2 5  and ( )T

ZIE L '0 → ∞  is less than 0.04 eV. Therefore, sensible results can 

be obtained for monolayer at one appropriate T
ZL  without the need for linear extrapolation. 

  

The thickness-dependent IE0 is consistent with the calculated defect/impurity charge 

distributions, shown in Fig. 4 (a-c) along the in-plane (X and Y) and out-of-plane (Z) 

directions, for example, for TeP. They show consistently that, with an increasing layer 

thickness, the spatial charge distributions of the gap states induced by the substitutional 

Te become more delocalized. One can see this from the in-plane charge distribution in 

Fig. 4 (a-b) where there is a significant reduction at the Te site especially between ML to 

2L. Likewise, there is also a significant increase at the tail region away from the Te. 

Although the increase may look small, taking into account the geometric factor of R2, 

where R being the distance to Te indicates that the effect should be on par with that in the 

center, since the total number of electrons for each state is conserved. One can also see 
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this from the out-of-plane charge distribution in Fig. 4 (c) where the tail extends into the 

second layer noticeably for 2L and 3L, but not for ML. One can also see a similar but less 

dramatic effect in charge contour plot in Fig. 4 (d). It appears that in terms of the charge 

distribution, the most significant effect is between ML and 2L, which is consistent with 

the decreasing tendency of ionization energy.  

 

In summary, while Ref. [13] laid the foundation for first-principles determination of 

charged defects in monolayer 2D materials using the standard jellium background 

approximation, it requires a generalization of the approach to cases which are mostly 

used in the practical electronic devices, i.e. few/multi-layer 2D semiconductors instead of 

monolayer, a layer of 2D material on a substrate, and surfaces/interfaces. It also requires 

a generalization to systems of arbitrary geometry and hence with less symmetry 

requirement in the method. These are carried out here. The method here is general and 

suitable for all the 2D materials with arbitrary thickness and geometry. With the 

generalized approach, the dopability of 2D and quasi-2D materials, which is crucial for 

their application in electronic and optoelectronic devices, can be evaluated by the 

calculation of ionization energy. Application to black phosphorus, in particular, to 

substitutional Te (TeP, the most promising candidate for n-type doing) in few-layer BP 

reveals that enhanced screening indeed exists and can reduce the Coulomb attraction 

between opposite charges to result in the dopant wavefunction delocalization as well as 

shallower levels. The ionization energy of TeP decreases by nearly half in 3L-BP (0.33 

eV) in comparison with that in ML-BP (0.67 eV). These results further suggest that for 

2D applications, single layer materials may not always be the best choice but few-layer 

materials can offer the most balanced properties for novel electronic and optoelectronic 

applications.  
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APPENDIX: CALCULATION OF ⊥ε FOR THE 2D MATERIAL WITH A 

CERTAIN THICKNESS 

The calculated Dielectric constant in VASP for a supercell with ZL can be 

approximated by an average of the dielectric constant for the 2D material with thickness

d 02 ( ε⊥ ) and that for the vacuum region (with thickness ZL d 0− 2 ) [16], namely, 

( )Zave

Z

d ε L d
ε

L
0 ⊥ 0

⊥

2 + − 2 ×1
=     

Here, ε ⊥ is the relative dielectric constant we needed for the 2D material (the vertical 

scope from the top atom to the bottom atom) and the relative dielectric constant of 

vacuum is 1. The expression can change to,  

( ) ( )Zave

Z Z Z

d ε L d
ε d ε k

L L L
0 ⊥ 0

⊥ 0 ⊥

2 + − 2 1 1= =1+ 2 −1 =1+⎡ ⎤⎣ ⎦                                         

As such, the a veε ⊥ is inversely proportional to ZL with a slope k . We can get the ε ⊥ via 

the fitting slope k , i.e.
kε
d⊥

0

=1+
2

.                           
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Figure 1. (color online) A schematic illustration of the asymptotic limits of a charged 

defect (yellow star) in a 2D system (light-blue) with thickness ( d02 ) and none-equilateral 

unit-cell geometry ( )x yL L≠  for the limit of ,Z x yL L L>>  . 
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Figure 2. (color online) (a)-(f) Optimized atomic structures of native defects, VP and Pi, 

and substitutional group-VI impurities, OP, SP, SeP, and TeP, in ML-BP. (g) Their 

formation energy as a function of Fermi energy within the calculated GGA band gap of 

0.91 eV. Each P atom has three nearest-neighbor (nn) P atoms. In (a), the out-of-plane nn 

P of the vacant P atom in the bottom layer forms chemical bonds with its two in-plane nn 

P. Five P atoms are significantly relaxed due to this rebonding and they are all marked in 

pink. In (b)-(f), interstitial P and substitutional O, S, Se, and Te are marked in purple, 

tawny, light blue, yellow, and green, respectively.  
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Figure 3. (color online) (a)-(c) Method 1(M1): Ionization energies of TeP at different 

lateral dimensions ( 4 × 4 , 5× 5 , 6× 6  for x yL L× ) as a function of ZL  in ML-BP, 2L-BP, 

and 3L-BP respectively. The insets show the value of , ,( , )x Z
x x

c c
IE L L IE

L L
−2 0 −1 0

02= + +  as a 

function of xL1 . The actual ionization energies sIE0  are indicated by blue arrows. (d) 

Method 2(M2): ( )T
ZIE L0  of TeP as a function of T

ZL1  ( T
ZL , threshold at which the terms 

of 2
ZL−  and 1

ZL−  are ignored) in ML-BP, 2L-BP, and 3L-BP respectively. The real 

ionization energies sIE0  are indicated by orange arrows. M1 and M2 mean that ionization 

energies are calculated with method 1 [Eq. (9)] and method 2 [Eq. (11)], respectively. 
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Figure 4. (color online) Non-averaged linear charge density (passing TeP) along the in-

plane (a) X and (b) Y and (c) out-of-plane Z directions in ML-BP, 2L-BP, and 3L-BP, 

respectively. Vertical solid line marks the position of the Te impurity. Dotted lines in (c) 

denote the physical boundary of each P layer. (d) Charge contour plots with an isosurface 

= −48×10   e/Å3. 
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