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We study a graphene Hall probe located on top of a magnetic surface as a detector of skyrmions,
using as working principle the anomalous Hall effect produced by the exchange interaction of the
graphene electrons with the non-coplanar magnetization of the skyrmion. We study the magnitude
of the effect as a function of the exchange interaction, skyrmion size and device dimensions. Our
calculations for multiterminal graphene nanodevices, working in the ballistic regime, indicate that
for realistic exchange interactions a single skyrmion would give Hall voltages well within reach of the
experimental state of the art. The proposed device could act as an electrical transducer that marks
the presence of a single skyrmion in a nanoscale region, paving the way towards the integration of
skyrmion-based spintronics and graphene electronics.

I. INTRODUCTION

Skyrmions are magnetic non-coplanar spin textures
that are attracting a great deal of attention for both
their appealing physical properties1 and their potential
use in spintronics.2–5 They have been observed form-
ing lattices in a variety of non-centrosymmetric mag-
netic crystals,6–9 including insulating materials such as
the chiral-lattice magnet Cu2OSeO3.10–12 They also form
two dimensional arrays in atomically thin layers of Fe
deposited on Ir(111).13,14 In these systems the spins
typically feel a competition between aligning with their
neighbors and being perpendicular to them, what favors
chiral ordering. A variety of interactions can assist non-
collinear arrangements, including Dzyaloshinskii-Moryia
interactions, dipolar interactions and frustrated exchange
interactions and the size of an individual skyrmion can
range from 1 nm to 1 µm depending on which specific
mechanism is involved. To date, these magnetic struc-
tures are detected by means of neutron scattering,6 elec-
tron microscopy15 and even individually, with atomic
scale resolution, by means of spin polarized scanning tun-
neling microscopy13,16 and atomic size sensors.17

The particle-like nature of skyrmions has motivated
proposals to use them as elementary units to store classi-
cal digital information, inspired by the magnetic domain-
wall racetrack memories.18 Such a perspective has be-
come increasingly attractive since it has been experi-
mentally proved14 the possibility of manipulating two-
dimensional magnetic lattices by creating and destroy-
ing individual skyrmions by means of spin-polarized cur-
rents in STM devices. This, along with the experimen-
tal finding19 of skyrmion motion driven by ultralow cur-
rent densities of the order of 10−6 A m−2, considerably
smaller than those needed for domain wall motion in fer-
romagnets, makes skyrmions potentially optimal candi-
dates for the next generation of magnetoelectronic read-
out devices.

Mathematically, skyrmions are topologically non-
trivial objects whose topology content is embedded in

an index, the winding number N , defined as

N =
1

4π

∫
A

n(x, y) ·
(
∂n(x, y)

∂x
× ∂n(x, y)

∂y

)
dx dy (1)

where n(x, y) : R2 → R3 is a classical magnetization
field and the two-dimensional integral is performed over
the overall area occupied by the skyrmion. The wind-
ing number N can only acquire integer values, and a
skyrmion is distinguished from other topologically trivial
magnetic textures for exhibiting a non-zero value of the
integer N . The magnetization field n(x, y) of a skyrmion
can be expressed as a mapping from the polar plane co-
ordinates r = (r, φ) to the unit sphere coordinates (Φ,Θ)

n(r) = (cos Φ(φ) sin Θ(r), sin Φ(φ) sin Θ(r), cos Θ(r))
(2)

provided the spin configuration at r = ∞ is φ-
independent so that it can be mapped to a single point
on the sphere. The mapping is specified by the two
functions:20

Φ(φ) = Nφ+ γ (3)

and Θ(r) varies from 0 for large r to π as we approach
r = 0, the core of the skyrmion. Here we adopt the
following model:

Θ(r) =

 π for r = 0
f(r) = π (1− r/R) for 0 < r ≤ R
0 for r > R

(4)

where N is the skyrmion winding number introduced in
(1), γ is a phase termed helicity that can be gauged away
by rotation around the z-axis, and f(r) = π (1− r/R)
is a function of the radial coordinate that describes a
smooth radial profile inside of the skyrmion radius R.
Such a texture describes a magnetic configuration where
the spins are all aligned perpendicular to the film plane
with the exception of those comprised within the radiusR
where they all progressively align along the anti-parallel
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Figure 1. A graphene triangular quantum dot (the trans-
mission region) proximized with a skyrmion and connected to
three leads. Due to the anomalous Hall effect, a net transverse
voltage is generated by the skew scattering of Dirac electrons
traveling though the central region.

direction, that is picked up exactly at r = 0. The con-
dition that the spins at r = 0 and r = ∞ are oppositely
oriented is crucial in order to ensure a non-trivial topol-
ogy of the magnetic texture.

Several recent theoretical works21–23 point out that
two-dimensional systems coupled either weakly or
strongly to individual skyrmions or skyrmionic lattices
can develop an Anomalous Hall (AH) or Quantum
Anomalous Hall (QAH) phase owing to the non-trivial
topology of these structures in real space. This effect
refers to the onset of a transverse Hall response arising
in magnetic systems driven by anomalous velocities, asso-
ciated to Berry curvature, without the need of an applied
magnetic field.24 This anomalous Hall response can be ei-
ther of extrinsic or intrinsic nature. In the case of prox-
imizing a pristine 2D system with magnetic skyrmions,
the generation of a transverse voltage is of extrinsic na-
ture and ascribable to the imprinting of the skyrmions
real space topology onto the (trivial) reciprocal space
topology of the non-magnetic system,23 and is known as
the topological Hall effect. Based on these findings, along
with a recent work demonstrating the possibility of grow-
ing a graphene flake on top of a single atomic layer of Fe
on a Ir(111) substrate,21,25 here we consider graphene
flakes weakly coupled to magnetic films as skyrmion de-
tectors. To this aim, we compute the skewness of the
scattering and the associated Hall signal induced in a
graphene island coupled to a single skyrmion within a
multi-terminal geometry. Graphene unique properties
are ideal to implement the proposed device. As a fact,
being atomically thin maximizes proximity effects, mak-
ing it an optimal material to grow on top of magnetic
materials. Furthermore, the fabrication of high qual-
ity graphene electronic devices both at the micron and
nanometer scale is absolutely well demonstrated26–28 and
its use as a magnetic sensor for magnetic adsorbates
has been already tested experimentally29,30 and studied
theoretically.31

The paper is organized as follows. In section II we

discuss a 2D Dirac system in the continuum coupled to
a non-uniform spin texture and performing a standard
rotation in spin space we unveil two types of influence
on the Dirac electrons. In section III we introduce Lan-
dauer’s formalism for quantum transport on the lattice
and describe the setup of the proposed Hall experiment.
Finally, in section IV, we discuss the results obtained by
applying Landauer’s formula to a graphene flake coupled
to a single skyrmion, characterizing the Hall conductance
as a function of several parameters and comparing the
effectiveness of graphene with that of a standard two-
dimensional electron gas (2DEG).

II. ANALYTIC APPROACH IN THE
CONTINUUM

In this section we describe graphene electrons interact-
ing with a non-coplanar magnetization field n, as given
by equation (2), using a 2D Dirac Hamiltonian:

H = H0 +Hex = −i~τvF (∂xσx + τ∂yσy) + Jn · s (5)

with s = (sx, sy, sz) the vector of Pauli matrices acting
in spin space and σ = (σx, σy, σz) the vector of Pauli
matrices acting in pseudo-spin space. Following the
procedure introduced in previous works,20,21,32,33

we perform a rotation of the Hamiltonian so that in ev-
ery point of space the spin quantization axis is chosen
along the direction of the spin texture n. As a result, the
representation of the exchange term is diagonal in the
rotated frame, but the Dirac Hamiltonian acquires new
terms that encode the influence of the exchange interac-
tion of the Dirac electrons with the non-coplanar field.
This analytic model does not account for possible lattice
mismatch effects between the graphene sample and the
magnetic substrate, which could be responsible for val-
ley mixing and/or coupling strength renormalization. In
fact, the model is intended to qualitatively isolate the in-
dividual physical effects that sum up to give an anoma-
lous response rather than providing an exhaustive de-
scription of the scattering problem. Microscopic effects
at the lattice level will be included in the numerical tight
binding approach that is the focus of the next section
and in the appendix.

The unitary matrix R that performs the
above-mentioned transformation in the basis
ψ = (A ↑, B ↑, A ↓, B ↓)T is

R =

 u 0 v 0
0 u 0 v
−v∗ 0 u∗ 0

0 −v∗ 0 u∗

 =

(
u v
−v∗ u∗

)
σ0 (6)

where

u = cos
Θ(r)

2
eiΦ(φ)/2 v = sin

Θ(r)

2
e−iΦ(φ)/2 (7)
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Figure 2. Mapping of a system characterized by real hopping
and with a double exchange interaction with a non-coplanar
magnetic texture to a system with spatially uniform magneti-
zation field and with a complex hopping function mimicking
the coexistence of spin-orbit with a vector gauge field.

The transformed Hamiltonian H → H ′ = RHR−1 reads

H ′ = τvF [σx (px +Ax) + τσy (py +Ay)] +

+
~τvF

2

[
−σx

(
N

r
sxny + ∂rθsy cosφ

)
+

+ τσy

(
N

r
sxnx − ∂rθsy sinφ

)]
+ Jsz (8)

with

Ax = ~
N

2r
cos θ sinφ sz

Ay = −~N
2r

cos θ cosφ sz (9)

and nx = cos Φ sin Θ, ny = sin Φ sin Θ. In the rotated
reference frame, the exchange term is manifestly diag-
onal. Besides, the Hamiltonian has acquired additional
kinetic terms. The A = (Ax,Ay) field acts as a spin-
dependent gauge vector potential that couples with the
momenta of the Dirac electrons, whereas the remaining
two terms closely resemble a spin-orbit (SO) interaction
of the Rashba type. On the lattice, the above trans-
formation corresponds to mapping a system character-
ized by a non-collinear exchange field and real hopping
to a ferromagnetic system with a purely imaginary hop-
ping mimicking the effect of SO coupling plus a complex
hopping supported by a gauge field entering as a Peierls
phase. This is schematized in figure 2. From the gauge
field, one can compute the effective magnetic field acting
on the system as

B = ∇×A = ~
N

2r
sz

[
∂rθ sin θ − 1

r
cos θ

]
ẑ (10)

that reads

Bz = −~N
2r
sz

{ [
π sin θ/R+ r−1 cos θ

]
for r ≤ R

r−1 for r > R
(11)

This transformation of the Hamiltonian therefore al-
lows to interpret the topological content embedded in
the skyrmion texture as a superposition of two effects:
(i) The generation of an effective emergent electromag-
netic field (EEMF) described by the gauge potential A;

(ii) The coexistence of ferromagnetic exchange with a
Rashba-like SO interaction, what has been predicted to
give rise to a QAH phase.34 Both ingredients are endowed
with a topological character that the skyrmion texture is
able to imprint onto the Dirac electrons and are therefore
responsible for generating a Hall response in the system.
Expressions analogous to equations 8, 9 and 11
have been obtained in previous works in the con-
text of Schrodinger and band electrons,20,21,32,33

with the remarkable difference that in the strong
coupling limit (J � t) the spin-mixing terms van-
ish and the problem is exactly mapped to a spin-
less one-band system where the electrons mo-
menta are coupled to a vector potential describ-
ing an emergent magnetic field. In the case of
Dirac electrons, the spin-mixing term survives at
all coupling regimes and the mapping to a pure
EEMF is an incomplete description of the physics
taking place in the system. Whereas this picture pro-
vides some physical insight of what happens to graphene
Dirac electrons surfing a skyrmions, it does not provide
a straightforward method to compute the Hall response.

III. TIGHT-BINDING QUANTUM
TRANSPORT APPROACH

In this section we overview the quantum transport
methodology that we will employ to compute the Hall
response induced by an individual magnetic skyrmion in
a graphene device. Importantly, we are implicitly assum-
ing that the substrate material is an insulating skyrmion
crystal such as CuGeO3

35 and Cu2OSeO3
10–12 in such a

way that the current only flows through graphene.
The graphene electrons are described with the stan-

dard tight-binding Hammiltonian for the honeycomb
lattice with one pz orbital per atom,36 plus their ex-
change interaction with the classical magnetization of the
skyrmion n:

H = −t
∑

<i,j>,σ

c†iσcjσ + J
∑
i

Si · ni (12)

Here ni is the classical continuous magnetization tex-
ture (2) discretized over the graphene lattice and taken

at site i and Si =
∑
σσ′ c

†
iσsσσ′ciσ′ is the vector whose

components are the Pauli matrices acting in spin space
associated with the i-th lattice site. The < i, j > sym-
bol implies summation over all nearest neighboring pairs
of atoms, and we are assuming that the magnitude of
the magnetization is uniform over the whole graphene
lattice. This Hamiltonian has been considered before23

for the case of 2D graphene interacting with a skyrmion
crystal. In contrast, here we consider a graphene device
that hosts an individual skyrmion. We note that we are
treating the rather complex interaction of the graphene
carriers with the magnetic moments of the substrate as
a purely local exchange interaction, as well as neglecting
the modulation of the onsite potential associated to the
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mismatch of the graphene lattice with that of the under-
lying material. While this is an approximation of the real
problem, in the appendix we show that both assumptions
are quite reliable as deviations from them do not yield
considerable changes in the results presented in the main
text.

The mathematical framework that we use to study
quantum transport is based on Landauer’s formalism for
conductance.37 Given an experimental setup where a de-
vice is attached to N metallic contacts, Landauer’s multi-
terminal technique allows to compute the transmission
amplitude between the m-th and the n-th contact from
the relation

Tmn = Tr
(
G+
d ΓnGdΓm

)
(13)

where Gd and G+
d are respectively the retarded and

advanced Green’s functions of the device, that is the
Green’s function of the isolated device corrected by the
self-energies Σm of the N leads

G−1
d (ε) = (ε+ iδ) I−Hd −

N−1∑
m=0

Σm (14)

where Hd is the Hamiltonian of the isolated device. The
Γm’s are quantities associated to the leads’ selfenergies
as Γm = i (Σm − Σ+

m). The leads’ self-energies incorpo-
rate the coupling between the device and the leads as
Σm = t+mgmtm, with gm the surface Green’s function38

of the m-th lead, and tm the hopping matrix between
the device and the m-th lead. From the knowledge of the
transmission amplitudes, the expression for the total cur-
rent flowing from the lead m follows straightforwardly:

Im =
e

h

∑
n 6=m

+∞∫
−∞

dε [f (ε− µm)− f (ε− µn)]Tmn(ε)

with f(ε − µ) the Fermi distribution function, so that
at zero temperature the previous expression reduces to
Im = e

h

∑
n 6=m

∫ µm

µn
dεTmn(εF ) and for a sufficiently small

energy interval µm−µn one can expand the transmission
coefficient Tmn (ε) around the Fermi energy εF and stick
to zeroth order. By doing so, one finally finds that the
formula for the current flowing from the lead m becomes:

Im =
e

h

∑
n 6=m

(µm − µn)Tmn(εF ) (15)

This equation can be used to derive the Hall response in
a given multiterminal device in two different ways. In
both cases, the first step of the calculation is the numeri-
cal determination of the transmission coefficients Tmn (ε).
Then we can either impose (i) the voltage drops eV , de-
fined as the difference between the chemical potentials of
the different electrodes, and compute the resulting cur-
rent (inverse Hall effect), or (ii) impose a longitudinal
current flow and a null transverse current, find the result-
ing chemical potentials and determine the Hall response
(direct Hall effect).

When the methods just described are implemented in
an ordinary four-terminal geometry,22 the resulting rela-
tion between the Hall conductance and the transmission
coefficients is far from intuitive. In this paper, for the
sake of simplicity, we consider a three terminal device
(TTD) of the kind of the one shown in figure 3a. We
choose to fix the chemical potentials of the three elec-
trodes, labeled as 0, 1 and 2, and compute the result-
ing current. Specifically, we impose that V0 = V and
V1 = V2 = −V . In this way, the voltage difference be-
tween leads 1 and 2 is automatically set to zero whereas
the voltage difference between lead 0 and leads 1,2 is
Vy = V0−V1,2 = 2V . The expression for the current flow-
ing from leads 1 and 2 is Ii = 2V T0i for i = 1, 2. From
this expressions it is straightforward to deduce the cur-
rent imbalance δI, that reflects the presence of a trans-
verse force, δI = I1 − I2 = 2V (T01 − T02), whence our
definition of Hall conductance in this geometry

GH =
δI

V0 − V1,2
=
e2

h
(T01 − T02) ≡ e2

h
δT (16)

In the following we present the numerical results for the
normalized transmission imbalance, that is

TH =
δT

T
≡ (T01 − T02)/(T01 + T02) (17)

in order to work with quantities that do not depend on
the number of conduction channels in the device. This 3-
terminal setup simplifies considerably the analysis of the
numerical results, and also matches the C3 symmetry of
the graphene lattice. However, in a real device, disorder
and contact asymmetries might result in additional trans-
mission imbalances that might obscure the detection of
skyrmions. Thus, in real devices a standard 4 terminal
geometry should be used, given that the principles and
magnitude of the physical effect are expected to be the
same.

IV. RESULTS AND DISCUSSION

We now present the results obtained by calculating the
imbalance in the transmission coefficients TH eq. (17) for
a graphene quantum dot coupled to a skyrmion. For a
better physical insight, we provide an estimate for the
equivalent magnetic field Beq that would give rise to a
conventional Hall response of the same magnitude of that
induced by the skyrmion. Details on the determination
of such a field are given in the Appendix. In the follow-
ing we consider flakes sizes of the order of ∼ 50 nm2,
and skyrmions with radius of the order of 2-3 nm and
winding number N = 1. Also, we are solely interested in
realistic39,40 weak exchange proximity effects, that do not
alter the graphene spectrum substantially, so we explore
coupling constants up to J ∼ 100 meV40–42. DFT cal-
culations for graphene proximized with EuO,40 BiFeO3

41

and YIG42 report exchange splittings on the order of 37,
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Figure 3. (a) Three terminal device setup for the inverse Hall
measurement with C3 rotational symmetry. (b) Normalized
transmission imbalance TH (eq. 17) and equivalent magnetic
field Beq as a function of the coupling constant J , compari-
son of a Dirac-like (undoped graphene, with the Fermi level
εF close to the Dirac point) and a Schrodinger-like (heavily
doped graphene, with εF much larger than the energy of the
Dirac point εD) material for an island with side of 10.6 nm
and a skyrmion radius of 2.3 nm. Inset: log-log representation
of TH(J) and Beq(J).

70 and 50 meV, placing the range of coupling constants
considered in our work fairly within the current state of
the art. In order to simulate standard metallic contacts
in some of the calculations square leads have been used
instead of hexagonal leads. Results obtained with differ-
ent leads geometries are consistent, so we chose to present
curves associated to one or the other geometry in order to
minimize resonance effects due to confinement inside of
the central island. We note that as an anomalous current
flows through the graphene dot, the magnetic skyrmion
could undergo a current-driven rebound motion whose
dynamics is governed by the Thiele’s equation43. Such
a phenomenon is beyond the scope of the present work,
and we remit the reader to the several theoretical and ex-
perimental works44–46 that focus on this topic for further
details.

A. Anomalous Hall effect

We first investigate the magnitude and behavior of the
transmission asymmetry TH as a function of the cou-
pling constant J , comparing the results for Dirac elec-
trons (half filled honeycomb lattice, with the Fermi en-
ergy εF close to the Dirac point), and Schrodinger elec-
trons (heavily doped honeycomb lattice, with the Fermi
energy away from the Dirac point). The result is shown
in fig. 3(b) in both linear and logarithmic scale, for a
skyrmion with radius R = 2.3 nm and a device of linear
dimension L = 10.6 nm. The first thing to notice is that,
even for small J ' 1 meV, the equivalent field Beq is
of the order of 1 Tesla, which shows that the anomalous
Hall effect is very large. For J < 100 meV the trans-
mission imbalance TH of Dirac electrons shows an ap-
proximately linear behavior with J in contrast with the
case of Schrodinger electrons (Fermi energy away from
the Dirac point) for which T ∝ J3. For all the values
of J , the Hall response for Dirac electrons is much larger
than for Schrodinger electrons, most notably for the ex-
perimentally relevant case of small J , for which TH is up
to 4 orders of magnitude larger. This difference is re-
duced and eventually canceled at higher and unrealistic
couplings larger than 100 meV.

We now characterize the Hall conductance of a
graphene TTD by investigating its dependence on the
system parameters, such as the Fermi energy of the leads,
the skyrmion size R and the size of the graphene island
coupled to the skyrmion. The results are shown in fig. 4.
The anomalous Hall response as a function of the chem-
ical potential of graphene (fig. 4(a,b)), shows a local
maxima at charge neutrality, and other two local max-
ima of opposite sign at symmetric electron/hole doping,
a behavior resembling graphene coupled to a skyrmion
crystal.23 Such phenomenology can be understood in
terms of the modification of the Dirac cone due to the
non-coplanar magnetization field. As we have seen in
section II, the problem can be mapped to one where spa-
tially uniform exchange field and Rashba-like spin-mixing
terms coexist. The first contribution has the effect of lift-
ing spin degeneracy, whereas the latter opens small gaps
at both the Fermi energy and at crossing points forming
at higher energies of the order of ±J . Within these gaps,
the absolute value of the Berry curvature reaches local
maxima and this is reflected in the behavior of TH as a
function of the transmission energy ε shown in fig. 4.

In fig. 4(c) we show the behavior of TH as a func-
tion of the skyrmion radius R, keeping the dimension
of the device constant and equal to L = 10.6 nm, and
J = 80 meV. We consider the case of small skyrmions
with nanometric radius such as those found in systems
with frustrated exchange interactions.47 Two competing
effects are at play as the radius of the skyrmion increases:
on the one side the change in magnetization as a func-
tion of the distance from the skyrmion center becomes
smoother, so that the effective skew scattering is weaker,
and on the other the surface where the skew scattering
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Figure 4. (a) Schematics of the effect on the local electronic
structure of graphene of being proximized to a skyrmion.
(b) Left-right normalized transmission imbalance TH of a
graphene TTD as a function of the transmission energy of the
leads ε for an island of 15.5 nm, skyrmion radius of 3.4 nm
and coupling constant J = 80 meV. Energies characterized by
maximum absolute Berry curvature in the infinite system are
evidenced. (c) and (d) Transmission imbalance of a graphene
TTD as a function of skyrmion radius (with fixed flake size
of L = 10.6 nm) and flake size (with fixed skyrmion radius
of R = 1.4 nm), respectively. Both calculations have been
performed for a coupling constant of 80 meV. Insets show
log-log representation of TH . (e) Comparison of two calcula-
tions where the radius of the skyrmion and the linear size of
the flake are scaled linearly by a common factor α = 1.25, for
J = 80 meV. All plots present a second vertical axis in which
the equivalent magnetic field Beq is displayed.

is non zero increases. The normalized scattering asym-
metry resulting from our calculations behaves as R4 in-
dicating that the second mechanism is dominant, and
therefore that larger skyrmions yield a stronger Hall sig-
nal.

The dependence of the Hall response on the size of the
graphene flake is shown in Fig. 4(d), for a fixed radius of
R = 1.4 nm and an exchange of J = 80 meV. We see that
by increasing the flake size while keeping the skyrmion
radius fixed, the Hall signal decreases as L−1, where L
is the linear size of the triangular transmission region.
From these results we infer that the Hall conductance
behaves as TH(R,L) ∼ R4/L as a function of the radius

and of the linear size of the central island. This scaling
reflects the fact that the Hall response is proportional to
the probability that the electrons surf over the skyrmion,
which is manifestly an increasing function of R and a
decreasing function of L.

By changing both the radius and the device size
by a common factor α, TH scales as TH(αR,αL) ∼
α3TH(R,L) indicating that the Hall conductance is not
scale invariant under simultaneous rescaling of R and L.
Now, since we are considering flakes of the minimum ex-
perimentally achievable dimensions proximized with the
smallest skyrmions experimentally detected so far (of the
order of the nm, whereas observation of skyrmions with
radius of up to 100 nm has been reported15,48), the pre-
sented scaling argument evidences that our estimates of
Hall conductances of the order of 10−5-10−4 G0 merely
set a lower bound for the range of values that this param-
eter can undertake in actual laboratory measurements. A
general example of this non-linear scaling trend is shown
in fig. 4(e) where a comparison of two systems with L
and R scaled by a common factor is presented.

We note that most systems in the brink of hosting
skyrmion lattices need a non-zero external magnetic flux
to drive them into the skyrmionic phase, as they typ-
ically exhibit spiral spin phases at zero magnetic field.
This implies that an additional non-zero Hall contribu-
tion is to be expected from the external field that sums
up to the one driven by the skyrmion alone. An effec-
tive way to discriminate between the two effects relies
on their different symmetry properties. In fact, while
the skyrmionic contribution is electron-hole symmetric
(as made clear by fig. 4(b)) and changes sign only by
switching the sign of either J or N , the Hall effect in-
duced by the magnetic field is electron-hole asymmetric
as holes have opposite charge with respect to electrons
and thus respond with an opposite velocity to an applied
external magnetic field. It is thus the ε → −ε asym-
metry of the overall scattering cross-section that allows
to subtract the spurious external contribution and de-
termine the intrinsic skyrmionic one. We also note that
the anomalous Hall response will be non-zero if other
non-coplanar spin textures, that are not skyrmions, are
present in the background material. However, in most
systems it is to be expected that the magnetic configu-
rations that do not make it to the skyrmionic phase are
structures that are coplanar but non-collinear, like spin
spirals. Those kind of structures, because of coplanarity,
are not able to generate an anomalous Hall signal in the
absence of spin-orbit coupling.

B. Effects of disorder

So far we have dealt with a graphene flake perfectly
clean. However, some current degradation brought about
by defects or impurities in the sample is to be expected.
In order to provide a more realistic estimate of the extent
to which the Hall responses that our results anticipate
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�W/2

Figure 5. Panels (a) and (b) show a typical realization of a
disordered configuration with (a) and without (b) y → −y
symmetry. In panels (c) and (d) we present the associated
curves of TH and Beq as a function of the disorder strength
W for fixed values of J = 80 meV, L = 10.6 nm and R = 2.3
nm.

are robust with respect to this loss of conductance, we
now consider the effect of introducing an amount of scalar
disorder in the samples. We do so by averaging over N =
50 Anderson disorder configurations in each of which we
assign a random scalar on-site potential Wi ∈ [−W/2 :
W/2] to each atom in the quantum dot and tune the
parameter controlling the disorder degree W from 0 to a
maximum of ∼ 400 meV, an upper limit for the energy
scale associated with disorder that is consistent with the
assumption of Coulomb long-range scattering.42,49 The
clean limit is recovered for W = 0.

We employ square leads and compare two disorder con-
figurations with different symmetry: one where the disor-
der distribution preserves mirror symmetry with respect
to the y axis and one where the distribution is completely
random in the whole sample. A realization of each of
these different disorder profiles is shown in fig. 5(a,b).
Error bars associated with the standard deviation of the
data are shown for completeness. From the resulting TH
curves shown in fig. 5(c,d) we see that symmetric disor-
der barely affects the Hall response of the problem, as it
provokes changes in the normalized transmission imbal-
ance of the order of ∆TH/TH ≈ 10−2. On the other side,
a randomly distributed disorder that does not respect
y → −y symmetry affects the conductance more sizeably,
yielding variations ∆TH of the order of TH . The differ-
ence could be explained by noting that in the symmetric
case the defects simply act as a fluctuating potential that
does not contribute to the asymmetry of the scattering,
whereas in the random case an additional transverse con-
ductance driven by the disorder asymmetry rather than
by the skyrmion-induced AHE is generated. However,

significant alterations of the Hall response only take place
at relatively high values of the disorder potential of the
order of ∼ 400 meV, whereas for weaker and more reason-
able disorder strengths the change in the conductance is
smaller and comparable to the one obtained in the sym-
metric configuration. We can therefore safely rely on the
results obtained so far for pristine graphene, as the un-
avoidable presence of a low concentration of defects and
noise in the actual samples is not able to turn down the
figure of merit of the problem.

V. CONCLUSIONS

Our results strongly indicate that graphene would be
an excellent skyrmion detector at realistic exchange cou-
plings of the order of ∼ 1-10 meV, exhibiting minimum
Hall conductances GH of the order of 10−5-10−4 G0,
several orders of magnitude larger than the minimum
experimentally detectable conductance of the order of
10−10 G0.50,51 The equivalent magnetic field Beq can eas-
ily reach one Tesla for J ≈ 1 meV , R ≈ 2 nm and
L ≈ 10 nm. Besides, these values merely set a lower
bound estimate for the conductances that are detectable
in actual experimental devices where sample dimensions,
skyrmion radius and even skyrmion number can be con-
sistently larger than those considered in this work. Our
results also show that at weak coupling Schrodinger elec-
trons are less sensitive to the non-trivial magnetic order-
ing and respond with a conductance that is some orders
of magnitude smaller than that displayed by Dirac elec-
trons. Finally, we proved that scalar disorder does not
affect the transverse conductance in a dramatic manner.

In conclusion, we suggest that graphene might be ex-
ploited as a non-invasive probe to readout the pres-
ence of an individual skyrmion in a material under-
neath. The underlying physical principle is the enhanced
anomalous Hall effect due to the interaction of Dirac
graphene fermions with non-coplanar spin textures. Our
work establishes the principles of hybrid devices com-
bining graphene Hall probes and insulating skyrmionic
materials.10–12
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APPENDIX

A. Effects of the mismatch between graphene and
the substrate

In this appendix we explore the effects of realistic per-
turbations in the quantum Hall conductance. In particu-
lar, we study (i) the moiré potential induced by the sub-
strate, (ii) the renormalization effects on the exchange
coupling between the graphene electrons and the sub-
strate, associated to the mismatch between the two lat-
tices, and (iii) the existence of a non-local component of
the exchange interaction.

1. Effect of onsite modulation

The first effect captures the fact that a substrate with
a lattice parameter that differs from that of graphene will
result in the generation of a modulation of the local po-
tential felt by the graphene electrons on a characteristic
scale that depends on the lattice parameter of the under-
lying material. This could have important consequences
on the magnitude of the anomalous response, since the
existence of a moiré pattern could fold the Brillouin zone
and generate intervalley scattering. We account for the
effect of the potential modulation by means of the fol-
lowing contribution to the graphene Hamiltonian

Hm =
∑
i

µic
†
i ci with µi = µ(

∑
j

e−|ri−Rj |/Λ − η)

(18)
where we choose η such that 〈µi〉 = 0, that implies
that the charge neutrality point is at ε = 0. For a
fixed µ, the local potential µi varies within the inter-
val µi ∈ [−µmax, µmax], depending on the value of Λ.
Note that the limit Λ → ∞ corresponds to the pris-
tine case µi = 0 for every site i. The vectors Rj in-
dicate the positions of the atoms of the magnetic sub-
strate, that we model as a triangular array52 with a lat-
tice parameter atr that is not commensurate with that
of graphene, whereas the vectors ri refer to the positions
of the atoms in graphene. We take λ = 0.5a0 and we
calculate the normalized transmission asymmetry as a
function of µmax = max(µi), and of the lattice param-
eter of the substrate atr. The results are shown in fig.
6(b) and (c), whereas in panel (a) we show a particular
realization of the moiré pattern. We observe that even
in the presence of sizable onsite modulations of 0.1 eV,
the anomalous Hall signal remains at a similar magni-
tude as in the pristine case. Such behavior suggest that
the anomalous Hall signal will be observable even in the
presence of realistic substrate induced potentials.

- 0.02

0.02

0.0

0.01

- 0.01

! 
[e

V
]

(e)

(a)

(b) (c)

(d)

Figure 6. Panel (a) displays a specific configuration of the the
site-dependent potential associated to the moiré pattern for
atr = 1.4 a0 = 3.44 Å, Λ = 0.3 a0 = 0.74 nm and µmax = 0.04
eV. In panels (b) and (c) we study the effect of adding the
term in eq. (18) to the Hamiltonian studied on the main text.
Specifically, panel (b) shows TH as a function of µmax for dif-
ferent lattice parameters of the substrate, and panel (c) shows
TH as a function of atr for different values of µmax. Both cal-
culations are performed for Λ = 0.5 a0. In panel (d) we have
substituted eq. (19) to the exchange Hamiltonian employed
in the main text, equation (12), and calculated TH as a func-
tion of λ for a fixed value of J and different values of atr . In
(e) we show the behavior of the transmission asymmetry TH

as a function of the non-local exchange amplitude J1/J when
the Hamiltonian term in eq. (21) is added to eq. (12). All
calculations were performed for an island with side of 10.6
nm, skyrmion radius of R = 2.6 nm, an exchange coupling
constant of J = 80 meV and a distance between the graphene
plane and the substrate d = 2a0.

2. Effect of exchange averaged over neighbors

The second effect relates to the mismatch between the
two lattices and accounts for the renormalization of the
exchange coupling constant due to the fact that the ex-
change exerted by each localized magnetic moment of
the substrate is not contact-like but rather decays expo-
nentially over a distance of the order of the lattice pa-
rameter. Therefore, graphene electrons feel an exchange
that is given by a superposition of the slightly misaligned
magnetic moments of its nearest neighboring atoms in
the substrate. In order to account for such an effect, we
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Figure 7. Normalized transmission imbalance TH = δT/T as
a function of an applied perpendicular magnetic field B⊥.

rewrite the exchange term of the Hamiltonian as

HJ = J
∑
i

Si · 〈ni〉(λ) (19)

with 〈ni〉(λ)

〈ni〉(λ) = C
∑
j

mje
−|ri−Rj |/λ (20)

where j runs over the indexes of the substrate, Rj are
the positions of the atoms of the substrate, mj is a unit
vector pointing in direction of the local magnetization on
the sites of the substrate, and C is a normalization con-
stant chosen so that max |〈ni〉| = 1. In the limit where
graphene and the substrate are commensurate (if the sub-
strate had also a honeycomb lattice), and λ→ 0, the pre-
vious formula would yield 〈ni〉(λ) = mi and we would re-
cover the contact-like and commensurate limit explored
in the main text. Nevertheless, for non-commensurate
lattices, the limit λ → 0 would give exchange only in
selected atoms, so that this regime is to be considered
nonphysical in the present model. In any other situation,
the previous parametrization yields a local exchange in
graphene that it is a local average of the magnetization of
the substrate, defined by the length scale λ. In the limit
λ → ∞, all the sites in graphene would feel the same
exchange coupling, yielding a vanishing Hall response.

The result is shown in fig. 6(d) as a function of the
range of decay λ, for three different values of atr. As is
clear from this plot, TH is of the order of the one that
would be obtained for a contact-like interaction for small
values of λ, and decays smoothly as λ increases. This
behavior proves that a weighted average with the closest
neighbors does not affect heavily the anomalous Hall sig-
nal, so that the local exchange interaction used through
the main text is a fairly acceptable approximation.

3. Effect of exchange mediated hopping

The third effect studied accounts for the fact that non-
local exchange interactions can also be present. In order
to relax the assumption of purely local exchange, we in-
troduce a term in the Hamiltonian that mimics the effect
of an induced non-local exchange interaction. From a mi-
croscopic point of view, such term arises from electrons
hopping from a carbon atom to a site in the skyrmion ma-
terial, flipping their spin and hopping back to a different
carbon atom in graphene. Such phenomena is accounted
for by a spin dependent hopping term that we take to be
the average between the induced onsite magnetization of
the two sites involved. The non-local exchange Hamilto-
nian thus reads

HJ1 = J1

∑
<i,j>

Sij · nij (21)

where Sij =
∑
σσ′ c

†
iσsσσ′cjσ′ and nij = (ni + nj)/2. In

fig. 6(e) we show the behavior of the anomalous response
with J1/J , whence it appears evident that the signal is
left almost unchanged by values of J1 up to J . These
three results are a strong indication that taking into ac-
count the presence of the lattice underneath the graphene
sample does not affect in a sizable manner the strength of
the anomalous signal, thus demonstrating the robustness
of the results provided in the main text.

B. Determination of Beq

In order to determine the equivalent magnetic field
Beq, we have performed a calculation of the transmis-
sion imbalance TH of a three-terminal triangular device
where a perpendicular magnetic field B⊥ is applied to
the transmission region. To include such field, we retain
only the hopping term of eq. 12 where we perform the

standard Peierls substitution t → t exp
(
−i e~

∫ rj
ri

A · dr
)

such that

H = −t
∑

<i,j>,σ

c†iσcjσe
−i e~

∫ rj
ri

A·dr (22)

By calculating the transmission imbalance between left
and right lead, one gets a linear relation TH ≈ 20B⊥ as
shown in fig. 7. The linear relation between B⊥ and TH ,
in the absence of a skyrmion, permit to assign an equiva-
lent field Beq to characterize the transmission imbalance
calculated in the presence of a skyrmion at B⊥ = 0.
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