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Dynamical phases with novel topological properties are known to arise in driven systems of free
fermions. In this paper, we obtain a ‘periodic table’ to describe the phases of such time-dependent
systems, generalizing the periodic table for static topological insulators. Using K-theory, we sys-
tematically classify Floquet topological insulators from the ten Altland-Zirnbauer symmetry classes
across all dimensions. We find that the static classification scheme described by a group G be-
comes G×n in the time-dependent case, where n is the number of physically important gaps in the
quasienergy spectrum (including any gaps at quasienergy π). The factors of G may be interpreted
as arising from the bipartite decomposition of the unitary time-evolution operator. Topologically
protected edge modes may arise at the boundary between two Floquet systems, and we provide a
mapping between the number of such edge modes and the topological invariant of the bulk.

I. INTRODUCTION

The discovery of topological insulators and the theoret-
ical and experimental activity that it inspired has led to
major advances in our understanding of zero-temperature
gapped phases1,2. While the first new systems to be
discovered were specific topological phases of insulators
and superconductors in one to three dimensions3–9, these
were eventually arranged into a ‘periodic table’, which
extended the classification to all dimensions and sym-
metry classes10. This unifying approach revealed a re-
markable underlying periodicity, using connections be-
tween K-theory and Bott periodicity on the one hand,
and free fermionic topological phases with symmetries
on the other.

The generalized topological insulators that this clas-
sification scheme describes exhibit robust, topologically
protected edge modes in the presence of a boundary, and
are characterized by invariant integers encoded in the
topology of their wavefunctions. In this way, the peri-
odic table captures the complete set of bulk-edge con-
nections between bulk Hamiltonians and their protected
edge states. Equivalently, one can interpret the periodic
table as expressing the connection between the unitary
time evolution of a constant Hamiltonian (evaluated after
some time T ), and the corresponding edge eigenstates. In
this picture, the periodic table may be regarded as part of
a more general framework of topological bulk-edge con-
nections between unitary time evolution operators and
protected edge modes. When the Hamiltonians involved
are no longer constrained to be time-independent, new
types of bulk-edge connection may occur. In this pa-
per, we seek to capture the structure of these dynamical
bulk-edge connections by constructing a generalized peri-
odic table for free fermionic systems with time-dependent
Hamiltonians.

Among our motivations for studying these systems is
the set of (time-periodic) Floquet topological insulators
that have recently been the subject of much experimental
and theoretical effort [see Refs. 11 and 12 for a review].
Some of these efforts have considered using periodic driv-
ing to force a system into a topological state13–23, and

significant experimental progress has be made in this
direction in photonic systems24–27 and using ultracold
atoms28,29. Floquet states (albeit non-topological ones)
have also been observed in the solid state on the sur-
faces of topological insulators30,31. Other recent work
has demonstrated the possibility of generating intrinsi-
cally dynamical topological phases that cannot be real-
ized in static systems32–41.

Although we will make connections to Floquet theory,
our approach provides a description of time-dependent
topological phases in a manner that does not require time
periodicity. Instead, we consider equivalence classes of
unitary time-evolution operators in general, and focus
on the instantaneous topological edge states that might
exist in a system after a particular time evolution. Our
main result will be the production of a generalized peri-
odic table of Floquet topological insulators, which may
be found in Table. II. In the process, we find many new
Floquet topological phases that have not been considered
before, and provide a general and unifying description
for all symmetry classes and dimensions. As in the case
of (static) topological insulators, this picture provides a
connection between the manifestations of Bott periodic-
ity in K-theory and the topological phases of driven free
fermionic systems, describing both the strong and weak
invariants of the system.

Some elements of our generalized periodic table have
appeared in the context of Floquet systems elsewhere
in the literature. Notably, previous work has consid-
ered dynamical topological phases in 1D chains with
emergent Majorana fermions33,35, 2D systems without
symmetries34 and driven analogues of the 2D time-
reversal invariant topological insulators39. Topological
phases of 1D chiral lattices have also been described in
Ref. 36, albeit using a different definition of chiral sym-
metry than will be used in this work. In addition, Ref. 38
describes a band singularity approach to the characteri-
sation of Floquet topological phases, introducing new re-
sults for 3D systems with time-reversal symmetry. After
the completion of our work we discovered Ref. 41, which
extends the formulation of strong topological invariants
for classes A and AIII to all dimensions. While our work
does not rely on invariants for classification and discusses
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several other cases, our results seem to be consistent with
these existing discussions and incorporates them into a
general, unifying periodic table. Our results also capture
the complete set of strong and weak topological invari-
ants in each case.

Several other works discuss driven, 1d topological
phases in the context of quantum walks42–45. In par-
ticular, a complete classification of 1d quantum walks
has been obtained using scattering theory44. These re-
sults are consistent with our classification of 1d Flo-
quet systems, although the setting and symmetry defi-
nitions used are slightly different. In the opposite limit,
time-dependent topological systems have also been stud-
ied through adiabatic cycles, where a system param-
eter is varied slowly while maintaining a gap in the
Hamiltonian46–50. In Ref.50, a classification of adia-
batic pumps of this form was obtained for classes AIII
and DIII. These results also agree with our classification
scheme for these classes, although it should be noted that
Floquet systems are generically very far from the adia-
batic limit (and there is no requirement to maintain an
instantaneous gap).

In this paper we consider noninteracting systems, but
the ideas we outline also develop some of the intuition
required for the study of interacting topological phases,
a topic that has been the focus of much recent study, both
by the current authors and others51–58. Importantly, the
statements we make in the noninteracting case can, to
a great extent, be made mathematically precise, while
arguments for interacting systems necessarily require a
certain amount of conjecture. In this way, we hope that
this paper will provide a useful corroboration of the ideas
introduced in Ref. 54.

The outline of this paper is as follows. In Sec. II,
we introduce unitary evolution operators in the context
of time-dependent systems, and establish the homotopy
formalism that we will require throughout the text. In
Sec. III we introduce unitary loops and explain how a
general unitary evolution may be deformed into a uni-
tary loop followed by a constant Hamiltonian evolution,
a theorem that is central to our approach. We go on
to classify unitary loops for the Altland-Zirnbauer (AZ)
symmetry classes in Sec. IV, before relating this classi-
fication scheme to general unitaries and edge modes in
Sec. V. Finally, we give some concluding remarks in
Sec. VI. In order to aid ease of reading, we have omitted
some of the more mathematical sections from the main
text. These may be found in the appendices.

II. UNITARY TIME EVOLUTION OPERATORS
AND THEIR PROPERTIES

A. Time-dependent Quantum Systems

The aim of this paper is to classify the novel types of
topological edge mode that can arise in a noninteracting
quantum system after it has evolved in time due to some

time-dependent Hamiltonian H(t). In general, instanta-
neous eigenstates satisfy the time-dependent Schrödinger
equation and evolve in time through the unitary trans-
formation

|ψ(t)〉 = T exp

[
−i
∫ t

0

H(t′)dt′
]
|ψ(0)〉 ≡ U(t) |ψ(0)〉 ,

(1)
with T the time ordering operator. U(t) is the time evo-
lution operator, and, being unitary, has eigenvalues that
lie on the unit circle in the complex plane. We write
these eigenvalues as e−iε(t)t, and focus on the instanta-
neous quasienergies given by {ε(t)}, taken to lie in the
range −π/t < ε(t) ≤ π/t. In a spatially periodic sys-
tem, the instantaneous single-particle quasienergies form
bands labelled by the momentum k and a band index. In
some ways, these bands bear a resemblance to the ordi-
nary bands of a (static) periodic Hamiltonian, although
we will find that the periodic nature of the quasienergy
spectrum generally allows for a much richer structure.

We are particularly interested in the quasienergy spec-
trum after evolution through some time period T , and
we write the quasienergies at t = T simply as ε. At this
point, a system with an open boundary should have a
similar quasienergy spectrum to the corresponding peri-
odic system, with the possible addition of energy levels in
the gaps between the bulk bands. The existence of gap
states indicates the presence of topologically protected
edge modes, which we aim to classify in this text.

Most previous work in this area has focussed on Flo-
quet systems: those whose time-dependent Hamiltonians
satisfy H(t + T ) = H(t) for some time period T . In a
Floquet system, we can use an analogy of Bloch’s the-
orem to write the instantaneous eigenstates as |ψ(t)〉 =
e−iε(t)t |φ(t)〉 with |φ(t+ T )〉 = |φ(t)〉. In this way, after
a complete time period, Floquet states simply pick up
a phase, since U(T ) |ψ(0)〉 = e−iεT |ψ(0)〉. It should be
noted, however, that the time evolution operator U(t) is
generally not periodic, even if it is derived from a peri-
odic Hamiltonian.

Although Floquet theory provides a useful setting in
which to discuss time-dependent systems, we emphasize
that our conclusions will be much more general than this.
The statements we make are essentially about the topol-
ogy of the space of unitary evolutions (with symmetry),
and the unitary evolutions that we classify do not nec-
essarily need to be generated by a time-periodic Hamil-
tonian. Instead, they may be considered as paths within
the space of evolutions. The phase space of unitary evo-
lutions is discussed in some detail in Ref. 58.

B. Particle-hole, Time-reversal and Chiral
Symmetries

In this paper, we are concerned with free fermionic sys-
tems that fall within the symmetry classes of the AZ clas-
sification scheme59–61. These classes are distinguished by
the presence or absence of two antiunitary symmetries
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Symmetry Operator Cartan Label S
P = σ1 ⊗ I BDI, D, DIII

P = iσ2 ⊗ I CII, C, CI

θ = I AI, BDI, CI

θ = I⊗ iσ2 AII, CII, DIII

C = σ3 ⊗ I AIII

TABLE I. Standard expressions for symmetry operators
within each Altland-Zirnbauer (AZ) symmetry class. σi are
the Pauli matrices and I is the identity.

and one unitary symmetry, as well as the general form of
the relevant symmetry operators.

In systems with particle-hole symmetry (PHS), there
exists a PHS operator P = KP , where K is the complex
conjugation operator and P is unitary, that acts on the
band Hamiltonian to give

PH(k, t)P−1 = −H∗(−k, t). (2)

Similarly, in systems with time-reversal symmetry
(TRS), there exists a TRS operator Θ = Kθ, where K
is again the complex conjugation operator and θ is uni-
tary, that acts on the band Hamiltonian to give

θH(k, t)θ−1 = H∗(−k, T − t). (3)

With this definition, we have assumed without loss of
generality that t = T/2 is the point in time about which
the Hamiltonian is symmetric.

From the definition of the time evolution operator in
Eq. (1), it follows that these symmetry operators, if
present, act on U(k, t) to give

PU(k, t)P−1 = U∗(−k, t) (4)

θU(k, t)θ−1 = U∗(−k, T − t)U†∗(−k, T ). (5)

The actions of each symmetry operator on the time evo-
lution unitary are derived in Appendix A.

If both TRS and PHS are present, there is an addi-
tional unitary symmetry C = Pθ that acts on the Hamil-
tonian to give

CH(k, t)C−1 = −H(k, T − t). (6)

More generally, there may be a chiral symmetry (CS)
operator C 6= Pθ that acts on the Hamiltonian according
to Eq. (6) even in the absence of PHS and TRS. This
defines the final AZ symmetry class, labelled AIII. When
acting on the time evolution unitary, the CS operator
gives (derived in Appendix A)

CU(k, t)C−1 = U(k, T − t)U†(k, T ). (7)

We note that our definition of chiral symmetry for peri-
odic systems is slightly different from that used in some
previous works36,38.

After a suitable basis transformation, P , θ and C can
always be written in certain standard forms, as shown in

Table I. The operators P and θ may each either square
to +I or −I, leading (along with the chiral symmetry
operator) to ten distinct AZ symmetry classes59–61. We
write the set of unitaries that belong to each symmetry
class as US , where S is the appropriate Cartan label. To
simplify notation, we set T = 1 from now on, so that
t ∈ [0, 1]. We will also often omit the explicit momentum
and time dependence of a unitary operator U(k, t) if the
meaning is clear.

C. Gapped Unitaries

We are interested in the protected edge modes that
may arise in the gaps of the quasienergy spectrum at the
end of a unitary evolution if the system has a boundary.
For this reason, we will restrict the discussion to consider
only gapped unitaries, which we define to be unitary evo-
lutions of the form in Eq. (1), which at their end point,
U(k, 1), have at least one value of quasienergy in the
closed system that no bands cross.62 Importantly, we do
not require that the instantaneous quasienergy spectrum
be gapped for intermediate values of t (0 < t < 1). We
write the set of all such gapped unitaries within the AZ
symmetry class S as USg and note that a unitary evo-
lution of this form may be represented as a continuous
matrix function U(k, t) with 0 ≤ t ≤ 1 and k taking
values within the d-dimensional Brillouin zone, which we
call X. It is clear that U(k, t) evolves from the identity
matrix at t = 0.

The gap structure at the end of a unitary evolution will
depend on the symmetry of the underlying Hamiltonian,
and in general can be rather complicated. A schematic
example of a gapped unitary evolution with PHS is shown
in Fig. 1, which emphasizes both the nontrivial evolution
and the quasienergy band structure at the end point. The
most commonly considered quasienergy gaps are those at
ε = 0 and ε = π, since, in a system with particle-hole or
chiral symmetry, these are the gaps about which the sys-
tem is symmetric. In systems without these symmetries,
physically relevant energy gaps may appear anywhere in
the spectrum, although in these cases a generic gap can
always be moved homotopically [a term we define pre-
cisely below] to ε = 0 or ε = π. For these reasons, we will
assume the gaps in the spectrum occur at these points
throughout the next two sections, leaving a general dis-
cussion of gap structures to Sec. V.

The gapped spectrum in Fig. 1b resembles the band
structure of a conventional, static Hamiltonian, with two
well-separated bands and a gap at zero. In this situation,
it is useful to define the effective Floquet HamiltonianHF

through

HF (k) = i ln [U(k, 1)] , (8)

where the branch cut of the logarithm can be placed in
the gap at ε = π. According to Eq. (1), the Floquet
Hamiltonian might naively be interpreted as the effective
static Hamiltonian that, under time evolution, generates



4

0 1
2 1

-π

0

π

t

ϵ(
t)
t

a

-π 0 π

-π

0

π

k

ϵ

b

FIG. 1. (a) Unitary evolution as a composition of a loop with a constant Hamiltonian evolution. Instantaneous quasienergy
bands are shown in blue. (b) End point of this unitary evolution, with quasienergy bands shown in blue and edge modes (which
may be present in the open system) shown in red. The full spectrum has been projected onto a single momentum direction,
labelled by k.

the quasienergy spectrum of the corresponding unitary,
U(k, 1). If the Floquet Hamiltonian is topologically non-
trivial, we might expect the edge modes associated with
HF to transfer to edge modes in the quasienergy spec-
trum of U(k, 1). Indeed, if one considers evolution with
a time-independent but topologically nontrivial Hamilto-
nian, then U(k, 1) for the open system will have robust
edge modes if the corresponding unitary for the closed
system is gapped at zero.

Although this intuition goes some way towards ex-
plaining the protected edge modes of unitary operators,
the time-dependent situation is inherently more com-
plicated: in general, there can be edge modes in the
quasienergy gaps at both ε = 0 and ε = π, the lat-
ter of which lie beyond a description in terms of the
effective Floquet Hamiltonian. Indeed, recent studies
have demonstrated systems that exhibit edge modes in
both gaps even when the effective Floquet Hamiltonian
is the identity operator (see, for example, Ref. 34). To
fully characterize the edge modes of a unitary operator
U(k, 1), we require information about the unitary evolu-
tion U(k, t) throughout the period of evolution 0 ≤ t ≤ 1.
In Fig. 1a we show a nontrivial evolution of this form
that might generate edge modes in the gaps at ε = 0
and ε = π. An interesting feature of Floquet sys-
tems with edge modes at ε = π is that the unitary for
the open system cannot always be written in the form
U(k, 1) = e−iH(k) for some local Hamiltonian H(k). No-
tably, if the system has PHS, then there is no way of
shifting the modes at ε = π to ε = 0 without breaking
the symmetry. This contrasts with the closed system,
whose gapped unitary can always be written in terms of
a local Hamiltonian.

D. Compositions and Homotopy of Unitary
Evolutions

Before outlining the classification scheme in detail, we
describe a few properties of unitary evolutions that we
will require below. We will need to consider composi-
tions of unitaries, and so, borrowing notation from the
composition of paths63, we write the evolution due to U1

followed by the evolution due to U2 as U1∗U2. If H1(k, t)
is the Hamiltonian corresponding to U1 and H2(k, t) is
the Hamiltonian corresponding to U2, the Hamiltonian
corresponding to the composition U1 ∗ U2 is given by

H(t) =

{
H1(k, 2t) 0 ≤ t ≤ 1/2

H2(k, 2t− 1) 1/2 ≤ t ≤ 1
. (9)

With this definition, the endpoint of any composition of
unitaries always occurs at t = 1.

In general, this composition rule produces an evolution
that is no longer time-reversal symmetric about t = T/2,
even if H1 and H2 individually are symmetric. The dis-
cussions below become considerably simpler if the com-
posite Hamiltonian retains our definition of TRS. For
this reason, if we wish to consider systems with TRS,
we should instead define the Hamiltonian corresponding
to the composition U1 ∗ U2 by

H(t) =


H2(k, 2t) 0 ≤ t ≤ 1/4

H1(k, 2t− 1/2) 1/4 ≤ t ≤ 3/4

H2(k, 2t− 1) 3/4 ≤ t ≤ 1

, (10)

which we see has the required symmetry.
For classification purposes, we split the set USg into

equivalence classes. Following the classification scheme of
static topological insulators in Ref. 10, we carry out this
partition using homotopy. We define homotopy in the
usual way, and say that two unitary operators U1, U2 ∈
USg are homotopic if and only if there exists a function
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h(s), with s ∈ [0, 1], such that

h(0) = U1, h(1) = U2, (11)

with h(s) ∈ USg for all intermediate values of s. In this
way, the gap structure at t = 1 (but only the gap struc-
ture at this point) must be preserved throughout the ho-
motopy. We write homotopy equivalence as U1 ≈ U2.

In order to compare unitaries with different numbers
of bands, we introduce the further equivalence relation
of stable homotopy as follows. We define U1 ∼ U2 if and
only if there exist two trivial unitaries, U0

n1
and U0

n2
, such

that

U1 ⊕ U0
n1
≈ U2 ⊕ U0

n2
, (12)

where ⊕ is the direct sum and n1, n2 are positive integers
that give the number of bands in the trivial unitary. The
appropriate trivial unitaries U0

n must belong to the set
USg , and will be given explicitly when required.

Finally, since we are ultimately interested in the be-
havior at a system boundary, the discussion is simplified
considerably if we also define equivalence classes of pairs
of unitaries. The pairs (U1, U2) and (U3, U4), where both
members of each pair have the same number of bands,
are stably homotopic if and only if

U1 ⊕ U4 ∼ U2 ⊕ U3. (13)

We write this equivalence as (U1, U2) ∼ (U3, U4).

III. DECOMPOSITION OF UNITARY
EVOLUTIONS

Our approach will be to isolate the new, dynamical
topological behavior from the static topological behavior
that is encoded in a nontrivial Floquet Hamiltonian. We
will initially restrict the discussion to unitaries that have
gaps at both ε = 0 and ε = π (with possible additional
gaps elsewhere in the spectrum), considering more gen-
eral cases in Sec. V. We write the set of such unitaries
as US0,π.

To proceed, it is useful to define two special types of
unitary evolution. First, we define a unitary loop to be
a unitary evolution that satisfies U(k, 0) = U(k, 1) = I.
A unitary of this form can be seen to act trivially on a
closed system, but may generate nontrivial edge modes in
a system with a boundary. Secondly, we define a constant
Hamiltonian evolution as a unitary evolution that may be
expressed as U(k, t) = e−iH(k)t for some static Hamilto-
nian H(k), whose eigenvalues have magnitude strictly
less than π. The utility of identifying these two types of
unitary evolutions becomes apparent when one considers
the following theorem:

Theorem III.1. Every unitary U ∈ US0,π can be contin-
uously deformed to a composition of a unitary loop L and
a constant Hamiltonian evolution C, which we write as
U ≈ L ∗ C. L and C are unique up to homotopy.

Theorem III.1 is proved in Appendix C and is illus-
trated schematically in Fig. 1a. By a slight abuse of ter-
minology, we will often call the unitary composed of the
loop and the constant the ‘decomposition’ of the original
unitary. Heuristically, the decomposition can be inter-
preted as an initial loop, which may generate nontrivial
edge modes at ε = π, followed by a constant evolution
by the static Floquet Hamiltonian HF . Since we have
assumed there is a spectral gap at ε = π, the branch cut
required for the definition in Eq. (8) can be placed in
this region, and the final quasienergy bands can be con-
sistently thought of as emanating from the point ε = 0.
In addition, since we are assuming that the complete uni-
tary evolution is gapped at both ε = 0 and ε = π, the
static Hamiltonian required for the constant evolution
must be gapped at zero. We write the set of unitary
loops in symmetry class S as USL and the set of con-
stant, gapped Floquet Hamiltonian evolutions in sym-
metry class S as USC .

Through this unique decomposition, we see that a gen-
eral unitary evolution from U0,π can be classified by sep-
arately considering the unitary loop component and the
constant evolution component. A specific phase may be
labelled by the pair (nL, nC), where nL and nC are in-
variant integers associated with the unitary loop and con-
stant evolution components, respectively.

Next, we label the set of static gapped Hamiltoni-
ans in symmetry class S, whose eigenvalues E satisfy
0 < |E| < π, by HS . The set of gapped Floquet Hamilto-
nian evolutions in USC is clearly in one-to-one correspon-
dence with the set of static Hamiltonians in HS . This
follows from the bijection C(t) = exp (−iHF t), where
HF is the unique Floquet Hamiltonian with eigenvalue
magnitude strictly between 0 and π. From the definition
of homotopy given in Sec. II D, we see that C1 ≈ C2

within USC if and only if H1 ≈ H2 within HS , where Hi is
the static Hamiltonian corresponding to Ci. In addition,
it follows that C1 ∼ C2 if and only if H1 ∼ H2, if we
write the trivial unitary as

U0
n(k, t) = exp

(
−iH0

n

)
, (14)

where H0
n is a suitable trivial Hamiltonian.

In this way, we can classify pairs of constant Hamil-
tonian evolutions (C1, C2) by instead classifying pairs of
static Hamiltonians (H1, H2). This is a relative classifi-
cation that is equivalent to the well-known classification
of static topological insulators, which is summarized in
the periodic table given in Ref. 10. The classification of
pairs of unitary loops (L1, L2) does not, however, have a
static analogue.

Through this decomposition, the periodic table of
static topological insulators may be viewed as a subset
of a larger classification scheme that also includes time-
dependent Hamiltonians. In this picture, static topo-
logical insulators correspond to compositions of nontriv-
ial constant Hamiltonian evolutions with trivial unitary
loops. More general dynamical topological phases arise
through compositions of constant evolutions with non-
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trivial unitary loops. In the next section of this paper
we set out to classify the nontrivial unitary loops that
may exist in each symmetry class.

IV. CLASSIFICATION OF UNITARY LOOPS

A. Unitary Loops with Particle-Hole Symmetry
Only

With the machinery defined in previous sections, we
are now ready to give a systematic discussion of the clas-
sification of unitary loops. We begin by considering loops
in systems that have PHS but no other symmetry, be-
longing to the set USL with S ∈ {C,D}.

1. Hermitian Maps

To proceed, we define a Hermitian map corresponding
to a given unitary U(k, t) through

HU (k, t) =

(
0 U(k, t)

U†(k, t) 0

)
, (15)

which we see satisfies H2
U = I. In addition, we define the

two new symmetry operations

P1 =

(
P 0

0 P

)
, P2 =

(
P 0

0 −P

)
, (16)

which are derived from the standard PHS operator P .
Using Eq. (4), we see that the Hermitian map satisfies
the following new symmetry relations:

P1HU (k, t)P−11 = H∗U (−k, t)
P2HU (k, t)P−12 = −H∗U (−k, t). (17)

We write the set of Hermitian maps that square to the
identity, satisfy these symmetries and which additionally
satisfy HU (k, 0) = HU (k, 1) (but which are not neces-
sarily derived from unitary loops) as H S . We write the
subset of H S that corresponds specifically to unitary
loops as H S

L , and note that from the properties of uni-
tary loops, members of H S

L must satisfy

HU (k, 0) = HU (k, 1) =

(
0 In
In 0

)
. (18)

There is a one-to-one mapping between a unitary loop
U ∈ USL and the corresponding Hermitian map HU ∈
H S
L , a statement that is proved in Appendix D.
It is easy to verify that U1 ≈ U2 if and only if

HU1
≈ HU2

, which extends the definition of homotopy

equivalence to H S . Next, we note that the trivial uni-
tary loop is given by

U0
n(k, t) = In, (19)

and the corresponding trivial matrix in H S
L is given by

H0
U,n(k, t) =

(
0 In
In 0

)
. (20)

This allows us to define the stable homotopy equivalence
of Hermitian maps through

HA ∼ HB ⇔ HA ⊕H0
U,n1
≈ HB ⊕H0

U,n2
, (21)

in the space H S
L . Again, it is clear that U1 ∼ U2 ⇔

HU1
∼ HU2

.
As in the case of unitaries, we can also consider pairs

of Hermitian maps, (HU1 , HU2), where both members
of each pair have the same number of bands. This al-
lows us to define the equivalence relation (HU1 , HU2) ∼
(HU3 , HU4) if and only if HU1 ⊕ HU4 ∼ HU3 ⊕ HU2 .
These pairs of Hermitian maps form an additive group,
described in Appendix E, which we can use to classify
the relative topological invariants of the corresponding
pair of unitary evolutions.

2. Classification of Unitaries using K-Theory

We will omit the technical steps of the K-theory ar-
gument in this section, and instead give an overview of
the method. For further details, we refer the reader to
Appendix E and references therein.

The general idea is to use the Morita equivalence of cat-
egories to map the group of equivalence classes of pairs
in H S onto a K-group of the kind KR0,q(M) (or, later,
K(M) for classes A and AIII). The KR0,q(M) are a set of
well-studied K-groups of manifolds which are described,
for example, in Refs. 64–66. In these expressions, M
is the manifold S1 × X, where X is the Brillouin zone
and S1 is the circle corresponding to the time direction,
whose initial and final points (t = 0 and t = 1) are iden-
tified due to the assumed periodicity of Hermitian maps
in H S . The space M is, in the terminology of Ref. 66, a
real space, i.e. a space with an involution corresponding
to k→ −k. The reduction using Morita equivalence rela-
tions is equivalent to Kitaev’s trick of replacing negative
generators with positive generators10.

For class D, the resulting group of the equivalence
classes of pairs is KR0,1(S1 × X), while for class C the
resulting group is KR0,5(S1 × X). Specifically restrict-
ing ourselves to the subset H S

L , the group of equivalence
classes of pairs of loops is then isomorphic to the relative
K-group

KR0,1(S1 ×X, {0} ×X) = KR0,2(X) Class D

KR0,5(S1 ×X, {0} ×X) = KR0,6(X) Class C,
(22)
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where the point {0} ∈ S1 corresponds to the initial time
of the evolution. The equalities in these two equations are
well-known K-theory isomorphisms65,66. The last results
are identical to the K-groups classifying static topological
insulators from these classes, and we note that the K-
group captures both the strong and weak invariants.

B. Unitary Loops with Time-reversal Symmetry

We now discuss the classification of unitaries that have
TRS, and which may also have PHS. These correspond to
the symmetry classes AI and AII (TRS only), and classes
BDI, CII, DIII and CI (TRS and PHS).

Although it is possible to work with the unitary oper-
ators directly, the calculations become considerably sim-
pler if we instead define symmetrized unitaries, US(k, t),
through

US(k, t) = exp

[
−i
∫ 1+t

2

1−t
2

H(k, t′) dt′

]
. (23)

It is clear that there is a one-to-one correspondence be-
tween unitary operators U(k, t) and their symmetrized
forms US(k, t), and further, that both expressions agree
at t = 0 and t = 1. Under a particle-hole transforma-
tion, a symmetrized unitary with PHS satisfies the same
relation as the original unitary,

PUS(k, t)P−1 = U∗S(−k, t), (24)

while under time-reversal, the symmetrized unitary op-
erator transforms as

θUS(k, t)θ−1 = U†∗S (−k, t), (25)

relations that are derived in Appendix B. For the rest
of this section we will drop the subscript S and assume
that we are using symmetrized unitaries.

As in the previous section, a (symmetrized) unitary
evolution that belongs to US0,π is equivalent to a compo-
sition of a unitary loop with a constant Hamiltonian evo-
lution. However, since the unitaries involved now have
TRS, composition is defined using the time-reversal sym-
metric expression in Eq. (10). The classification of the
constant Hamiltonian evolution component follows the
discussion in Sec. III, with topological edge modes at
ε = π, if present, arising from the loop component.

1. Hermitian Maps

To classify the unitary loops in these classes, we again
define a Hermitian map corresponding to a given (sym-
metrized) unitary U(k, t) as in Eq. (15). This time, we
require up to four symmetry operators,

P1 =

(
P 0

0 P

)
, P2 =

(
P 0

0 −P

)
,

θ1 =

(
0 θ

θ 0

)
, θ2 =

(
0 θ

−θ 0

)
, (26)

which are derived from the symmetry operators P and θ.
If the relevant symmetry is present, these operators act
on the Hermitian map HU to give

P1HU (k, t)P−11 = H∗U (−k, t)
P2HU (k, t)P−12 = −H∗U (−k, t) (27)

for classes BDI, CII, DIII and CI, and

θ1HU (k, t)θ−11 = H∗U (−k, t)
θ2HU (k, t)θ−12 = −H∗U (−k, t) (28)

for classes AI, AII, BDI, CII, DIII and CI.

As before, we write the set of Hermitian maps that
square to the identity, satisfy these symmetries, and
which additionally satisfy HU (k, 0) = HU (k, 1), as H S ,
and write the subset of this that corresponds to unitary
loops as H S

L . There is again a one-to-one mapping be-
tween the set of U ∈ USL and the corresponding set of Her-
mitian maps HU ∈H S

L , a statement that can be proved
using a method similar to that given in Appendix D. As
in Sec. IV A, homotopy, stable homotopy, and the equiv-
alence of pairs can be defined for Hermitian maps in H S .

2. Classification of Unitaries using K-Theory

We can now use K-theory arguments to map the equiv-
alence classes of pairs in H S onto K-groups. Using the
arguments of Sec. IV A for each symmetry class, we find
the group of equivalence classes in each case maps onto

KR0,7(S1 ×X) Class AI

KR0,3(S1 ×X) Class AII

KR0,0(S1 ×X) Class BDI

KR0,4(S1 ×X) Class CII

KR0,2(S1 ×X) Class DIII

KR0,6(S1 ×X) Class CI.

(29)
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Restricting to the subset H S
L , the groups are then isomorphic to the relative K-groups

KR0,7(S1 ×X, {0} ×X) = KR0,0(X) Class AI

KR0,3(S1 ×X, {0} ×X) = KR0,4(X) Class AII

KR0,0(S1 ×X, {0} ×X) = KR0,1(X) Class BDI

KR0,4(S1 ×X, {0} ×X) = KR0,5(X) Class CII

KR0,2(S1 ×X, {0} ×X) = KR0,3(X) Class DIII

KR0,6(S1 ×X, {0} ×X) = KR0,7(X) Class CI,

(30)

using a set of well-known K-theory isomorphisms as out-
lined in Appendix E65,66. The last results are identical
to the K-groups classifying static topological insulators
from these classes and describe the complete set of strong
and weak invariants. Overall, it follows that pairs of uni-
tary loops within USL are classified by the K-groups given
in Eq. (30).

C. Classification of Gapped Unitaries in Symmetry
Classes A and AIII

Finally, we discuss the classification of time evolu-
tion unitaries in the complex symmetry classes, with
S ∈ {A,AIII}. As in the previous section, the discussion
is simplified if we use the symmetrized unitaries US(k, t)
defined in Eq. (23). In terms of these, the chiral symme-
try operator (relevant for class AIII) has the action

CUS(k, t)C−1 = U†S(k, t), (31)

a relation that is derived in Appendix B. As before, we
will drop the subscript S and assume we are working with
symmetrized unitaries throughout this section.

1. Hermitian Maps

As in the previous cases, we use Eq. (15) to define a
Hermitian map HU (k, t) (satisfying H2

U = I), which cor-
responds to a given (symmetrized) unitary U(k, t). The
relevant symmetry operators for classes A and AIII are

Σ =

(
I 0

0 −I

)
, Γ =

(
0 C

−C 0

)
. (32)

The first of these anticommutes with any Hermitian map
of the form HU , while the second, which is derived from
the CS operator C, is relevant only for class AIII. These
operators act on HU to give

ΣHU (k, t)Σ−1 = −HU (k, t) Classes A and AIII

ΓHU (k, t)Γ−1 = −HU (k, t) Class AIII. (33)

We write the set of Hermitian maps that square to the
identity, satisfy these symmetries, and which additionally
satisfy HU (k, 0) = HU (k, 1) as H S , and write the subset
of this that corresponds to unitary loops as H S

L . There
is again a one-to-one mapping between the set of U ∈ USL
and the corresponding set of Hermitian maps HU ∈H S

L ,
a statement that can be proved using the method of Ap-
pendix D. Homotopy, stable homotopy and equivalence
of pairs in H S can be defined as in previous sections.

2. Classification of Unitaries using K-Theory

We can now use K-theory arguments to map the equiv-
alence classes of pairs in H S onto K-groups. For each
symmetry class, we find the mapping to

K1(S1 ×X) Class A

K2(S1 ×X) Class AIII.
(34)

Restricting to the subset H S
L , the groups are then iso-

morphic to the relative K-groups

K1(S1 ×X, {0} ×X) = K0(X) Class A

K2(S1 ×X, {0} ×X) = K1(X) Class AIII,
(35)

which follow from known K-theory isomorphisms65,66.
The last results are identical to the K-groups classify-
ing static topological insulators from these classes, and
it follows overall that pairs of unitary loops from classes A

and AIII are classified by the K-groups given in Eq. (35).
The K-groups capture the complete set of strong and
weak invariants.
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S d = 0 1 2 3 4 5 6 7

A Z×n ∅ Z×n ∅ Z×n ∅ Z×n ∅
AIII ∅ Z×np ∅ Z×np ∅ Z×np ∅ Z×np

AI Z×n ∅ ∅ ∅ Z×n ∅ Z×n
2 Z×n

2

BDI Z×np

2 Z×np ∅ ∅ ∅ Z×np ∅ Z×np

2

D Z×np

2 Z×np

2 Z×np ∅ ∅ ∅ Z×np ∅
DIII ∅ Z×np

2 Z×np

2 Z×np ∅ ∅ ∅ Z×np

AII Z×n ∅ Z×n
2 Z×n

2 Z×n ∅ ∅ ∅
CII ∅ Z×np ∅ Z×np

2 Z×np

2 Z×np ∅ ∅
C ∅ ∅ Z×np ∅ Z×np

2 Z×np

2 Z×np ∅
CI ∅ ∅ ∅ Z×np ∅ Z×np

2 Z×np

2 Z×np

.

TABLE II. Classification of gapped unitary evolutions by symmetry class and spatial dimension d. The number of relevant
spectral gaps is given by np ∈ {1, 2} for systems with PHS or CS and by n ∈ Z+ for systems without PHS or CS. The table
repeats for d ≥ 8 (Bott periodicity).

V. DISCUSSION

A. Complete Classification of Unitary Evolutions

In the preceding section we obtained groups for the
equivalence classes of pairs of unitary loops from the ten
AZ symmetry classes. These groups are of the form
KR0,q(X) for real symmetry classes and of the form
Kq(X) for complex symmetry classes, where X is the
Brillouin zone torus. The final K-groups were given in
Eqs. (22,30,35).

We noted that these K-groups are identical to those ob-
tained from the topological classification of static (single-
gapped) Hamiltonians in the same symmetry classes. De-
pending on the dimension of the Brillouin zone X, these
K-groups are isomorphic to a group G ∈ {∅,Z2,Z}, re-
producing the well-known periodic table of topological
insulators and superconductors10.

A general unitary evolution, however, will not cor-
respond directly to a loop evolution. As discussed in
Sec. III, we can decompose a unitary evolution that is
gapped at both ε = 0 and ε = π into a loop followed
by an evolution with a static Hamiltonian. More gener-
ally, there may be gaps present in the endpoint spectrum
at other quasienergies. In this way, to completely clas-
sify the space of gapped unitary evolutions, we must first
identify the different end point gap structures that are
compatible with each symmetry class.

1. Systems without Particle-hole or Chiral Symmetry

In systems without PHS or CS (classes A, AI and AII),
there are no restrictions on the quasienergies at which
physically relevant gaps may occur. To see this, we can
imagine composing a unitary evolution U , which has a
gap at ε0, with an evolution by a trivial Hamiltonian
proportional to the identity, U0 = e−itI. For class A, the
evolution by U0 can simply follow the evolution U , while

for classes AI and AII, the TR-symmetric composition
given in Eq. (10) should be used. The composition U ∗U0

therefore remains within the specified symmetry class,
but continuously moves the quasienergy gap at ε0 to ε0+t
(modulo 2π). Any edge modes initially present at ε0 will
be moved with the gap. In these symmetry classes, there
is nothing special about the gaps at ε = 0 and ε = π,
even though we implicitly assumed gaps at these points
in the main text.

Therefore, if there is only one gap present in the end
point spectrum, we can always (temporarily) shift it to
ε = π, continuously and while preserving the symmetry.
The resulting unitary can then be deformed to a loop, and
follows the K-theory classification outlined in Sec. IV. In
this way, a single-gapped unitary evolution without PHS
or CS is classified by the group G ∈ {∅,Z2,Z}, depending
on the AZ symmetry class.

If there are several gaps in the end point spectrum,
we can continuously rotate it so that one gap arises at
ε = π. Then, following the arguments of Sec. III, the
unitary evolution may be decomposed into a loop fol-
lowed by a constant Hamiltonian evolution. The loop
piece is classified by the K-group KR0,q(X) or Kq(X),
and the constant piece is one-to-one correspondence with
a static Hamiltonian. The gaps of the static Hamiltonian
are classified by the same K-groups KR0,q(X) or Kq(X)
as the unitary loop, and so the complete classification
contains a factor of G for each gap in the quasienergy
spectrum. An alternative way to see this is to imagine
rotating each gap in the spectrum to ε = π in turn. Then,
using the classification of unitary loops, we see that each
gap contributes a factor of G.

Overall, a gapped unitary evolution without PHS or
CS may have n ∈ Z+ physically relevant gaps at its end
point. The topological classification of such a system is
given by G×n, where G ∈ {∅,Z2,Z} depends on the AZ
symmetry class and is given in Table II.
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2. Systems with Particle-hole or Chiral Symmetry

In systems with particle-hole symmetry (classes BDI,
D, DIII, CII, C, CI) or chiral symmetry (class AIII),
the quasienergies ε = 0 and ε = π are special: it is
about these points that the spectrum has the full sym-
metry of the system, and eigenstates at these points have
symmetry-related partners at the same quasienergy. In
an open system, any topologically protected edge modes
will appear at one of these gaps.

In this way, for a unitary evolution with PHS or CS,
physically relevant spectral gaps may occur at one or
both of ε = 0 and ε = π. If only the gap at ε = π
is present, then the evolution may be homotopically de-
formed to a loop without closing the gap. The classifica-
tion of such an evolution is then given by the correspond-
ing K-group derived in Sec. IV. If gaps at both ε = π and
ε = 0 are present, then the evolution may be continuously
deformed to a loop followed by a constant Hamiltonian
evolution. The loop part of the evolution may be clas-
sified as before and, as argued in Sec. III, the constant
evolution is in one-to-one correspondence with a static
Hamiltonian, and follows the usual classification scheme
for static topological insulators. The complete classifica-
tion therefore has an additional factor of KR0,q(X) (for
real symmetry classes) or Kq(X) (for complex symmetry
classes), corresponding to the constant part of the evolu-
tion. Overall, a unitary evolution with gaps at both ε = 0
and ε = π has the classification G×G ∈ {∅,Z2×Z2,Z×Z},
depending on the specific K-group.

Finally, we consider the case where there is only a gap
at ε = 0. Since there is no gap at ε = π, we cannot
continuously deform the unitary evolution into a loop fol-
lowed by a constant Hamiltonian evolution (recall that we
require the constant Hamiltonian to have instantaneous
eigenvalues strictly between −π and π). In contrast to
the cases without PHS or CS considered in Sec. V A 1, we
also cannot rotate the spectrum by composing the uni-
tary with a trivial evolution, as this composition would
not preserve the symmetry. There is, however, a mapping
between the endpoint unitary with a gap at ε = 0 and
the end point unitary that has been rotated by ∆ε = π
so that the gap is now at ε = π.

For instance, in the simplest case of class AIII, we
may choose the symmetry operator to take the form
C = σ3 ⊗ I, which acts as σ3 on the two sublattices on
each site. Then, the map produced by evolving with the
Hamiltonian H = πσ1 ⊗ I has the final form eiH = −1,
which changes the eigenvalues of the previous eigenstates
but not their spatial dependence. The final unitary
U = −1 therefore maps all edge state at ε = 0 onto
edge states at ε = π. Thus, from our previous K the-
ory classification, we conclude that unitaries with a gap
at ε = 0 have the same classification as unitaries with a
gap at ε = π, and so also have the same edge behaviour.
A similar technique may be used for all other symmetry
classes with PHS or CS. In this way, the classification of
unitary evolutions with a single gap at ε = 0 is also given

U1 U2

0
-π

0

π

r

ϵ

FIG. 2. Schematic diagram of the interface between a system
described by unitary U1 and a system described by unitary
U2 6= U1. The vertical axis shows the quasienergy spectrum
at t = T and the horizontal axis gives the displacement, with
the interface occurring in the neighborhood around r = 0.
Bulk bands are shown in blue, with protected edge modes
shown in red at the interface.

by G ∈ {∅,Z2,Z}, depending on the specific K-group.
Overall, we see that a gapped unitary evolution with

PHS or CS may have np ∈ {1, 2} physically relevant gaps
at its end point. The topological classification of such a
system is given by G×np , where G ∈ {∅,Z2,Z} depends
on the AZ symmetry class.

The classification of noninteracting gapped unitary
evolutions is summarized in the periodic table given in
Table II, with entries listed according to symmetry class,
dimension, and endpoint gap structure. It may be noted
that the periodic table for static topological insulators is
contained within this dynamical periodic table: Static
topological insulators correspond to evolutions with a
trivial unitary loop component, which, in our generalized
classification scheme, leads to one factor of the classifying
group G×nP or G×n being trivial.

B. Bulk-edge Correspondence

At the interface between a system described by unitary
U1 and a system described by unitary U2, the principle
of bulk-edge correspondence asserts that there should ex-
ist protected edge modes, shown schematically in Fig. 2.
A particular edge mode can be labelled by a quantum
number, and the complete set of quantum numbers is
isomorphic to the set of equivalence classes of (U1, U2).
We can therefore determine the quantum number of the
edge modes by appealing to the bulk classification scheme
given above.

We first consider systems without PHS or CS, which
may have any number of gaps n. As discussed in Sec. V A,
in these cases we can always rotate the final spectrum
so that one gap arises at ε = π. Then, the classification
described above gives one integer nL corresponding to the
loop component, and (n− 1) integers nCi

corresponding
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each other gap, which derive from the gap classification
of the corresponding static Hamiltonian. We write he
quantum numbers associated with the edge modes as nπ
for the gap at ε = π and ni for the edge modes in each
other (ith) gap.

We leave a full discussion of the bulk-edge correspon-
dence to future work, but for completeness, we note here
that the two sets of integers are related through

nπ = nL

ni = nCi + nL, (36)

where addition is again taken modulo two for systems
with a Z2 classification. In general, we see that the edge
modes associated with each gap may be different.

Alternatively, as described in Sec. V A 1, we can also
classify the gaps of a system without PHS or CS by ro-
tating the spectrum so that each gap occurs at ε = π in
turn, and then calculating the corresponding loop invari-
ants. This gives a loop invariant nLi

for each gap in the
spectrum, which maps directly onto the corresponding
number of edge modes, ni.

We now consider unitary evolutions with PHS or CS,
which may have gaps at one or both of ε = 0 and ε = π.
If there is just one gap, the bulk index described above
maps directly onto the number edge modes. In the more
interesting case, there may be gaps and edge modes at
both ε = 0 and ε = π. A unitary evolution of this form
is classified in the bulk by a pair of integers from the
appropriate group G×G, according to Table II. We write
the integer associated with the loop component as nL
and the integer associated with the gap in the constant
Hamiltonian evolution as nC . These must have a one-to-
one relation with the quantum numbers associated with
the edge modes in the gaps, which we write as n0 for the
gap at ε = 0, and as nπ for the gap at ε = π.

As in the previous case, the number of edge modes in
each gap is related to the bulk invariants through

nπ = nL

n0 = nC + nL, (37)

where addition is taken modulo two for systems with a
Z2 classification.

C. Strong and Weak Topological Invariants

A number of explicit dynamical topological in-
variants have been proposed for various symmetry
classes34,36,38,39,41. Our aim here is not to provide an
exhaustive list of these expressions, but we note that
our mapping of unitaries onto Hamiltonians in princi-
ple allows the existing structure of topological invariants
for static Hamiltonians to be applied to these dynamical
systems. In many of these cases, the dynamical topolog-
ical invariants can be related directly to the band invari-
ants of the static effective Hamiltonian (see, for example,
Refs. 34, 39, and 41).

We may also use standard K theory results relating,
for instance, the K group of a torus to the K groups of
spheres to infer the existence of a set of weak topological
invariants, similar to those of static topological insulators
and superconductors. For example, in the case of class
A for d = 3, there is no strong invariant classifying uni-
tary loops, just as there is no strong invariant for static
Hamiltonians in class A10. There is, however, a set of
three weak invariants associated with 2d cross-sections
of the Brillouin zone torus. Similar weak invariants ex-
ist for all other symmetry classes. For the classes which
involve antiunitary symmetries, the number of invariants
may be inferred using standard formulas of the type

K̃d−q
R

(
Td
) ∼= d−1⊕

s=0

(
d

r

)
π0 (Rq−s) , (38)

where we have used the notation of Ref. 10 for these K
groups.

D. Disordered Unitary Evolutions

Up to this point we have considered unitary evolutions
in systems with lattice translational symmetry that are
protected by gaps in the quasienergy spectrum. One
might worry that these evolutions are sensitive to per-
turbations, and that a small amount of disorder could
cause the gaps of the final unitary to collapse. While
our analysis so far has allowed us to make rigorous state-
ments about systems with translational symmetry, it is
not directly applicable to such disordered systems. Nev-
ertheless, as we now argue, we expect the translationally
invariant systems considered previously to be representa-
tive of a set of broader Floquet phases which are robust
against small local perturbations.

To argue this, we appeal to the intuition estab-
lished for disordered static topological insulators1,2. In
these systems, adding a moderate amount of (symmetry-
respecting) disorder can localize states in the bulk with-
out affecting the anomalous states at the edge. Topolog-
ical edge modes may nevertheless exist in a mobility gap,
i.e. a region in the spectrum where there are no extended
states that connect different edges. Edge states may only
be created or destroyed if the disordered Hamiltonian is
tuned a through a critical point, at which point the mo-
bility gap collapses. As long as a mobility gap is main-
tained at the energy of the edge modes, the edge modes
themselves are protected. In this way, the original TI
classification scheme obtained for translationally invari-
ant systems may be extended to describe a much broader
set of phases. Correspondingly, the group G obtained us-
ing K-Theory continues to describe the disordered phase.

We now consider the effect of disorder on a Floquet sys-
tem. The discussion differs from the static case in two
main ways: First, the disorder is now time-dependent,
and we assume, without loss of generality, that it may
be incorporated by adding a term λVdis(t) to the transla-
tionally invariant Hamiltonian. Secondly, there may now



12

be dynamical edge modes present in the quasienergy gap
at ε = π.

We can simplify the discussion using the Trotteriza-
tion procedure of Refs.56,67. There, it was shown that a
unitary evolution of the form

U(1) = T
∫ 1

0

[H(t′) + λV (t′)] dt, (39)

with V (t) a small local perturbation, is equivalent to the
unitary evolution

U(1) =

[
T
∫ 1

0

[
λṼ (t′)

]
dt

] [
T
∫ 1

0

[H(t′)] dt

]
, (40)

where Ṽ (t) is another local perturbation related to V (t)
through conjugation with the unperturbed Hamiltonian.
In this way, a concurrent perturbation can be ‘pulled out’
to the end of the evolution.

Using this procedure, we see that a weakly disordered
loop is equivalent to an unperturbed loop followed by a
weak disordering potential. The unperturbed loop may
exhibit nontrivial loop order, which is manifested as edge
modes in the gap at ε = π. As long as the instantaneous
unitary operator U(t) (for the full system) has a mobility
gap at ε = π at all times after the loop, one expects the
edge modes to persist and the order to be protected.

In the more general case, the unperturbed evolution
does not describe a pure loop, and instead may be de-
composed into a loop evolution followed by a constant
Hamiltonian evolution (as described in Sec. III). This
unperturbed evolution will in general have (symmetry-
protected) topological order (SPT order) associated with
both the loop and constant components, and may have
edge modes at any of the np or n gaps in the quasienergy
spectrum, as discussed in Sec. V B. When we follow this
evolution with the disordering perturbation λṼ (t), the
edge modes will persist as long as the unitary operator
at times following the unperturbed evolution has a mo-
bility gap at each of the edge mode quasienergies, and
the SPT order will be protected.

In this way, given an arbitrary translationally invari-
ant evolution described by H(t), which leads to a gapped
HF that may exhibit edge modes, there is a set of dis-
ordered perturbations λV (t) (which need not be small)
that allow these edge modes to persist. There is therefore
a well-defined notion of SPT order for a broad range of
disordered Floquet systems, and the classification intro-
duced in this work describes well-defined Floquet topo-
logical noninteracting phases. Moreover, it is likely that
there are strongly disordered versions of these Floquet
phases (so-called called Anderson Floquet phases) which
again have a set of robust edge modes. The robustness of
topological Floquet systems to disorder has already been
demonstrated, e.g. in the two-dimensional Class A sys-
tem discussed in Ref. 68. Further investigation of these
disordered Floquet systems is an important open avenue
for future research.

Finally, we note that in any realistic Floquet system
there will inevitably be interactions between particles,

although the strength of these interactions can often be
made extremely small. Despite this, it is known that
driving a system with even weak interactions can lead
to heating to infinite temperature at long times69–71. To
describe true Floquet phases, therefore, the systems we
have discussed should also be stable to heating of this
kind. This may likely be achieved by adding disorder
to the system: In the presence of strong disorder and
interactions, a system may undergo many-body localiza-
tion (MBL), and avoid heating at infinite time72–77 (see
Ref. 78 for a review of MBL). The existence of MBL
in dimensions higher than one is currently a matter of
debate79,80. However, even if MBL ultimately fails at
infinite times, the localization properties are believed to
hold over prethermal time scales that are parametrically
large. In this way, we expect the systems described in this
work to be representative of true (or at least prethermal)
Floquet topological phases, robust to weak interactions,
in the presence of disorder.

VI. CONCLUSIONS

In this paper we have used methods from K-theory
to systematically classify noninteracting Floquet topo-
logical insulators across all AZ symmetry classes and di-
mensions. In the process, we discovered a number of
new topological Floquet phases. Although the use of K-
Theory requires the underlying systems to be transla-
tionally invariant, we have argued that the classification
describes a broad set of Floquet phases that are robust
to disorder. It would be interesting to see if these can be
realized in an experimental setting.

Our results, summarized in Table II, show that the
classification of a static topological system described by
the group G is extended to the product group G×n or
G×np in the time-dependent case, for a quasienergy spec-
trum with np or n gaps. Our approach uses the fact that
a general time-evolution operator can be continuously de-
formed into a unitary loop followed by a constant Hamil-
tonian evolution, and the factors of G in the resulting
classification scheme can be interpreted as arising from
these two unitary components. In Sec. V we stated how
this bulk classification scheme relates to the number of
protected edge modes that may arise in a system with a
boundary. The discussion of topological invariants and
the bulk-boundary correspondence for more general band
structures are interesting avenues for future work.

As noted in the introduction, some elements of our
periodic table have appeared elsewhere in the litera-
ture in the context of Floquet systems, using different
methods33–36,38,39,41. While our results are consistent
with these works, a detailed comparison yields a num-
ber of differences. First, our definition of chiral symme-
try differs from that of Ref. 36, and it would be worth
investigating under what circumstances these definitions
are equivalent and to what extent this affects the classifi-
cation scheme. Secondly, Ref. 34 introduces a frequency
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domain formulation for the study of Floquet systems that
explicitly makes use of time periodicity. It would be of
interest to explore whether some variant of this approach
applies to the more general unitary evolutions we have
considered here.

In this noninteracting setting, the unique decomposi-
tion of a unitary evolution into two components (as de-
fined in the text) could be proved rigorously, allowing
us to separate the dynamical topological behavior from
the static topological behavior of the Floquet Hamilto-
nian. It is likely that this unitary decomposition is ap-
plicable more generally, including in interacting systems
if many-body complications are dealt with appropriately.
Indeed, we use this unitary decomposition as a working
assumption in Ref. 54, where it aids in the classification
of Floquet SPTs in one dimension. This approach may be

useful in the classification of driven, interacting topologi-
cal phases more generally, a field in which much progress
has recently been made51–58.
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Appendix A: Action of Symmetry Operators on Unitaries

In this appendix, we prove the action of the three symmetry operators on the time-evolution unitary. In order
to simplify certain steps of the calculation, we will make use of the two-point (non-symmetrized) unitary operators
defined through

U(k; t2, t1) = T exp

(
−i
∫ t2

t1

H(k, t′)dt′
)
, (A1)

where we see that U(k; t, 0) ≡ U(k, t). These auxiliary unitaries satisfy the properties

[U(k; t2, t1)]
†

= U(k; t1, t2) (A2)

U(k; t3, t1) = U(k; t3, t2)U(k; t2, t1).

1. Particle-hole Symmetry

For the PHS operator, we start from

PH(k, t)P−1 = −H∗(−k, t) (A3)

and find

PU(k, t)P−1 = P

[
T exp

(
−i
∫ t

0

H(k, t′)dt′
)]

P−1

=

[∑
n

(−i)n

n!
T
∫ t

0

dt1 . . .

∫ t

0

dtn PH(k, t1)P−1 . . . PH(k, tn)P−1

]

=

[∑
n

(+i)n

n!
T
∫ t

0

dt1 . . .

∫ t

0

dtnH
∗(−k, t1) . . . H∗(−k, tn)

]

=

[
T exp

(
−i
∫ t

0

H(−k, t′)dt′
)]∗

= U∗(−k, t). (A4)

2. Time-reversal Symmetry

For the TRS operator, we start from

θH(k, t)θ−1 = H∗(−k, T − t) (A5)
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and find

θU(k, t)θ−1 = θ

[
T exp

(
−i
∫ t

0

H(k, t′)dt′
)]

θ−1

=

[∑
n

(−i)n

n!
T
∫ t

0

dt1 . . .

∫ t

0

dtn θH(k, t1)θ−1 . . . θH(k, tn)θ−1

]

=

[∑
n

(−i)n

n!
T
∫ t

0

dt1 . . .

∫ t

0

dtnH
∗(−k, T − t1) . . . H∗(−k, T − tn)

]
=

ti → T − ti

[∑
n

(+i)n

n!
T
∫ T−t

T

dt1 . . .

∫ T−t

T

dtnH
∗(−k, t1) . . . H∗(−k, tn)

]

=

[
T exp

(
−i
∫ T−t

T

H(−k, t′)dt′
)]∗

= U∗(−k;T − t, T ). (A6)

We rewrite this using Eq. (A2) to obtain

θU(k, t)θ−1 = U∗(−k;T − t, 0)U∗(−k; 0, T ) (A7)

= U∗(−k, T − t)U†∗(−k, T ).

3. Chiral Symmetry

For the CS operator, we start from

CH(k, t)C−1 = −H(k, T − t) (A8)

and find

CU(k, t)C−1 = C

[
T exp

(
−i
∫ t

0

H(k, t′)dt′
)]

C−1

=

[∑
n

(−i)n

n!
T
∫ t

0

dt1 . . .

∫ t

0

dtn CH(k, t1)C−1 . . . CH(k, tn)C−1

]

=

[∑
n

(+i)n

n!
T
∫ t

0

dt1 . . .

∫ t

0

dtnH(k, T − t1) . . . H(k, T − tn)

]
=

ti → T − ti

[∑
n

(−i)n

n!
T
∫ T−t

T

dt1 . . .

∫ T−t

T

dtnH(k, t1) . . . H(k, tn)

]

=

[
T exp

(
−i
∫ T−t

T

H(k, t′)dt′

)]
= U(k;T − t, T ). (A9)

We rewrite this using Eq. (A2) to obtain

CU(k, t)C−1 = U(k;T − t, 0)U(k; 0, T ) (A10)

= U(k, T − t)U†(k, T ).

Appendix B: Action of Symmetry Operators on Symmetrized Unitaries

In this appendix, we prove the action of the three symmetry operators on the symmetrized time-evolution unitaries
US(k, t) that are defined in Eq. (23). We will derive these relations using the corresponding expressions for the original
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unitaries, which we derived previously in Appendix A, and will also make use of the two-point unitaries defined in
Eq. (A1). In particular, we note that

US(k, t) = U

(
k;

1 + t

2
,

1− t
2

)
= U

(
k;

1 + t

2
, 0

)
U

(
k; 0,

1− t
2

)
= U

(
k,

1 + t

2

)[
U

(
k,

1− t
2

)]†
(B1)

We will also make use of the symmetrized unitary relation U†S(k, t) = US(k,−t).

1. Particle-hole Symmetry

Starting from the unitary PHS relation

PU(k, t)P−1 = U∗(−k, t), (B2)

we find that the symmetrized unitaries satisfy

PUS(k, t)P−1 = PU

(
k;

1 + t

2

)
P−1P

[
U

(
k;

1− t
2

)]†
P−1

= U∗
(
−k, 1 + t

2

)[
P−1U

(
k,

1− t
2

)
P

]†
= U∗

(
−k, 1 + t

2

)[
U∗
(
−k, 1− t

2

)]†
= U∗S(−k, t). (B3)

2. Time-reversal Symmetry

Starting from the unitary TRS relation

θU(k, t)θ−1 = U∗(−k, 1− t)U†∗(−k, 1), (B4)

we find that the symmetrized unitaries satisfy

θUS(k, t)θ−1 = θU

(
k,

1 + t

2

)
θ−1θ

[
U

(
k,

1− t
2

)]†
θ−1

= U∗
(
−k, 1− t

2

)
U†∗ (−k, 1)

[
U∗
(
−k, 1 + t

2

)
U†∗ (−k, 1)

]†
= U∗

(
−k, 1− t

2

)[
U∗
(
−k, 1 + t

2

)]†
= U∗S(−k,−t). (B5)

Then, using the properties of symmetrized unitaries, this becomes

θUS(k, t)θ−1 = U∗S(−k,−t) = U†∗S (−k, t). (B6)

3. Chiral Symmetry

Starting from the unitary CS relation

CU(k, t)C−1 = U(k, 1− t)U†(k, 1), (B7)



16

we find

CUS(k, t)C−1 = CU

(
k,

1 + t

2

)
C−1C

[
U

(
k,

1− t
2

)]†
C−1

= U

(
k,

1− t
2

)
U†(k, 1)

[
U

(
k,

1 + t

2

)
U†(k, 1)

]†
= U

(
k,

1− t
2

)[
U

(
k,

1 + t

2

)]†
= US(k,−t). (B8)

Then, again using the properties of symmetrized unitaries, we obtain

CUS(k, t)C−1 = US(k,−t) = U†S(k, t). (B9)

Appendix C: Decomposition of Unitaries

In this appendix, we prove the unitary decomposition
theorem given in Sec. III, which is reproduced below.

Theorem C.1. Every unitary U ∈ US0,π can be continu-
ously deformed to a composition of a unitary loop L and
a constant Hamiltonian evolution C, which we write as
U ≈ L ∗ C. L and C are unique up to homotopy.

The proof of this theorem has two stages. First, we
show that there exists a decomposition U ≈ L ∗ C:

Lemma C.1. Every unitary U ∈ US0,π is homotopic to
a product L ∗ C, where L is a unitary loop and C is a
constant evolution due to some static Hamiltonian (which
is gapped at zero).

Proof. Let HF be the (unique) Floquet Hamiltonian for
U and let C±(s) be the constant evolution unitaries cor-
responding to the static Hamiltonians ±sHF . Consider
the continuous family of unitaries

h(s) = [U ∗ C−(s)] ∗ C+(s). (C1)

It is clear that h(0) is homotopic to U and h(1) is of the
form L ∗ C+(1) with L = U ∗ C−(1). The endpoint of
U ∗ C−(1) is U(1) exp(iHF ) = I.

Secondly, we show that the factors L and C involved
in a decomposition L ∗ C are unique up to homotopy:

Lemma C.2. Two compositions satisfy L1∗C1 ≈ L2∗C2

if and only if L1 ≈ L2 and C1 ≈ C2.

Proof. L1 ∗ C1 ≈ L2 ∗ C2 implies there is some function
h(s) for s ∈ [0, 1] such that h(s) preserves the gap struc-
ture for all values of s and

h(0) = L1 ∗ C1, h(1) = L2 ∗ C2. (C2)

Let H(s) be the Floquet Hamiltonian corresponding to
the unitary h(s). H(s) then provides a homotopy be-
tween the Floquet Hamiltonians of C1 and C2.

Let C+(s) be the constant evolution unitary corre-
sponding to the Hamiltonian H(s). Since H(s) is in-
dependent of time, C+(s) is a constant evolution unitary
that continuously interpolates between C+(0) = C1 and
C+(1) = C2. Thus, C1 ≈ C2.

Now, let g(s) = h(s) ∗ C−(s), where C−(s) is the
constant Hamiltonian unitary with Hamiltonian −H(s).
g(s) is a loop for all s and interpolates between L1 and
L2. Thus, L1 ≈ L2. The proof in the reverse direction
follows trivially from the definition of homotopy.

Appendix D: Proof of One-to-one Mapping between
Unitaries and Hermitian Maps

In this section, we prove the one-to-one correspondence
between unitary evolutions and Hermitian maps defined
according to Eq. 15. We give the proof for the case of
PHS only, but note that the method may easily be ex-
tended to other symmetry classes.

Claim D.1. There is a one-to-one mapping between the
set of Hermitian matrix maps that satisfy

P1HU (k, t)P−11 = −H∗U (−k, t) (D1)

P2HU (k, t)P−12 = H∗U (−k, t) (D2)

H2
U = I (D3)

and the set of unitary maps that satisfy PU(k, t)P−1 =
U∗(−k, t).

Proof. For a given U(k, t), such that PU(k, t)P−1 =
U∗(−k, t), let

HU =

(
0 U(k, t)

U†(k, t) 0

)
(D4)

Then, with P1 and P2 as defined above, it is clear that
Eqs. D1–D3 are satisfied.

Conversely, for a given HU (k, t) that satisfies Eqs. D1–
D2, we note that

P1P2HU (k, t) (P1P2)
−1

= −HU (k, t) (D5)
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with

P1P2 =

(
I 0

0 −I

)
(D6)

for Class D, where P 2 = I, and

P1P2 =

(
−I 0

0 I

)
(D7)

for class D, where P 2 = −I. If

HU =

(
A B

B† D

)
, (D8)

then Eq. D5 implies A = D = 0, and Eq. D3 implies
BB† = I, so that B is unitary. We can then write

HU =

(
0 U(k, t)

U†(k, t) 0

)
, (D9)

and from Eq. D1 we see that PU(k, t)P−1 = U∗(−k, t).

Appendix E: Additional K-Theory Details

In this appendix, we give some additional details of
the K-theory classification scheme outlined in the main
text. For further information, we refer the reader to
Refs.10,64,65.

1. Grothendieck Group of Unitary Maps in a
Symmetry Class

We consider the problem of classifying unitary maps on
a manifold M (for instance, M = S1 × S1 for a periodic
unitary in 1D) in a general AZ symmetry class denoted
by S. We construct a group as follows: we take pairs
(U1, U2) and consider the operation ‘+’ defined through

(U1, U2) + (U3, U4) = (U1 ⊕ U3, U2 ⊕ U4), (E1)

where ⊕ is the direct sum. We define the equivalence of
pairs in the usual (stable homotopy) sense, and choose
symmetry operators in such a way that a symmetry op-
erator for the unitary U1 ⊕ U3 is the tensor sum of the
corresponding symmetry operators for U1 and U3. The
pairs then form an Abelian group under +, where the
trivial element consists of the equivalence class of pairs
of the form (U,U). We denote this group by KU (S,M).

2. Categories and K-Theory for Classification of
Unitaries

In the main text we noted that the problem of classi-
fying unitaries in symmetry class S is equivalent to the

problem of classifying Hermitian maps (or ‘Hamiltoni-
ans’) in some enhanced symmetry class S ′. Using the
same reasoning as above, we can define an Abelian group
of pairs of these Hamiltonians under the ‘+’ operation,
which we write as K(S ′,M).

Following Karoubi65, for an arbitary Banach category,
C , let us denote by C p,q the category whose objects are
the pairs (E, ρ), where E ∈ Ob(C ) and ρ : Cp,q →
End(E) is an K-algebra homomorphism, and where K is
R or C and Cp,q is a real or complex Clifford algebra with
p negative generators and q positive generators. A mor-
phism from the pair (E, ρ) to the pair (E′, ρ′) is defined to
be a C -morphism f : E → E′ such that f ·ρ(λ) = ρ(λ) ·f
for each element λ of Cp,q.

To classify the Hamiltonians above, we now construct
for every symmetry group S ′ two additive categories of
the form C p,q and C p′,q′ , where p, q, p′, q′ all depend on
S ′. Here, C is a category which is either the category
of Real or complex vector bundles on M , or a closely re-
lated category (depending on S ′)81. If {Si} is the set of
symmetry operators corresponding to S ′, then the canon-
ical inclusion map from {Si} to {Si, H} leads to a quasi-

surjective Banach functor φ′ : C p′,q′ → C p,q. This allows
us to define a Grothendieck group K(φ′) associated with
this functor, such that the Grothendieck group K(S ′,M)
is the same as K(φ′).

The canonical inclusion map C p,q ⊂ C p,q+1 induces
a quasi-surjective Banach functor φ : C p,q+1 −→ C p,q.
When C is the category of complex vector bundles on
M , then the Grothendieck group K(φ) is denoted by
Kp,q(M), and when C is the category of Real vector
bundles over the real space M66, then the Grothendieck
group K(φ) is denoted by KRp,q(M). Here, the real
space M corresponds to the existence of an involution
which derives from k→ −k.

Using, repeatedly if necessary, the canonical Morita
equivalences of the categories C p,q with C p+1,q+1, and
C p,0 with C 0,p+2, we can establish equivalences between
the categories C p,q and C p′,q′ for an arbitrary symmetry
class S ′ and a category of the form C̃ p,q, where C̃ is
the category of complex vector bundles over M for S ′ ∈
{A,AIII} and the category of Real vector bundles over
M for all other symmetry classes. This then allows us to
identify K(S ′,M) with some KR0,q(M) (with 0 ≤ q < 8)
or some K0,q(M) (with 0 ≤ q < 2) and leads to the
results in the main text. Further details will be presented
elsewhere.
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pert, “Floquet Fractional Chern Insulators,” Physical Re-
view Letters 112, 156801–5 (2014).

20 P M Perez-Piskunow, Gonzalo Usaj, C A Balseiro, and
L E F Foa Torres, “Floquet chiral edge states in graphene,”

Physical Review B 89, 121401–5 (2014).
21 L E F Foa Torres, P M Perez-Piskunow, C A Balseiro,

and Gonzalo Usaj, “Multiterminal Conductance of a Flo-
quet Topological Insulator,” Physical Review Letters 113,
266801–5 (2014).

22 H L Calvo, L E F Foa Torres, P M Perez-Piskunow, C A
Balseiro, and Gonzalo Usaj, “Floquet interface states in il-
luminated three-dimensional topological insulators,” Phys-
ical Review B 91, 241404–6 (2015).

23 Thomas Iadecola, Luiz H Santos, and Claudio Chamon,
“Stroboscopic symmetry-protected topological phases,”
Physical Review B 92, 125107–9 (2015).

24 T Kitagawa, M A Broome, A Fedrizzi, and Mark S Rud-
ner, “Observation of topologically protected bound states
in photonic quantum walks,” Nature Communications 3,
882 (2012).

25 Mikael C Rechtsman, Julia M Zeuner, Yonatan Plotnik,
Yaakov Lumer, Daniel Podolsky, Felix Dreisow, Stefan
Nolte, Mordechai Segev, and Alexander Szameit, “Pho-
tonic Floquet topological insulators,” Nature 496, 196–200
(2013).

26 Lukas J Maczewsky, Julia M Zeuner, Stefan Nolte, and
Alexander Szameit, “Observation of photonic anomalous
Floquet topological insulators,” Nature Communications
8, 1–7 (2016).

27 F Cardano, A D’Errico, A Dauphin, M Maffei, B Piccir-
illo, C de Lisio, G De Filippis, V Cataudella, E Santamato,
L Marrucci, M Lewenstein, and P Massignan, “Detection
of Zak phases and topological invariants in a chiral pho-
tonic quantum walk,” arXiv (2016), 1610.06322v1.

28 G Jotzu, M Messer, R Desbuquois, and M Lebrat, “Exper-
imental realization of the topological Haldane model with
ultracold fermions,” Nature 515, 237 (2014).
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