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Abstract: Recently, our group proposed a metamaterial laser design based on explicitly-coupled 

dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled 

resonant photonic state responsible for macroscopic stimulated emission from the coupling to 

specific free-space propagating modes, allowing independent adjustment of the lasing state and 

its coherent radiation output. Due to this functionality, it is now possible to make lasers that can 

overcome the trade-off between system dimensions and Q factor, especially for surface emitting 

lasers with deeply sub-wavelength thickness. Here, we give a detailed discussion of the key-

functionality and benefits of this design, such as radiation damping tunability, directionality, sub-

wavelength integration, and simple layer-by-layer fabrication. We examine in detail the 

fundamental design trade-offs that establish the principle of operation and must be taken into 

account and give guidance for realistic implementations. 

 

1. Introduction 

In search of coherent light sources that can be integrated in small-scaled photonic systems, 

nanolasers have been the object of sustained research in latest years [1-18]. In order to scale the 

laser dimensions down, many diverse materials and techniques have been utilized so far. 

All-dielectric systems, such as vertical-cavity surface-emitting lasers [1], photonic crystal 

lasers [2,3], Fabry-Perot lasers [4], microdisk lasers [5] and ring-resonator based systems [6], 

may achieve extremely high Q factors (~ 103 – 106), due to their very low material losses. These 

systems can offer significantly low lasing thresholds, but their size is limited to the order of 
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magnitude of the operating wavelength, by principle of operation. On the other hand, one can 

actually reduce the laser size even to subwavelength scales with the aid of surface plasmon-

polariton modes [7-17]. Typical configurations such as the spaser [7], the lasing spaser [8] and 

the plasmonic waveguide laser [9] have very recently demonstrated this concept. The necessary 

presence of metal, nevertheless, imposes large material losses and pushes the lasing threshold to 

high levels accordingly. More importantly, in all aforementioned implementations the radiation 

damping is closely connected with the type of the oscillating mode. For example, nanospheres 

that typically operate with the lowest order electric mode (electric dipole Mie mode) in plasmonic 

nanolasers are affected not only by large dissipative losses, but by dipole radiation damping as 

well. Making the particle smaller, does help to reduce its radiation moment, but at the same time 

its stored energy becomes smaller and, hence, the part of the Q factor that is related to radiation 

loss does not improve. Making it bigger, allows operation with higher order modes of weaker 

radiating moments, given that the materials allow being still in the subwavelength regime. Hence, 

if one desires to change the radiation damping at the given operating frequency, then the system 

must be re-designed to operate -if possible- with a different mode. 

In [18], we proposed a metamaterial laser system that resolves this predicament, by 

offering separate control of the energy storage and radiation mechanisms. The principle of 

operation is based on the excitation of a dark mode [19], i.e. a mode of zero net electric/magnetic 

moment that does not consequently radiate. Ideally, in the total absence of any material loss, if 

energy is transferred into the system it will be stored in the dark mode and will stay there 

indefinitely. With the aid of a small non-resonant scatterer, though, the dark mode can be coupled 

to radiation modes at will and the coupling can be simply controlled by the position, size and 

material of the scatterer. In essence, the Q factor of the system is controlled at will and, most 

importantly, independently of the resonance mechanism, which is responsible for the energy 

storage. The resonator is implemented as a thin slab, essentially a metasurface [20], which is 

chosen to be dielectric, in order to minimize the dissipative losses [21, 22]. However, there is a 
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distinction between typical active metasurfaces and our system. In the former systems the 

metamaterial resonators are directly coupled to gain and the whole system becomes an active 

metasurface [14, 15, 23-27]. In our case an explicit dark resonant mode with gain is outcoupled 

by an additional passive metasurface and, therefore, the term 'metasurface' refers to the 

outcoupling implementation alone, although the whole configuration can be considered as one 

composite metasurface. 

The aim of this paper is to examine the fundamental properties and trade-offs that 

establish the principle of operation and that must be taken into account in realistic designs. In Sec. 

2 we repeat in brief the principle of operation and the basic properties of the laser for 

completeness. In Sec. 3 we examine the effect of the two loss channels, namely the dissipative 

losses due to material absorption and the radiation damping due to coupling of the oscillating 

mode to radiating waves. In Sec. 4 we estimate the lasing threshold in terms of realistic material 

gain. In Sec. 5 we examine the pumping efficiency of the gain material, when embedded in the 

structure. In Sec. 6 we discuss the limits and tunability of directional emission. Finally, in Sec. 7 

we demonstrate alternative realizations that are more convenient to be implemented 

experimentally. 

 

2. Principle of operation 

Our design laser consists of three basic parts: the gain material, the dark mode which serves as the 

resonator and the scatterer. In contrast to other bright mode configurations where channeling of 

the lasing power into a neighboring dark mode is dentrimental [27], in our case the dark mode is 

the cornerstone. In order to implement the resonator we choose a thin dielectric slab that supports 

a continuous dark bound state (red line in Fig. 1a) and then introduce silver scatterers of the same 

thickness d with a certain periodicity a. The purpose of the silver inclusions is to spatially 

quantize the modes of the dielectric slab, in order to tailor the desired mode distribution within 

the unit cell and to achieve a discrete set of resonant dark states. In essence, the dispersion of the 
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composite metal-dielectric system becomes a quantized version of that of the dielectric slab, with 

periodicity π/a. In fact, as with any periodic system, the strong interaction of counter propagating 

waves at the edge of the Brillouin zone leads to mode splitting and band structure formation (Fig. 

1a). The modes that are located at the bottom of each gap (blue dots in Fig. 1a) overlap with the 

metal inclusions at field minima (nodes) and have therefore significantly higher Q factors than 

their π-shifted counterparts, that are located at the top of each gap (open blue dots in Fig. 1a) and 

overlap at field maxima. When the metal coincides with field maxima the modes are repelled 

from the continuous dispersion line, due to strong scattering, while the opposite happens when the 

overlap happens at field minima. The slight deviation of the latter – high Q – modes from the 

continuous waveguide mode dispersion is due to the deviation of the effective permittivity of the 

composite metal-slab system from that of the pure dielectric slab. 

Depending on the branch of the dispersion, an isolated mode with the desired operation 

frequency and spatial distribution can be chosen for operation. Here, we choose for simplicity the 

second of the quantized TE0
(even) modes (red circle in Fig. 1a), which has an antisymmetric 

electric field profile with respect to the center of the slab (Fig. 1c) and is therefore dark (in 

general any higher-order nonradiative mode is suitable). Choosing the operating wavelength to be 

within typical telecommunication ranges of 1.5 μm, the lattice constant of the unit cell is designed 

to be a = 960 nm and the width of silver 2wm = 100 nm. The overall thickness of the metasheet is 

d = 60 nm, which is thin enough to be subwavelength and can accommodate a gain material, such 

as a single quantum well [42,43]. The gain material is chosen to have an emission bandwidth 

centered at the desired operation frequency, as depicted in Fig. 1b. The gain material is embedded 

in the dielectric of host permittivity εr,host = 12.1 and the system is examined via self-consistent 

finite-difference time-domain (FDTD) calculations (see Appendix for details on the four-level 

gain system and the simulations). When the gain material is pumped adequately, i.e. above the 

lasing threshold, the dark mode is excited, as shown in Fig. 1c, with macroscopic photon 

population such that predominantly stimulated emission into this dark mode takes place (lasing), 
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but the electromagnetic power remains stored in the mode (only one unit cell shown here) 

because dissipative loss in the dielectric is low and radiative damping is suppressed as the mode 

is dark. Then, a dielectric scatterer of the same permittivity with dimensions wscat = 60 nm and tscat 

= 30 nm is placed on the surface with its center at distance δx from the unit cell boundary, as 

shown in Fig. 1d, and the stored power can be now outcoupled as Ez-polarized waves [18], with a 

controllable small amount of radiative damping. 

In each FDTD simulation we pump the system at a certain pump rate Rp, wait until steady 

state is reached (~50ps) and then we sample the output in time domain and calculate the output 

power. Then we change the pump rate, repeat the procedure and eventually construct the lasing 

curve, as shown in Fig. 2a. In the simulations the gain material is pumped homogeneously and 

therefore, after the population exchange between the four levels has reached equilibrium, the 

population inversion is constant throughout the gain material volume. This can be seen in Fig. 2b 

(bottom row), where the pump rate is set to be below threshold at Rp = 106 s-1 (the lasing 

threshold Rp = 4.4x106 s-1 is marked with the red dotted line in Fig. 2a). These figures (as well as 

all plots in Fig. 2b and Fig. 2c) show the population inversion ΔΝ = N2 – N1 as percentage (%) 

over Ntotal, which is the sum of the total population contained in all four levels. The left panel in 

Fig. 2b corresponds to the system without the scatterer and the right one to the system with the 

scatterer placed at δx = 150nm (δx/a ≅  0.16), but both figures are identical (bottom row), since 

below the lasing threshold all modes experience the same gain and the presence or not of the 

scatterer does not affect the system. However, when the gain material is pumped with Rp = 107 s-1, 

which is well above the lasing threshold for both systems, the lasing mode dominates among all 

other modes and modifies the gain material according to its particular field spatial distribution. 

That is, at areas within the gain material where the electric field is more intense, more energy is 

transferred to the mode and the gain material at those areas becomes more depopulated. In 

essence, ΔN maps the spatial distribution of the lasing mode, as can be seen in the top row of Fig. 

2b. Notice that because the gain slab is very thin compared to the dark mode extent, the 
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depopulation is almost constant along the y-axis. From these figures it is also evident that in the 

presence of the scatterer the depopulation is slightly weaker. The reason is that the onset of 

radiation damping, due to the scatterer, weakens the dark mode, reducing the Q factor and E-field 

amplitude inside the gain material. The presence of the scatterer slightly deforms the dark mode 

and, depending on its position, the electric field distribution depopulates the gain material 

accordingly. This can be seen in Fig. 2c, where the scatterer’s position is scanned and cross 

sections in the middle of the slab along the x-axis are taken for each displacement δx. In this case 

the gain material is pumped at even higher rate (Rp = 109 s-1) and, as a result, the contrast between 

the populated and depopulated regions of the gain material is stronger (notice that Fig. 2b is 

depicted in linear scale, while Fig. 2c is in log scale). 

In [18] we demonstrated how the properties of the system change, depending on where 

the scatterer is situated with respect to the intensity profile of the dark mode. In brief, when the 

scatterer is either absent or placed exactly in the middle of the unit cell, then there is no radiative 

loss and all supplied power is converted to Joule heating at the metallic scatterers (Fig. 3c). At 

this latter position where the output power is minimized (middle of unit cell), the lasing threshold 

acquires the minimum possible value for this specific design. The Q factor is maximized, with a 

maximum value limited only by the dissipative losses of the metal, which is calculated for 

realistic materials and dimensions to be Q = 3,020. As the scatterer is shifted along the unit cell, 

the coupling strength between the dark mode and radiation changes according to the shape of the 

dark mode; at positions where the fields are stronger, the coupling is more intense and hence the 

radiation damping stronger and the Q factor weaker (Fig. 3b). The lasing threshold, which is also 

inherently related to the Q factor, is tuned accordingly (Fig. 3d). An important aspect of this laser 

implementation is the directionality, which is achieved as the scatterer is shifted along the unit 

cell (Fig. 3e) (for further details see [18]). 
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3. Effect of loss channels 

The energy that is stored in the dark mode by the pumping mechanism is subsequently removed 

from the system via either dissipative losses due to material absorption or radiation damping due 

to coupling of the oscillating mode to radiating waves. Ideally, in the total absence of these two 

energy loss channels, if energy is transferred into the dark mode it will be stored there 

indefinitely. However, in practice, not only is there inevitable absorption due to the metal, but 

also outcoupling is necessary for the stored energy to be delivered elsewhere. 

In realistic implementations, reduction of the total loss is always desirable, because the 

lower the loss, the stronger the dark mode E-field. Since gain is proportional to |E|2, this means 

that much more gain can be achieved and hence, much more energy production inside the sample 

is possible for the same pump energy. In turn, the radiated power can be effectively larger, the 

exact level of which will be the result of the balanced effect of both loss channels. To identify the 

individual effect of each loss channel on the radiated power, the Q factor of the system can be 

decomposed into its two constituents, as: 1/Q = 1/Qdissipated + 1/Qradiated, where each of the 

subscripts denotes the respective loss channel. Qdissipated can be boosted by choosing less lossy 

materials and Qradiated can be boosted either by placing the scatterer close to the middle of the unit 

cell, as already seen in Fig. 3b, or by making the scatterer weaker. The latter can be achieved if a 

material of lower permittivity is used or if the volume of the scatterer is made smaller (or simply 

the cross-section, for the two-dimensional case examined in this pap`er). All approaches above 

result in weaker polarization currents on the scatterers and hence weaker induced moments and 

weaker radiation (see section 6 for details). To examine the effect of each loss channel, we 

change the metal loss and the scatterer’s strength individually. In our system we have used a 

Drude silver of permittivity ε(f) = 1 – fp
2/(f2 - ifΓp), with fp = 2181 × 1012 1/s and Γp = 4.74 × 1012 

1/s, based on Johnson and Christy (JC) data [28,29] and a scatterer of permittivity εr,scat = 12.1 

and dimensions wscat = 60 nm and tscat = 30 nm. To modify the losses of the JC silver we simply 

tune Γp, thus modifying Qdissipated and to change the scatterer’s strength, we either change the 
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permittivity εr,scat or the width wscat, thus modifying Qradiated. Although all modifications can be 

imposed simultaneously, we make one change at a time on the original system. The results of the 

parametric study are shown in Fig. 4. For each scenario, the radiated power is shown in the last 

column as a percentage (%) over the generated power. To identify which loss channel is 

responsible for each change in the output power, Qradiated, Qdissipated as well as the total Q factor are 

also shown in the 1st, 2nd and 3rd column respectively. In the top row the metal loss is varied 

among Γp = 0.1 THz (artificial low-loss metal), 4.74 THz (JC silver) and 10 THz (artificial high-

loss metal). In the middle row the scatterer’s permittivity is varied among εr,scat = 4 (e.g. HfO2), 

12.1 (e.g. Si) and 30 (artificial high-εr material). Last, in the bottom row the scatterer’s width is 

varied among wscat = 30 nm, 60 nm and 90nm. 

In Fig. 4 it is evident that the metal losses affect the dissipative part of the Q factor, while 

the outcoupling affects the radiative part of the Q factor, as expected. The radiated power follows 

the combined action of both and can be seen in the fourth column of Fig. 4; in each panel the 

radiated power, expressed as a percentage (%) over the generated power, changes inversely with 

the total Q factor. This trend reflects the way the actual outcoupled power changes, when the 

generated power is the same for all systems. However, as already mentioned, the generated power 

can differ significantly from system to system. In fact, this is expected even within a single 

system, as already implied by Fig. 2 where the gain material depopulation was shown to depend 

on the scatterer’s position. It is therefore necessary to examine in absolute units how the radiated 

power is modified as the scatterer is shifted and as the materials change. Next, we scan the metal 

loss for two families of systems, one bearing a scatterer with εr,scat = 12.1 and one with εr,scat = 30. 

All systems are pumped at the same pump rate Rp = 109 s-1, so as to ensure that the input power 

spent on each system is equal. The results are presented in Fig. 5. 

Indeed, from any individual data set shown in Fig. 5b,e it is evident that in a certain 

system more power is generated when the scatterer is placed so as to minimize radiation damping, 

i.e. at positions where the dark mode is weak. Among different systems, more power is generated 
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for combinations of materials that minimize both loss channels (for the cases studied, that would 

correspond to εr,scat = 12.1 and Γp = 0.1THz, i.e. red dots in Fig. 5b). Both conclusions are 

intuitively interpreted if one observes the peak value |E| of the dark mode (Fig. 5a,d). 

Configurations that sustain stronger fields produce more power for the same input power (pump). 

On the other hand, the amount of the power that is finally radiated depends on the trade-off 

between the two loss channels. This is why more output with less generated power is possible as 

well, if one compares the systems denoted with open dots in Fig. 5b,c and Fig. 5e,f for example.  

The trade-off between the two loss channels is even more evident if one observes the 

system shown in red dots in Fig. 5f (i.e., the narrow peak in radiated power in the immediate 

vicinity of the center position of the scatterer (δx/a = 0.5) where the radiative coupling goes to 

zero); as the scatterer is directed towards the center or the edge of the unit cell, radiation damping 

becomes weaker and leads the system to increase the Q factor, hence to produce more energy and 

effectively outcouple more. After some point, though, the internal losses dominate, leading the 

system to reduce and saturate the Q factor (Fig. 4), hence to saturate the energy production inside 

the sample and reduce the output power. 

 

4. Estimation of realistic material gain (analysis related to populations N2, N1) 

To estimate the amount of gain that is needed for our system to lase, we need to translate our 

threshold calculations into material gain. The material gain coefficient γ (m-1), which is usually 

the typical quantity considered in realistic implementations, is given by [4] ,
4 Im r gain
πγ ε
λ

⎡ ⎤= ⎣ ⎦  

(1), where λ is the free-space wavelength. On the other hand, our calculations are performed in 

terms of pump rate Rp (s-1), which is a parameter very closely connected to the quantum nature of 

our 4-level gain system; it merely tells us the rate at which electrons are raised from the ground 

energy level N0 to the upper level N3. After the electrons are excited at level N3 they start a 

downward return route to the ground state N0, through levels N2 and N1. If level N2 is filled from 
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N3 faster than it is depleted, then the population difference ΔΝ = N2 - N1 can be positive 

(population inversion) and energy is transferred from the gain material to the fields (emission), 

while the opposite (absorption) happens when ΔΝ<0. The population difference ΔΝ in the 

quantum gain system is expressed classically as an averaged polarization density [49]. This 

polarization density is then connected with the electric field in terms of a pump-dependent 

susceptibility ( )gain pRχ  and the total material permittivity due to the host and the embedded 

gain material is ( ) ( ), = +r gain p host gain pR Rε ε χ . The gain permittivity εr,gain is therefore the 

connecting link between Rp and γ. For our 4-level gain system, γ is given by (see Appendix for 

derivation):  

 

( )
( )

30 21 10

0 32 30 10 21 32
, 1

4 Im pa

a a
r host total

p

R

R
i N

τ τ τσ
ε

ε ω τ τ τ τ τ
πγ
λ

−
+

Γ + + + +

⎡ ⎤
⎢ ⎥=

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦
 (2) 

 

In this expression the dark mode frequency is assumed to be aligned with the gain emission 

frequency, as it actually is in our case. The general expression that takes frequency mismatch into 

account can be found in the Appendix. 

To give an estimate for the order of magnitude of typical gain coefficients γ and a guide 

for potential experimental implementations, some popular gain materials are listed in Table 1. 

The values shown have been retrieved from the references shown in the last column and fall 

within the typical range for each material. 

In our case the gain material is embedded in the slab and hence εr,host = 12.1 (for the other 

parameters appearing in Eq. (2) see Appendix). Using the parameters of our simulations the 

lasing threshold shown earlier in Fig. 3d in terms of pump rate Rp is now converted into material 

gain γ, as shown in Fig. 6. 
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We see that for the loss channels assumed in our model, the gain ranges between 160cm-1 

– 450cm-1, which is typically within realistically achievable values as indicated by Table 1. 

 

5. Pumping efficiency (analysis related to populations N3, N0) 

To estimate the pumping efficiency we need to calculate how much of the power that we provide 

to the system in order to achieve lasing is actually received by the system and not channeled 

elsewhere. In our simulations the gain is pumped homogeneously, corresponding to carrier 

injection, as in typical semiconductor lasers. An internal loss channel has been included via τ30 in 

our model for the gain material, but, other than that, it is assumed that all pumped energy is 

delivered to the atoms and consumed to induce transitions and hence the pump rates discussed so 

far correspond to a 100% Quantum Yield (QY). If QY<1, then in order to find the overall pumped 

power that is spent on the system (and partly delivered to the atoms), the calculated threshold 

pump rate can be corrected by division with QY.  

On the other hand, if gain is pumped optically, i.e. by means of an incident optical beam, 

then the system’s response becomes also involved. In this case the pump beam is partly absorbed 

by the gain material (which is embedded in the host) and a fraction of the absorbed optical power 

is then consumed to induce the atomic transitions (expressed via QY), while the rest is converted 

to other forms (phonon vibrations, etc). Hence, the actual power that is transferred to the atoms 

will be the product QY × A, where A is the absorptance. The knowledge of A is therefore crucial, 

as it can indicate preferable spectral regions to pump the gain material. In other words, the 

efficiency will strongly depend on the spectral overlap of the pump beam with the system’s 

response, which is defined both by the bulk material properties of the constituents, as well as by 

their geometry.  

As for the bulk properties, the gain material absorbs at higher frequencies than it emits, as 

basic quantum mechanics dictate [49], and hence there are spectral regions above the lasing 

frequency where Im[εr,gain] is negative. The absorptance depends on the bulk absorption 
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coefficient, which for the gain material is expressed as ,
4 Im ⎡ ⎤= ⎣ ⎦r gain
πα ε
λ

, where the 

imaginary part of εr,gain is now negative, as it accounts for absorption and not gain. In practice the 

absorptive εr,gain is related to N3 – N0 (and not to N2 – N1 as in γ) as ( )3 0A N Nα σ= − , where σA is 

the atomic absorption cross-section [30]. Because the number of electrons at the ground level is 

immense, usually 3 0N N�  and 0 0ANα σ≅ − < . 

Besides the bulk properties of gain, the absorptance depends on geometric considerations 

as well; the gain material is structured in a system with a certain spectral response and, as such, 

enhanced absorption at certain spectral regions could be favored, thus increasing the pumping 

efficiency. In order to get an estimate of such a possibility we overlook for the moment the 

detailed response of the gain material and we model absorption in the gain region with a constant 

positive imaginary part in the slab’s permittivity εr,host. Noticing that the absorption cross-section 

σA is a property of the gain material, while the population difference N3 – N0 depends on the pump 

rate (effectively on the pump beam intensity), a whole family of gain materials and pump 

intensities are considered under a certain value of Im[εr,host]. 

For gain materials suitable to our configuration, such as dyes [34, 14], the absorption 

cross-sections and dye concentrations vary within the ranges ( )16 15 210 10A cmσ − −−�  and 

( )18 19 310 10N cm−−� , which translate into ( )3 1
,Im 10 10r hostε − −⎡ ⎤ −⎣ ⎦ � . Within this range we 

next measure A in the metal and in the dielectric separately (Fig. 7). Assessing only the total A 

might be misleading, because it results from absorption both in the gain and in the metal and 

should be therefore calculated separately in each region. Pumping can be realized in the spectral 

range 200 THz – 400 THz, located just above the TE2,0 dark mode with which our system lases. 

When the beam is directed at normal incidence, the wavefronts that advance towards the 

metasheet impose the same phase to all unit cells. Consequently the beam cannot couple to odd-

order modes such as TE3,0, TE5,0 etc, that require a π-shift among neighboring unit cells. 
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However, even-order modes such as the TE2,0 and TE4,0 bright modes (open circles in Fig. 1a), i.e. 

those modes that radiate without the need of any scatterer, fulfill the phase requirements. The 

TE4,0 dark mode is located in the same spectral region, but requires a scatterer to couple. For our 

calculations we remove the scatterer and, hence, the dark TE4,0 mode does not appear in the 

spectrum as expected, but the bright TE2,0 and TE4,0 modes are present. As seen in Fig. 7, at those 

modes the absorptance in the gain material gets significantly increased and hence they are 

preferable spectral regions for pumping. Notice how the absorbed power transfers from the metal 

to the gain region with increasing Im[εr,host]. 

 

6. Directionality 

In [18] we demonstrated how directional emission can be controlled in our system with the aid of 

two scatterers and how it can be achieved even with a single scatterer. Due to the deeply 

subwavelength thickness of the laser, directionality can be explained in a straightforward manner 

via an equivalent electromagnetic current sheet. In brief, if we consider an infinite current sheet 

which radiates exactly as our system, then the emission of such a sheet can be controlled by an 

appropriate mixture of an electric je and a magnetic jm current. The equivalent boundary 

conditions for the current sheet are ( )ˆ × − = −2 1 mn E E j , ( )ˆ × − =2 1 en H H j , where n̂  is the 

surface normal of the current sheet pointing from region (1) to region (2). In the actual system, 

the dark mode oscillates along the z-axis and produces z-polarized waves and, hence, in the 

equivalent sheet model it is assumed that ˆ=e zj eej  and ˆ=m xj emj , with ( )ˆ ˆ ˆ, ,x y ze e e  denoting the 

Cartesian unit vector set. Consequently, after applying the boundary conditions, the outgoing 

electric and magnetic fields are expressed as: 

( ) ( )1ˆ ˆ
2

± ±= = − ±z zE e emi t ky
z e mE j j e ωη  (3a) and 1ˆ ˆ± ± ±= = ±x xH e ex zH E

η
 (3b) 

respectively, and the time-averaged Poynting vector along each side of the current sheet is: 
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( )( ) ( )( )2 2
,

1 1ˆ ˆRe 2 cos
2 8

±± ±= × = = ± + ±y yS E H e e
e me m e m j jconj S j j j jη η δϕ

η
 (4), 

where ,e mj jδϕ  is the phase difference between je and jm, η the surrounding space impedance and 

the sign ±  denotes the respective direction of emission along the y-axis.  

Each one of the currents alone emits symmetrically to both sides of the sheet (set je = 0 or 

jm = 0 in Eq. (4) for example), but with a balanced contribution the sheet can be made purely 

directional, i.e. emitting only to one side. Imposing fully directional power flow on Eq. (4) leads 

to the condition e mj jη =  for the amplitude of the equivalent currents and , 0
e mj jδϕ =  (emission 

along y>0) or ,e mj jδϕ π=  (emission along y<0) for their relative phase difference. 

In order to implement this concept with the actual system, the lasing mode has to be 

coupled simultaneously to an electric and a magnetic moment and this can be achieved by 

introducing an additional weak scatterer on the opposite side of the slab. In essence, the dark 

mode will induce polarization currents I1, I2 on the two scatterers, which subsequently radiate. 

These individual currents can be interpreted as a weighted mixture of a symmetric IS � I2+I1 and 

an antisymmetric IA � I2-I1 current of the combined double-scatterer system, i.e. as a weighted 

mixture of an electric moment and a magnetic moment that radiate individually (Fig. 8). 

Depending on the phase and amplitude of each moment, their superposition can enhance or 

cancel radiation along a certain direction according to Eq. (4). In practice, the two contributions 

can be tuned by coupling each scatterer with different parts of the dark mode, i.e. simply by 

shifting the position of the scatterers. Hence, the amplitude and phase of I1 and I2 change, IS and 

IA are modified accordingly and directionality is in effect controlled by the position of the 

scatterers. 

To gain better insight, let us employ a simple model to relate the equivalent quantities je 

and jm to the actual polarization currents I1 and I2 that run the scatterers. Since the unit cell is 

periodically repeated along the x-axis, the actual system can be replaced by an effective medium 
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which radiates exactly as the original system, consisting of an infinite homogeneous slab with an 

array of currents I1 on one side and an array of currents I2 on the other side. In essence, the dark 

mode and the scatterers are replaced by current wires. Whatever amplitude and phase I1 and I2 

inherit from the dark mode is attributed to the wires and therefore the slab does not need to bear 

the metal stripes anymore. The sparse wires can be further replaced with equivalent infinite 

electric current sheets of appropriate surface current densities J1 and J2, as shown in Fig. 9. 

The electromagnetic problem now consists of two radiating infinite current sheets and, in 

order to relate them to the equivalent electric and magnetic currents, their currents J1, J2 can be 

again expressed as a superposition of a symmetric JS and an antisymmetric JA current, i.e. as 

1 S AJ J J= +  and 2 S AJ J J= − . The sheets are separated by a distance d and divide space into 3 

homogeneous regions, characterized by permittivities εr,1, εr,2, εr,3, which correspond to regions 1, 

2 and 3, respectively, as shown in Fig. 9. Application of the boundary conditions on each 

interface yields the fields in all three regions. Assuming the slab is embedded in a uniform 

environment, i.e. ,1 ,3r r outε ε ε= � , where εout is the permittivity surrounding the slab, the electric 

field in regions 1 and 3 is given in terms of JS, JA, by (see Appendix for details): 

( ) ( ) ( )
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where 2 2k n
c
ω= , n2 is the refractive index in region 2 (slab index) and 

,2

,22

r

out r out
r

εη μ μ
ε εη ε

= =�

.
 The  wave impedances η and η2 correspond to the surrounding 

environment and to region 2, respectively.  

 Comparing this result with Eq. (3a) from the equivalent currents, it is easy to notice that  
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What is of importance to our study is not the absolute quantities je and jm, but their relative 

amplitude and phase and hence we may use Eqs. (6a), (6b) to write their ratio as: 

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2
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2 e e 1 1

2 e e 1 1

ik d ik d
e S

ik d ik dm A

r r rj J
j Jr r r

η
− −

− −

+ − + +
= ⋅

− − − +
 (7) 

This ratio is a product of a term due to the currents (JS/JA) and a term originating from the 

intermediate space (region 2). From this expression it is evident that a phase acquired from the 

slab is added to the phase lag between JS, JA. In the absence of the slab, r = 1 (εr,2 = εout) and the 

result (7) simplifies to ( )2cot 2e S

m A

j J
i k d

j J
η

= ⋅  (8) revealing that there is always a π/2 phase shift 

between ,S AJ Jδϕ  and ,e mj jδϕ , which denote the phase lag between JS and JA and between je, jm, 

respectively. 

 Given the fact that every part of the dark mode oscillates coherently, I1 and I2 that run the 

scatterers can be driven either in phase (if both are scatterers placed either at δx>α/2 or δx<α/2) or 

π-out of phase (if one is placed at δx>α/2 and the other at δx<α/2). In effect, J1 and J2 are excited 

likewise, as well as their linear combinations JS and JA. Consequently ,S AJ Jδϕ  is either 0 or π and, 

hence, in the absence of the slab the equivalent currents would oscillate with a ±π/2 phase lag, as 

Eq. (8) reveals. Under these circumstances the system would radiate equally to both sides, 

regardless of the individual amplitude of ,e mj jη  (set , 2
e mj jδϕ π= ± in Eq. (4) for example), i.e. 

regardless of the exact position of the scatterers. In practice, although the scatterers are indeed 
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driven either in phase or π-out of phase, an additional phase lag is provided by the material in 

between, i.e. the slab, as predicted by the result (7). The dielectric slab is made from a polarizable 

material and hence its width and permittivity affect the directionality. When the slab is present 

,e mj jδϕ  can be calculated from Eq. (7):  

( ) ( ), ,2
2

2
1 sin

slab

e m S Aj j J J
rArcTan

r k d

δϕ

δϕ δϕ
⎛ ⎞
⎜ ⎟= +
⎜ ⎟−⎝ ⎠

6444447444448

 (9) 

This result indicates that, for finite n2 (as in real materials), slabδϕ  has a nonzero lower 

bound minslabδϕ  whenever ( )2sin 1k d = ±  and an upper bound maxslabδϕ  if r = 1 (absence of 

slab) or ( )2sin 0k d = . Given that ,S AJ Jδϕ  = 0 or π, maxslabδϕ  which is π/2, leads to 

, 2
e mj jδϕ π= ±  and consequently to a 50%-50% power split. This we have already encountered 

when the slab is absent. On the other hand, minslabδϕ  translates into an upper bound for the 

directionality, as for fully directional power flow, besides e mj jη = , it should be ,e mj jδϕ = 0 or 

π, which Eq. (9) does not reach. This is not a surprise, as we have already observed in our system 

(Fig. 3e).  

Note that these conclusions are the same whether we use one or two scatterers, as we can 

always relate the actual polarization currents to effective JS and JA. Using the parameters of our 

system, εout = 1, εr,2 = 12.1, ω = 2π 200 THz and d = 60nm, we find , 0.218
e mj jδϕ π= , which 

agrees with the numerically calculated value 0.22π, as presented in Fig. 10a. The slight observed 

detuning results from the dark mode frequency detuning within the range 195THz-200THz, as the 

position of the scatterer changes. In the same figure we also show how the amplitudes of the 

equivalent currents vary as the scatterer is shifted along the unit cell. The resulting directionality 

towards y>0 is also reproduced from Fig. 3e, to emphasize the fact that it becomes maximum 

whenever |ηje|=|jm|, although not 100% because of the phase residue.  
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For the parameters of our system it is ( )2sin 0.8 1k d ≅ <  and hence directionality can be 

further improved. In order to find this upper bound, we set e mj jη = and in Eq. (4), which gives 

( ) ( )( ),
1 cos 1 100%
2 e mj jS S S δϕ± + −+ = ± ± ×  for the fraction of the power flow 

towards y>0 (choose +) or y<0 (choose -). Using Eq. (9) we find that minslabδϕ  translates into a 

maximum directionality of ,2
1 2cos 1 100%
2 1 S AJ J

rArcTan
r

δϕ
⎡ ⎤⎛ ⎞⎛ ⎞± + ± ×⎢ ⎥⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎣ ⎦

. For εout = 1, εr,2 = 

12.1 we find min
, 0.178

e mj jδϕ π= , which translates into a 92.4%-7.6% maximum power split, 

directed either towards y>0 for , 0
S AJ Jδϕ =  or towards y<0 for π (see Fig. 11b). This can be 

achieved in practice if the slab width is increased to d =108nm, for example, as can be seen in 

Fig. 11. In order to keep the dark mode frequency at 200 THz, the unit cell size should be reduced 

accordingly. In Fig. 11a,b plots for εout = 1 corresponding to our system, as well as for εout = 2 and 

εout = 4 are presented, modeling the case where the slab is located in between a substrate and a 

superstrate of the same material. The double current sheet model predicts reduction of the 

maximum directionality in this case. 

If the unit cell length remains constant (a = 960 nm) as d changes, then the dark mode 

frequency shifts as well and, as a rule of thumb, drops as the slab width increases. In Fig. 11c this 

combined effect is examined via FDTD simulations for several slab widths (the results 

correspond to Fig. S5, supplementary material in [18]). Comparison with the double current sheet 

model is also shown, where both contributions have been taken into consideration, showing very 

good agreement. It should be noted that the restriction on directionality is a consequence of 

deriving both electric and magnetic sheet currents non-resonantly from the same dark mode, 

locking their relative phase; for independent je, jm, perfect directionality is possible. 

The apparent limitation of our system results from the fact that the scatterers were for 

simplicity chosen to be nonresonant. In practice many techniques can be used to alter the phase 
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between je, jm. To achieve , 0=
e mj jδϕ  and boost directionality to the maximum, one could take 

control over the phase delay by making the scatterers resonant. Cut wires, either dielectric or 

metallic [48], strips made out of nanoparticles with a specific plasmon resonance or Mie resonant 

objects like spheres periodically placed on the surface are just a few examples. Dielectric 

implementations have the advantage of low loss, but even with metallic resonant objects, one 

does not need to be exactly on the resonance where the absorption is maximized to achieve the 

necessary phase. 

This general concept can be demonstrated indirectly, still with our simple configuration, 

via the introduction of loss in the scatterers. The permittivity is now written as 

, , ,r scat r scat r scatiε ε ε′ ′′= +  and the loss tangent , ,tan r scat r scatδ ε ε′′ ′= which expresses the relative 

phase between E and J is controlled via ,r scatε ′′  or the corresponding conductivity ,r scatσ ωε ′′= . In 

Fig. 12 we show how |ηje|, |jm| and ,e mj jδϕ change as we artificially introduce conductivity to one 

of the scatterers, without changing their position. Their initial positions are such that |ηje|=|jm| 

(point C in Fig. 5 of [18]) and as the conductivity increases, the phase lag between the moments 

reduces, until it becomes zero for σ = 9x104 S/m. The loss tangent for this conductivity gives 

0.2δ π≅ , which matches the residue phase , 0.218
e mj jδϕ π= . The directionality, nevertheless, 

does not reach a maximum there, because the amplitudes of the moments are detuned. Instead, the 

maximum is reached earlier for σ = 5x104 S/m and it is in fact a 97.8%-2.2% power split. 

 

7. Alternative planar implementations 

7.1 Laser system on a substrate and gain material embedded in dielectric slab 

In a practical implementation, the metasheet would be fabricated on a certain substrate, which 

also serves as a mechanical support. The presence of the substrate causes a shift in the mode 

frequency, which can be taken into account during the system design, and also extends the 

evanescent tails of the mode into the new material region. In order to induce the least possible 
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reduction of the mode amplitude in the gain region, it is preferable that the refractive index of the 

substrate is significantly lower than that of the metasheet. In this way the interaction of the gain 

material with the dark mode can be maintained as strong as possible.  

 To illustrate this possibility, we consider here a system designed on a substrate, which is 

assumed to be a glass of typical permittivity εr,sub = 2.1. The system incorporates the gain material 

in the dielectric region of the metasheet (Fig. 13), exactly as the systems examined so far. In our 

configuration the mode frequency decreases with increasing substrate thickness and converges 

after approximately 800 nm; hence we assume a substrate of 1,000 nm. Instead of adjusting the 

unit cell size in order to avoid the change in the operation frequency, as perhaps in a real design 

situation, we prefer to keep the same design in order to examine the effect of the additional 

material on the system. In order to eliminate any contribution from the possible detuning with the 

gain material emission frequency ωα, we tune ωα to coincide with the new operation frequency, 

which now is ωα = 2π × 185 THz. 

In Fig. 13 we examine this scenario and demonstrate the case when the scatterer is 

located in the substrate region (top row), as well as in the air region (bottom row). The 

calculations indicate that no dramatic changes occur. The Q factor is slightly enhanced for the 

major range of the scatterer’s displacement, except for regions around its maxima, where a slight 

drop is observed; this variation affects the ratio of the radiated over the supplied power, 

accordingly. As for the power split between the two directions of emission, the additional 

material causes a slight drop in the maximum directionality, as also predicted previously by the 

double current sheet model (Fig. 11). This is due to the fact that the refractive index step between 

the dielectric slab and its surroundings has become smaller, but can in principle be compensated 

by considering materials of different width and/or permittivity. 

 

7.2 Laser system on a substrate and gain material as a superstrate 
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On the other hand, the gain material does not necessarily need to be located inside the dielectric 

slab. Because of the deeply subwavelength thickness of the slab, a significant part of the dark 

mode’s energy is located just outside the slab, i.e. within the evanescent tails of the bound state. 

This, in fact, can be beneficial, since it allows for the gain material to be placed as a superstrate 

on top of the existing system. In this way the strong near field of the bound state can be used as a 

means of interaction with the gain system, a mechanism which could otherwise not be feasible if 

the mode confinement was too strong, as in typical semiconductor laser systems [4]. It is 

noteworthy that in those systems the very same feature would be detrimental. 

To illustrate this second possibility, we consider here a system designed on a substrate, 

which is assumed to be a glass of typical permittivity εr,scat = 2.1. This time the gain medium is 

placed on top of the metasheet (Fig. 14) and the host permittivity is considered to be εr,host = 2.25, 

which is close to typical fluorescent dye systems [14,44], certain polymer systems [45] or 

Quantum Dots dispersed in a thick PMMA layer [46,47]. The gain layer is 200 nm thick to ensure 

a sufficient overlap with the mode tails (the mode intensity extends over a total of 164 nm 

FWHM along the y-axis). As previously, in order to eliminate any contribution from the possible 

detuning with the gain material emission frequency ωα, we tune ωα to coincide with the new 

operation frequency of each system, namely ωα = 2π × 176 THz. 

Again the calculations indicate that no dramatic changes occur. Interestingly, though, 

covering the metasheet with material on both sides induces an almost constant 70%-30% power 

split, for most positions of the scatterer (Fig. 14c). In practice, the Q factor and consequently the 

lasing threshold can be tuned independently of the directionality for a wide range of choices. 

The option to embed the gain material either in the slab or on top can be very handy in 

practical situations where the choice of the gain material is limited, either by availability or by the 

desired operation frequency. Semiconductors, such as quantum wells [42,43] and quantum dots 

[46,47], usually emit in the infrared region, while dyes emit in the visible [14,34,44] and 

incorporating each material into a photonic structure may differ. Quantum wells can serve as the 
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slab itself, while quantum dots can be placed as a superstrate. Similarly, dyes or quantum dots 

which can be embedded in a polymer matrix can be placed as a superstrate. In general, the gain 

material must overlap as much as possible with the dark mode and hence, depending on the 

spatial extent of the dark mode, the best choice for the location of the gain material will also 

depend on the RI step between the slab and the substrate. 

 

7.3 Metal stripes on top of the dielectric slab 

If interrupting the dielectric slab with metal is not preferable in fabrication, the metal stripes can 

be deposited on top of the slab, as sketched in Fig. 15. Besides the theoretical case where the 

system is examined in air surroundings, inclusion of a substrate and a superstrate is again possible 

and a fully layer-by-layer fabrication is now enabled. To examine the properties of such systems, 

we consider metal bars of the same material and dimensions as previously and move them on top 

of the slab, filling the void area with dielectric. Interestingly, the nonsymmetric placement of the 

metal with respect to the slab repels the dark mode to the opposite side of the slab. The dark mode 

which was previously squeezed between the metal bars may now interact less with the metal and 

this effect is observed in Fig. 15 as an increase in the Q factor, for all three systems. In particular, 

when a substrate is added, the mode becomes even more asymmetric along the y-axis, as it is 

attracted into the substrate area and the Q factor increases significantly (Fig. 15d). Next, when a 

superstrate is added on top of the slab-substrate system, the mode asymmetry relaxes due to the 

balance of the surrounding refractive index and the Q factor drops (Fig. 15g). In all cases, though, 

putting the metal on top of the slab, instead of embedding it in the dielectric, increases the Q 

factor, because of the geometric asymmetry, which induces an asymmetric mode profile. In 

effect, the output power increases. Interestingly, the deformation of the dark mode leads to a 

different pattern in directionality. It becomes almost flat for the major range of scatterer’s 

displacement and the maximum directionality can be now achieved when the scatterer is placed 

as close to the metal as possible. 
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Conclusion 

In this work we examined the properties of the dark mode laser concept, implemented here in a 

planar configuration. The most important feature of this concept is the ability to control 

separately the power storing mechanism from outcoupling. Because of this feature, the same 

system can be used in alternative schemes. For laser applications, as in our case, outcoupling to 

free propagating modes is desired and necessary. But, alternatively, the lasing power can be 

outcoupled to surface waves that may exist in the substrate surface, rendering the system a laser 

source for surface plasmons. Outcoupling can even be completely suppressed. In this case the 

dark mode laser will constitute a source of highly confined and very strong near fields, only 

limited by dissipation. This kind of source could be further used for applications where very 

strong local fields are necessary, as for example to drive transitions in entities like biomolecules. 

Because the implementation is dielectric, our system can offer appreciably higher Q factors 

compared to other plasmonic systems. Of course, due to the inclusion of metals, as a realistic and 

easy means for quantizing the fields, some losses are inevitably introduced. However, we showed 

how the trade-off between loss and radiation damping can be controlled, thus allowing us to tailor 

the system to our needs. Depending on whether the goal is a low lasing threshold, a strong output 

or a selective direction of emission, the system can be tuned to deliver the desired properties. 

Most importantly, facilitating the fabrication in a fully layer-by-layer fashion does not sacrifice its 

properties, giving promise for future experiments. 
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Appendix 

 

FDTD self-consistent calculations. The gain material is homogeneously embedded in the 

dielectric host medium, which has relative permittivity εr,host = 12.1, and is modeled as a four-

level quantum system [49-55], as shown in Fig. 16. The pumping takes place between the ground 

state (N0) and the third level (N3) via the pumping rate Rp, which corresponds to electrical 

pumping as in typical semiconductor lasers [4]. The lasing action takes place between the second 

level (N2) and the first level (N1), which are called the upper and lower lasing levels, respectively. 

The rate equations that describe our model are: 
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where the polarization density induced by the gain material is given by: 
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−
P P

P E        (A2) 

The gain medium is assumed to have a Lorentzian response which is homogeneously broadened 

with linewidth Γα = 2π × 20 × 1012 rad/s and emission frequency ωα = 2π × 196 × 1012 rad/s, 

except for the systems in Fig. 13 and Fig. 14, where ωα = 2π × 185 × 1012 rad/s and ωα = 2π × 176 

× 1012 rad/s, respectively (ωα is chosen to coincide with the operation frequency of each). The 

gain material is characterized by the lifetimes τ30 = 10 ps, τ32 = 1 ps, τ21 = 100 ps and τ10 = 0.1 ps 

and the coupling constant is σα = 10-4 C2/kg. Silver is modeled by a Drude response ε(ω) = 1 – 

ωp
2/(ω2 + iωγ), with ωp = 1.37 × 1016 rad/s and γ = 2.98 × 1013 rad/s and in all calculations the 

discrete time and space steps are set to δt = 15x10-18 s and δx = 10x10-9 m, respectively. In our 
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FDTD simulations the total electron density is considered to be N0(t=0) = N0(t) + N1(t) + N2(t) + 

N3(t) = 5x1023 m-3 and the initial condition is that all electrons are in the ground state and all 

electric, magnetic and polarization fields are zero. Next, noise is inserted into the system and the 

electrons are homogeneously pumped from N0 to N3 with a constant pump rate Rp. Then, the 

system of the Maxwell equations coupled with the atomic rate equations is self-consistently 

solved and this procedure is repeated for several pump rates.  

 

Pump intensity calculation. The pumping rate is equivalent to a pump intensity. The pump 

power density is equal to hωa Rp N0, and the pump intensity Ip = (pump power)/(surface area) = 

hωa Rp N0 (volume)/(surface area) = hωa Rp N0 d, and d is the thickness of the gain layer. If we 

use the numbers of our simulations, Rp = 4.4 × 106 s-1, N0  = 5 × 1023 m-3, ωa = 2π × 196 THz, and 

d = 60 nm, then Ip = 0.017 W/mm2. 

 

Power balance calculations. The supplied and dissipated power are calculated as a volume 

integral of the product E dP/dt, where E is the electric field and P the polarization density as 

calculated locally from the FDTD. Integration in the gain volume provides the supplied power 

and integration in the metal volume provides the dissipated power. Their difference is always 

equal to the time-averaged calculated Poynting vector, as verified for all cases considered. 

 

Q factor calculations. For the calculation of the Q factor as Q = ωτ, we need to measure the 

photon lifetime τ (ω is the mode frequency). In the FDTD an incident field of appropriate 

frequency ω excites a certain mode and once steady state has been reached, the incident field is 

set to zero. After some short transient time the system energy starts to decay exponentially as 

exp(-t/τ) and the electric field as exp(-t/2τ). Monitoring the electric field amplitude as function of 

time, E(t), the Q factor can be calculated from the slope of ln[E(t)], which is equal to -1/2τ. 
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Directionality calculations. Directionality is calculated as the time-averaged Poynting vector of 

the emitted power on both sides of the metasheet, after lasing has reached steady state. 

 

Phase and amplitude of equivalent currents. In order to calculate the equivalent currents we 

may work either with the E- or the H-field. After lasing has reached steady state we measure the 

outgoing field F (= E, H) along the y direction and retrieve the amplitude F ±  and phase Fδϕ±  of 

the field by a simple fit with ( )cos± ±+m FF t kyω δϕ  or in complex notation ( )i t kyF e ω± m , where 

FiF F e δϕ±± ±= . Then we solve Eq. (3) in terms of the equivalent currents and separate the result 

into amplitudes and phases as jei
e ej j e ϕη η= , jmi

m mj j e ϕ= . For example, for the electric field 
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and ( ) ( ),
E E E E

e m e m

i i i i
j j j j z z z zArg E e E e Arg E e E eδϕ δϕ δϕ δϕδϕ ϕ ϕ
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The quantities , , ,z z E EE E δϕ δϕ+ − + −  are derived from fitting with the numerically calculated fields 

and then plugged into Eqs. (A3), (A4). In Fig. 17 a lasing snapshot is shown, overlapped with 

fitted outgoing sine waves. The snapshot shows a cross-section along the y-axis (see Fig. 1d for 

orientation), where the peak of the dark mode can be identified around y = 0. For this particular 

example, the outgoing waves to which the dark mode couples exhibit preferential directionality 

towards y<0. 
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Conversion of pump rate to material gain. Because the gain material is homogeneously 

embedded in the dielectric host medium of relative permittivity εr,host, the polarization density Pa 

induced by the gain material adds to the host material polarization density Phost to give an overall 

displacement field D:  
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where χhost and χgain are the host and gain material susceptibilities, respectively, and εr,gain the total 

permittivity. χgain  can be calculated from Eq. (A2) in steady-state, so that:  

( )2 1
2 2

0 0
, , , ,

1 1 a

a a
r gain r host gain r host r host

N NP
E i

σ
ε ε χ ε ε

ε ε ω ω ω

−
+ −

− + Γ
= + = =    (A6) 

What is unknown is the population difference ΔΝ = Ν2-Ν1, which is a function of the pump rate 

Rp. In order to calculate ΔΝ, we need to consider Eq. system (A1) in the absence of any signal, in 

the limit of t → ∞ , where / 0d dt → . This is because, although populations change once lasing 

has initiated, we only need to know the populations before the onset of lasing (these will provide 

the necessary gain for lasing to happen). Solution of Eq. (A1) yields: 
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Hence, the gain coefficient is given by: 
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which, assuming operation at the gain emission frequency aω ω≅ , is simplified as: 
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Relation of absorption cross-section to material permittivity. The absorption cross-section and 

the material permittivity are connected through the absorption coefficient, which for each case is 

given by ( )3 0 0A AN N Nα σ σ= − ≅ −  and ,
4 Im r gain
πα ε
λ

⎡ ⎤= ⎣ ⎦ . If we denote 

, ′ ′′= +r gain iε ε ε with ,′ ′′∈�ε ε , then 
2 2

,Im
2r gain

ε ε εε
′ ′′ ′+ −⎡ ⎤ = −⎣ ⎦  and we may write 
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Using Eq. (Α10) with the columns of Table 1 for σA, N = N0 and 2
hostnε ′ = , we find ε ′′  for each 

gain material. 

 

The double current sheet model. Let us assume two infinite electromagnetic sheets carrying 

surface currents J1 and J2. The sheets are separated by a distance d and divide space into 3 

homogeneous regions, characterized by permittivities εr,1 , εr,2, εr,3, corresponding to regions 1, 2 

and 3 respectively, as shown in Fig. 9. Application of the boundary conditions on each interface 

yields the fields in all three regions. The electric field in regions 1 and 3 is given by: 

( ) ( )1
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where ,i r ik
c
ωε=  is the wavenumber in region i and the parameters , , ,a b c dC C C C  are given 

by: 
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With iη  denoting the wave impedance in region i the wave impedance ratios rij are defined as: 

,

, , ,

r ji
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r i r jj r i
r

εη μ μ
ε εη ε
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In terms of the symmetric JS and antisymmetric JA currents 
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,  

the outgoing waves are written as: 
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In our case: 1 3η η η= �  and hence 13 31 1r r= =  and 1 3k k k= �  and the fields are written in 

compact form as: 
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Also 2
12

1
r rε

ε
= �  and the coefficients , , ,a b c dC C C C  simplify as: 
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and the fields are written as: 
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Comparing this result with Eq. (3a) 
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and 
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What is of importance to our study is not the absolute quantities je and jm, but their relative 

amplitude and phase and hence we may use Eqs. (A18a), (A18b) to write their ratio as:
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Separating the big fraction into real and imaginary part we obtain: 
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And if we write the complex current quantities as: jei
e ej j e ϕ= , jmi

m mj j e ϕ= , JSi
S SJ J e ϕ=  

and J Ai
A AJ J e ϕ= , we reach the result 
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where ,e m e mj j j jδϕ ϕ ϕ= −  and ,S A S AJ J J Jδϕ δϕ δϕ= −  
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gain medium λemit (nm)  σe (cm2) N (cm-3) γ (cm-1) nhost Ref. 

Solid 

State 

ruby 694 2.5x10-20 1.58x1019 atoms 0.4 � 1.76 [30,31] 

Nd:YAG 1064 2.8x10-19 1.4x1020 atoms 39 1.82 [30,31] 

Yb:Er:Glass (Phosphate) 1540 0.8x10-20 10x1020 atoms 8 1.53 [30] 

Ti:Al2O3 790 3.4x10-19 3.3x1019 atoms 11 � 1.76 [30,31] 

Er+3 (in glass) 1550 2x10-20 5x1019 atoms 1 1.45 [32,33] 

Dye 

Rh. 800 (in methanol) 710 2.65x10-16 6x1018 molecules 1590 � 1.32 [14,34] 

Rh. 6G (in methanol) 560 3x10-16 3x1018 molecules 900 � 1.34 [35] 

Rh. 6G (in ethanol) 570 2x10-16 6x1016 molecules 12 � 1.36 [36] 

PM597 (in polymer) 580 8x10-17 6x1015 molecules 0.48 � 1.5 [37] 

Quantum 

Dots 

CdSe (in UV glue matrix) 593 2.34x10-15 3.7x1015 QDs 9 1.54 [38] 

PbSe (in UV gel) 1580 3x10-16 3x1015 QDs 0.9 1.46 [39] 

Quantum 

Well 

InGaAs/InGaAsP 1500 – – 5000 � 3.8 [40] 

InGaAsN/InP 1570 – – 2500 � 4 [41] 

 

Table 1. Properties of popular gain materials. The columns contain information about the 

emission wavelength (λemit), emission cross-section (σe), concentration (N), gain coefficient (γ = 

σe · N), refractive index of host material (nhost) and the reference from which the information has 

been retrieved. 
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FIG. 1. The dark-mode laser principle of operation. (a) Dispersion relation of the unpumped 

uniform dielectric slab of thickness d (red line) and band structure of the composite dielectric-

metal system (connected dots). The shaded area depicts the linewidth of the gain material and the 

red circle marks the operation point. The Q factor of each mode is also shown below. (b) Spectral 

emission profile of gain material, located at the frequency of the desired operation point. (c) 

Perspective view of a single unit cell without the scatterer (top) and lasing snapshot (bottom). (d) 

Perspective view of the same unit cell with the scatterer incorporated (top) and lasing snapshot 

(bottom). When pumped above the lasing threshold, the system lases into the dark mode as 

observed in both (c) and (d), but the stored power can be outcoupled only with the aid of a 

scatterer as in (d). The unit cell is periodically repeated along the x, z directions, forming an 

infinite radiating meta-surface. 
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FIG. 2. (a) Lasing curve. The color code of the marked points corresponds to the population 

inversions shown in (b). (b) Population inversion ΔΝ (percentage % over Ntotal) in linear scale. 

Top row: above threshold (Rp = 107 s-1, magenta circle in (a)). Bottom row: below threshold (Rp = 

106 s-1, blue circle in (a)). Left column: system without scatterer. Right column: system with 

scatterer placed at δx = 150nm (δx/α ≅  0.16). (c) Population inversion ΔΝ (percentage % over 

Ntotal) above threshold (Rp = 109 s-1) in log scale. Top: Scanning the scatterer’s position. The 

horizontal axis (x/α) corresponds to the unit cell and the vertical axis (δx/α) to the scatterer’s 

displacement. Bottom: Plot of the cross-section marked in top figure, corresponding to a system 

with scatterer placed exactly in the middle of the unit cell. 
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FIG. 3. Scanning the position of the scatterer (normalized with the unit cell width a). (a) Top 

view of unit cell, also showing the Ez spatial distribution of the dark mode (b) Q factor (c) 

Radiated and dissipated power over supplied power (d) Lasing threshold (e) Power emitted 

towards y>0 (blue triangles pointing up) and y<0 (red triangles pointing down), as the scatterer is 

shifted along the unit cell of the configuration described in Fig. 1. The marked displacement δx = 

150nm (δx/a ≅  0.16), corresponds to the configuration for which lasing simulations are shown in 

Fig. 2, striking a balance between field enhancement (Q factor), out-coupling and achievable 

directionality. Notice that at δx/a = 0.5 the Q factor is the maximum possible for this 

configuration (Q factor of the dark mode) and is limited only by the losses due to the metal. At 

this position the lasing threshold is the lowest possible and all lasing power, which cannot be 

radiated, is channeled to the metallic scatterers 
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FIG. 4. Effect of loss channels on Q factor and radiated power. The radiated power is expressed 

as a percentage (%) over the generated power and changes inversely with the total Q factor. 

 

 

 

FIG. 5. Effect of loss channels on (a),(d) amplitude of dark mode, (b),(e) generated power (c),(f) 

radiated power. The permittivity of the scatterer is set to εr,scat = 12.1 in (a),(b),(c) and εr,scat = 30 

in (d),(e),(f). The metal loss is set to Γp = 0.1 THz, 2 THz, 4.74 THz and 10 THz. The 

combinations of εr,scat and Γp are chosen to span a wide range of cases. 
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FIG. 6. Lasing threshold of system shown in Fig. 1d, in terms of material gain coefficient γ, 

corresponding to the data already presented in Fig. 3d in terms of pump rate. 

 

 

 

 

 

FIG. 7. Absorptance in gain (red line), in metal (blue line) and total absorptance (black line) for 

the system in Fig. 1c (normal incidence). Gain material with (a) Im[εr,host] = 10-3, (b) Im[εr,host] = 

10-2 and (c) Im[εr,host] = 10-1, modeling three families of absorption cross-sections and pump 

intensities. Notice how absorptance increases with increasing Im[εr,host] and how the absorbed 

power transfers from the metal to the gain region with increasing Im[εr,host]. 
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FIG. 8. Directionality explained via the equivalent current sheet model. The dark mode induces 

polarization currents I1, I2 on the two scatterers, which are effectively a weighted mixture of an 

electric moment and a magnetic moment that radiate individually. These moments are 

equivalently described by an infinite electromagnetic current sheet supporting an electric current 

je and a magnetic current jm. 

 

 

 

 

FIG. 9. The double current sheet model. The composite system is replaced by a homogeneous 

region of thickness d between two electric current sheets which represent the polarization currents 

running through the scatterers. 



- 42 - 

 

FIG. 10. (a) Phase lag between the equivalent currents je, jm . Connected open circles: calculated 

numerically from phase and amplitude of emitted fields during lasing (the variation is within 

numerical error). Red solid line: theoretical result as calculated with the double current sheet 

model. (b) Numerically calculated |ηje|, |jm|. (c) Directionality reproduced from Fig. 3e. Notice 

that directionality is maximized at those scatterer’s positions where |ηje| = |jm|. 

 

 

 

 

 

 

 

 

 



- 43 - 

 

FIG. 11. Directionality examined via the double current sheet model. (a) Phase lag between the 

equivalent currents je, jm and (b) maximum directionality, as a function of the slab width d, for εout 

= 1, 2 and 4 (f = 200 THz, i.e. constant). The horizontal dotted line marks the minimum and the 

marked circle corresponds to our system for d = 60 nm and εout = 1. (c) Effect of slab width on the 

phase lag between the equivalent currents je, jm (middle panel) and directionality (bottom panel) 

as predicted by the double current sheet model (red dots) and calculated with the FDTD (black 

circles) for εout = 1. The dark mode frequency shifts (top panel), because the unit cell is kept 

constant at a = 960 nm, contrary to (a) where the frequency was kept constant (implying resizing 

of the unit cell length as d changes). Our system for d = 60 nm is marked with a dotted circle, as 

also shown in (a), (b). 

 

FIG. 12. Boosting directionality by making one scatterer lossy. (a) Phase lag between equivalent 

currents, (b) amplitudes of equivalent currents and (c) directionality, as the conductivity of the 

scatterer is increased. 
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FIG. 13. Meta-sheet laser system placed on a glass substrate of thickness 1μm, with gain medium 

embedded in the dielectric slab. a-c, Scatterer placed in the substrate region. d-f, Scatterer placed 

in the superstrate region. a,d, Q factor. b,e, Radiated over supplied power. c,f, Power emitted 

towards y>0 for both systems. The results of Fig. 3 are reproduced here as open symbols, for 

easier comparison. 

 

FIG. 14. Meta-sheet laser system placed on a glass substrate of thickness 1μm, with gain medium 

of thickness 200nm placed on top of the dielectric slab. a-c, Scatterer placed in the substrate 

region. d-f, Scatterer placed in the superstrate region. a,d, Q factor. b,e, Radiated over supplied 

power. c,f, Power emitted towards y>0 for both systems. The results of Fig. 3 are reproduced here 

as open symbols, for easier comparison. 
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FIG. 15. Metal stripes placed on top of the slab, enabling fully layer-by-layer fabrication. Meta-

sheet laser system placed on a glass substrate of thickness 1μm, with gain medium of thickness 

200nm placed on top of the dielectric slab. a-c, System in air. d-f, System on a substrate. g-i, 

System on a substrate with gain layer on top. a-g, Q factor. b-h, Radiated over supplied power. c-

i, Power emitted towards y>0. The open symbols correspond to each respective system, when the 

metal is embedded in the slab. 
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FIGURES FOR APPENDIX 

 

 

FIG. 16. Schematic of the four-level gain medium. Pumping takes place between the ground state 

(N0) and the third level (N3) via the pumping rate Rp and the lasing action takes place between the 

second level (N2) and the first level (N1). The nonradiative decay processes between the ith and jth 

energy levels are described by the 1/τij decay rates. 

 

 

FIG. 17. Cross-section along the y-axis of the electric field during a lasing simulation (snapshot at 

steady state) and theoretical fit of the outgoing waves. 

 

 

 

 


