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Optical conductivity (OC) can serve as a measure of correlation effects in a wide range of con-
densed matter systems. We here show that the long-range tail of the Coulomb interaction yields

a universal correction to the OC in a three-dimensional Weyl semimetal σ(Ω) = σ0(Ω)
[
1 + 1

N+1

]
,

where of σ0(Ω) = Ne2
0Ω/(12hv) is the OC in the non-interacting system, with v as the actual

(renormalized) Fermi velocity of Weyl quasiparticles at frequency Ω, and e0 is the electron charge in
vacuum. Such universal enhancement of OC, which depends only on the number of Weyl nodes near
the Fermi level (N), is a remarkable consequence of an intriguing conspiracy among the quantum-
critical nature of an interacting Weyl liquid, marginal irrelevance of the long-range Coulomb in-
teraction and the violation of hyperscaling in three dimensions, and can directly be measured in
recently discovered Weyl as well as Dirac materials. By contrast, a local density-density interaction
produces a non-universal correction to the OC, stemming from the non-renormalizable nature of the
corresponding interacting field theory.

I. INTRODUCTION

Optical conductivity (OC) stands as an indispens-
able experimental probe of electromagnetic response in
a wide range of materials, including high-Tc cuprate su-
perconductors [1], heavy fermion compounds [2, 3], Fe-
based superconductors [4, 5], graphene [6–8] and three-
dimensional Weyl and Dirac systems [9–14]. This is so
because charge dynamics has a direct impact on the OC,
which then thus provides a rather comprehensive pic-
ture of electronic band structure, low-energy quasipar-
ticle dynamics and nature of correlations in these sys-
tems. In topological semimetals, which have recently
attracted ample attention [15–17], the imprint of elec-
tronic interactions on the OC may be important because
undoped Weyl and Dirac semimetals at zero temperature
(T = 0) are inherently quantum critical states living in
three dimensions [see Fig. 1], where hyperscaling is vi-
olated [18]. Concomitantly, the thermodynamic poten-
tials carry anomalous logarithmic corrections [19–24]. In
addition, the long-range tail of the Coulomb interaction
in these critical systems is marginally irrelevant, leading
to a logarithmically slow vanishing of the fine structure
constant due to the screening of the Coulomb charge and
a simultaneous, also logarithmically slow growth of the
Fermi velocity.

As we show, the Coulomb interaction causes a univer-
sal (independent of frequency and the fine structure con-
stant) enhancement of the OC in an interacting Weyl liq-
uid, arising from a subtle interplay between its marginal
irrelevance and the violation of hyperscaling in three di-
mensions. The OC (σ) at frequency Ω is given by

σ(Ω) = σ0(Ω)

[
1 +

1

N + 1

]
, (1)

after we account for the leading order correction due
to the Coulomb interaction, and σ0(Ω) ∼ Ω/v is the

(a) (b)

FIG. 1: Quantum critical description of (a) Weyl and (b)
Dirac liquid. Weyl [Dirac] semimetal can be represented as a
quantum critical point (red dots) separating electron and hole
doped chiral Fermi liquids (FLs) [topological and normal insu-
lators]. Signatures of Weyl or Dirac quasiparticles are present
within the quantum critical fan (shaded regions), where the
proposed universal scaling of optical conductivity with fre-
quency [see Eq. (1)] is operative. The crossover boundaries

in (a) and (b) are respectively defined as Ω∗ ∼ v|n|1/3 and
|∆|, up to interaction-driven corrections. At high frequencies
(Ω ∼ EΛ) imprints of Weyl or Dirac fermions gradually dis-
appear and non-universal lattice details become important.

OC in the noninteracting Weyl semimetal, featuring N
Weyl nodes in the Brillouin zone, with v as the renor-
malized (experimentally measured) Fermi velocity of the
Weyl quasiparticles at frequency Ω in the interacting sys-
tem. This is the central result of our work. Although
Coulomb interaction enhances the OC, for sufficiently
large number of Weyl nodes (N � 1), the interaction
driven correction to the OC scales as ∼ 1/N , which then
vanishes as N → ∞. Such peculiar scaling stems from
the dynamic screening of the electronic charge by mass-
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less Weyl fermions in the medium. Hence, the scaling in
Eq. (1) can be viewed as the leading term of a systematic
and controlled 1/N -expansion of the OC in an interact-
ing Weyl semimetal. Since the long-range Coulomb in-
teraction is expected to be always marginally irrelevant
[see, for example, Ref. [25] for such conclusion in two di-
mensions], we are compelled to believe that interaction
mediated enhancement of OC possibly remains valid be-
yond the leading order in 1/N and thus should be observ-
able in recently discovered Weyl and Dirac materials [26–
35]. Recent experiment on ZrTe5 [11], a predicted Dirac
semimetal [27], found a large enhancement of the OC. By
contrast, a weak short range interaction is an irrelevant
perturbation at the Weyl or Dirac quantum critical point
(QCP), see Fig. 1, and provides only a non-universal cor-
rection to the OC which rapidly vanishes as Ω → 0 [see
Eq. (13)].

In the next section we introduce the low-energy the-
ory of an interaction Weyl liquid, and discuss the scaling
of OC in non-interacting system. In this section, we also
briefly review the renormalization group flow of Coulomb
interaction. Sec. III is devoted to the discussion on the
scaling of OC and its correction due to Coulomb inter-
action to the leading order. We summarize our findings
and present discussion on related systems (such as Dirac
semimetals) in Sec. IV. Technical details of our analysis
are displayed in the Appendices A-F.

II. INTERACTING WEYL FERMIONS AND
OPTICAL CONDUCTIVITY

Weyl semimetal can be envisioned as the simplest ex-
ample of a QCP, separating an electron- and a hole-
doped chiral Fermi liquids, that supports linearly dis-
persing sharp low-energy quasiparticles, with dispersion
Ek = v|k|, up to a high energy cutoff EΛ [see Fig. 1(a)].
The Weyl QCP is therefore characterized by the dynami-
cal exponent z = 1, which determines the relative scaling
between energy and momentum. The corresponding Eu-
clidean action is

S0 =

∫
dτdrψ†(τ, r) [∂τ ± (−i)vσ ·∇ + µ]ψ(τ, r), (2)

with τ as the imaginary time and ± denoting the two
chiralities of the Weyl cones which on a lattice always
appear in pairs [36]. Here, µ is the chemical potential,
measured from the apex of the conical dispersion, σs
are standard Pauli matrices acting on the two-component
spinors ψ(τ, r) representing (pseudo-)spin. The chemical
potential with positive scaling dimension [µ] = z = 1
is the relevant perturbation at Weyl QCP point that
controls a quantum phase transition (QPT), character-
ized by the correlation length exponent ν = 1, from a
hole- to an electron-doped chiral Fermi liquid. Together,
these two exponents (ν and z) define the universality
class of this QPT, as well as determine the crossover

boundaries at frequency Ω∗ ∼ v|n|1/3 or temperature
T ∗ ∼ (~v/kB)|n|1/3, among various phases in terms of
the carrier density, n; see Fig. 1(a) [37]. The signature
of Weyl fermions in transport and thermodynamic quan-
tities can therefore be observed for Ω > Ω∗ and T > T ∗.
Specifically, we here focus on the OC of such critical Weyl
liquid in the collisionless regime (Ω � T ), with T = 0
from outset.

The scaling form of the OC (σ) can be inferred from the
gauge invariance which dictates that [σ] = d− 2 exactly
[38], or σ(Ω) = σQ`

−1 in units of quantum conductance
σQ = e2

0/h. Here, ` is a characteristic length scale inside
the Weyl critical fan [shaded region in Fig. 1(a)] at finite
frequency, and thus ` ∼ v/Ω. The OC of a noninteracting
Weyl liquid is then given by σ0(Ω) = σQc0Ω/v, with
c0 = N/12 [21, 39–41] and the system behaves as a power-
law insulator, since σ0(Ω→ 0)→ 0 [see Appendix B].

In the presence of generic density-density interaction,
captured by the imaginary-time action

Sint =

∫
dτdrdr′ρ(τ, r)V (r− r′)ρ(τ, r′), (3)

where ρ(τ, r) = ψ†(τ, r)ψ(τ, r) is the electronic density,
the correction to the OC depends crucially on its range.
For the long-range Coulomb interaction V (r − r′) =
e2/|r−r′|, and thus [e2] = z−1, implying that the dimen-
sionless coupling is the fine structure constant α = e2/v.
Furthermore, in the reciprocal space the Coulomb inter-
action V (k) ∼ e2/k2 is an analytic function of the mo-
mentum and therefore charge is dynamically screened by
Weyl fermions, as opposed to the situation in two dimen-
sions [42], which together with the logarithmically slow
increase of the Fermi velocity makes the fine structure
constant marginally irrelevant in a Weyl fluid.

These key features, even though believed to be true in
general, can qualitatively be appreciated from the leading
order flow equations for v and α respectively given by [21,
39, 40, 43] [see Appendix A]

dv

dl
=
αv

3π
,
dα

dl
= −N + 1

3π
α2, (4)

where l = log(EΛ/Ω) is the logarithm of the renormaliza-
tion group length scale. On the other hand, for a contact
interaction V (r− r′) = g0δ(r− r′), the scaling dimension
of the coupling is [g0] = z −D [23, 44–46], which makes
it irrelevant close to the Weyl QCP in D = 3. Thus, the
dimensionless short range coupling g = g0Ω2/v3, yielding
dg/dl = −2g to the leading order. Consequently, while
its long-range tail provides the leading correction to phys-
ical observables in the noninteracting system, such as the
OC as we demonstrate here, the short-range pieces of the
Coulomb interaction give rise to only subleading correc-
tions.

III. SCALING AND CORRECTION TO
OPTICAL CONDUCTIVITY
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General scaling arguments suggest that OC in an inter-
acting Weyl liquid assumes the following form in terms
of the renormalized couplings and Fermi velocity

σ(Ω, α, g) = σ0(Ω)F (α, g), (5)

where F (g, α) is a universal scaling function, with
F (0, 0) = 1. We then recover the OC in the noninter-
acting system. Since in three spatial dimensions hyper-
scaling hypothesis is violated, the above scaling function
receives logarithmic corrections (besides the usual power-
law ones), which to the order n in the perturbation theory
have the form

Fn(g, α) =

n∑
m=0

(αnCn,m + gnGn,m) logm
(
EΛ

Ω

)
, (6)

with Cn,m and Gn,m as the real coefficients, and
F (g, α) =

∑
n≥0 Fn(g, α). We here determine these co-

efficients perturbatively to the leading order in the cou-
pling constants (α and g), i.e. for n = 1.

To find the OC in the presence of interactions, we
first compute the correction to the current-current cor-
relation function Πµν(iΩ,q), with Ω as Matsubara fre-
quency, q as momentum, which is the Fourier trans-
form of Πµν(τ, r) = 〈jµ(τ, r)jν(0, 0)〉, and µ, ν = 0, 1, 2, 3.
Here, “four”-current jµ(τ, r) = [ρ(τ, r), j(τ, r)], with the
spatial components j(τ, r) = vψ†(τ, r)σψ(τ, r). The
charge conservation −i∂τρ+ ∇ · j = 0 then implies

− (iΩ)2Π00(iΩ,q) + qlqmΠlm(iΩ,q) = 0, (7)

with l,m = 1, 2, 3, which constraints physically relevant
regularizations of the theory. We here employ the di-
mensional regularization scheme in spatial dimensions
D = 3− ε, as it manifestly preserves the U(1) symmetry
of the theory [47, 48] and obtain

Π00(iΩ,q) = q2Π̃(iΩ), Πlm(iΩ, 0) = −δlmΩ2Π̃(iΩ), (8)

with

Π̃(iΩ) =
N

12π2v

[
e2

6πv

(
1

ε2
+
b

ε

)
+

g0Ω2

24π2v3

(
1

ε2
+
a

ε

)]
,

(9)
where a = [5− 3γE + 3 log(4π)] /3 ≈ 3.62069, b =
− [1 + 2γE − 2 log(4π)] /2 ≈ 1.454, and γE ≈ 0.577 is
the Euler-Mascheroni constant [see Appendix C, D, E].
The terms proportional to 1/ε ∼ log(EΛ/Ω) capture the
logarithmic divergent pieces of the current-current corre-
lator. This result is consistent with the charge conser-
vation condition, displayed in Eq. (7). Subsequently, we
use the Kubo formula

σlm(Ω) = 2πσQ lim
δ→0

=Πlm(iΩ→ Ω + iδ)

Ω
(10)

to find interaction driven leading order correction to the
OC, as given by Eq. (6), with [see Appendix C, D, E]

C1,1 =
1

3π
,C1,0 = − b

6π
,G1,1 = − 1

12π2
, G1,0 =

a

24π2
.

(11)

We note that computation of the current-current corre-
lator using the hard cut-off method violates the charge
conservation condition [49], and that way may lead to
unreliable values of the above coefficients [40].

Finally, we recall that the couplings entering the scal-
ing function [see Eq. (6)] are the renormalized ones and
thus scale dependent. From the leading order renormal-
ization group flow equations [see Eq. (A)], we obtain

α(Ω) ≈ 3π

(N + 1) log
(
EΛ

Ω

) , g(Ω) = ĝ0

(
Ω

EΛ

)2

, (12)

where ĝ0 is the dimensionless bare short-range coupling.
Then together with Eqs. (8), (9), (10), above running
couplings in turn yield the leading correction to the OC
in a Weyl liquid, giving

σ(Ω) = σ0(Ω)

[
1 +

1

N + 1
− b

2(N + 1) log
(
EΛ

Ω

)
− ĝ0 Ω2

12π2E2
Λ

{
log

(
Ω

EΛ

)
− a

2

}]
, (13)

which simplifies to Eq. (1) for Ω� EΛ.
Therefore, the long-range tail of the Coulomb inter-

action yields a universal (independent of frequency and
the strength of the fine structure constant) correction
to the OC of the noninteracting Weyl fluid, which is
a remarkable consequence of an intriguing conspiracy
among the quantum-critical nature of a Weyl semimetal
[see Fig. 1(a)], marginal irrelevance of the long-range
Coulomb interaction [see Eq. (A)] and the violation of
hyperscaling in three dimensions [see Eqs. (5), (6) and
(11)]. In particular, the logarithmically slow decrease of
the fine structure constant at low energy precisely cancels
the perturbatively obtained logarithmic correction to the
OC, ultimately producing a finite result. This outcome is
staunchly suggestive of the renormalizability of the field
theory describing an interacting Weyl liquid in the pres-
ence of only long-range Coulomb interaction. Note that
such correction is operative in the entire quantum-critical
regime of the Weyl fluid, shown in Fig. 1(a) [the shaded
regime], making our prediction relevant for real Weyl ma-
terials where chemical potential often (if not always) is
placed away from the band touching diabolic points. For
an analogous problem in two dimensions, the fine struc-
ture constant is also marginally irrelevant, but hyperscal-
ing holds, giving rise to a positive, but logarithmically
slowly vanishing correction to the OC [49, 50].

On the other hand, the short-range piece of the
Coulomb interaction in a Weyl fluid produces only a
power-law correction of the conductivity, which ulti-
mately vanishes in the Ω → 0 limit. Moreover, the
explicit dependence of this correction on the ultravio-
let cutoff (EΛ) cannot be eliminated through a redef-
inition of the bare coupling constant, reflecting non-
renormalizability of the field theory of (quasi-)relativistic
fermions coupled via short-range interaction in three di-
mensions [18, 48]. In other words, the lattice details,
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such as the bare strength of the coupling and the ul-
traviolet cutoff (EΛ), enter this contribution to the con-
ductivity, which makes the correction to the OC due to
local interaction a nonuniversal quantity. Otherwise, the
short-range piece causes a reduction in the OC, which is
qualitatively consistent with the fact that it can trigger a
QPT from a Weyl semimetal to a translational-symmetry
breaking axionic insulator, when sufficiently strong [44–
46].

The Coulomb correction to OC scales as ∼ 1/N for
N � 1 and therefore vanishes in the limit when the
Brillouin zone accommodates a large number of Weyl
points (N → ∞), since in this limit the Coulomb inter-
action suffers complete dynamic screening by massless
Weyl fermions. Furthermore, using the general scaling
argument we can speculate that the nth order correc-
tion goes as ∼ 1/Nn, with the coefficients that remain
to be determined for n > 1. Nevertheless, existence of
a plethora of Weyl compounds with diverse flavor num-
ber (N), such as N = 24 and N = 6 respectively in
all-in all-out and spin-ice ordered Weyl phase in 227 py-
rochlore iridates [26, 35], N = 24 in inversion asymmetric
Weyl semimetal (such as TaAs, NbAs, etc.) [28–34], and
topological Dirac semimetal (that at low energies can be
considered as two superimposed Weyl semimetals) such
as Cd2As3 and Na3Bi with N = 4 [33, 34], endows an
unprecedented opportunity to extract the scaling of OC
as a function of N and test the validity of our predic-
tion [Eq. (1)], with prior notion of the Fermi velocity (v)
available from the APRES measurements, for example.

IV. DISCUSSIONS

For completeness, we also report the correction to the
dielectric constant in Weyl liquid, given by

ε(Ω) = 1 +
2Ne2

0

3hv

[
1 +

1

N + 1

]
log

(
EΛ

Ω

)
, (14)

due to the long-range Coulomb interaction, which can di-
rectly be obtained from Eq. (1) by applying the Kramers-
Kronig relation [see Appendix F]. Notice that a logarith-
mic enhancement of ε(Ω), observed in a recent experi-
ment [12], is a clear manifestation of the violation of the
hyperscaling hypothesis in three dimensions.

Our conclusions regarding the scaling of OC and di-
electric constant are also directly applicable for interact-

ing massless Dirac fermions that can be represented as
a band gap (∆) tuned QCP, separating two topologi-
cally distinct insulating phases in three dimensions, see
Fig. 1(b). Since Dirac semimetal supports linearly dis-
persing quasiparticles and the scaling dimension of the
band gap in this system is [∆] = 1, the Dirac QCP is
also characterized by z = 1 and ν = 1. Consequently,
in the presence of Coulomb interaction the correction to
the OC is given by Eq. (1) or (13), and that for the
dielectric constant takes the form of Eq. (14), but with
a modification N → 2N , and N now counts the num-
ber of four-component Dirac fermions. Therefore, N = 1
for Bi2Se3, Bi1−xSbx, Hg1−xCdxTe, ZrTe5, N = 4 for
Pb1−xSnxTe [15, 16, 51], andN = 3 for SmB6, YbB6 [52].
Notice that even on the insulating sides of the phase di-
agram (|∆| 6= 0) and/or when the chemical potential lies
in the valence or conduction band, the proposed scaling
of OC remains valid as long as Ω > Ω∗ ∼ |∆| or v|n|1/3,
see Fig. 1. Therefore, existence of ample Dirac materials
with different number of Dirac nodes (N) and residing
in the close proximity to the topological QPT, which can
also be tuned externally by applying hydrostatic pres-
sure or changing the chemical composition, constitutes
an ideal platform to test the validity of proposed scaling
of the OC and dielectric constant.

To summarize, we here explicitly demonstrate that an
intriguing confluence among the quantum critical nature
of an interacting Weyl or Dirac liquid, hyperscaling viola-
tion in three dimensions and marginal nature of the long-
range Coulomb interaction endows these systems with a
universal interaction mediated enhancement of the OC.
The scaling of this correction with the flavor number can
directly be probed in a large number of discovered and
predicted Dirac and Weyl materials [15–17, 26–35] as well
as in numerical simulations [53], making our results rele-
vant to recent and ongoing experiments [9–14]. Finally,
our findings may also motivate future investigations of
the interaction effects on magneto-transport and on hy-
drodynamic transport in interacting Weyl/Dirac liquids.
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Appendix A: Leading order renormalization group flow equations for Fermi velocity and fine-structure
constant

The Euclidean action for the Weyl quasiparticles interacting with the long range Coulomb interaction has the form

S =

∫
dτdrψ†(τ, r)[∂τ − ia0 − ivσ ·∇]ψ(τ, r) +

1

2

∫
dra0(r)

|∇|2

2πe2
a0(r), (A1)
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where τ is the imaginary time, r is the spatial coordinate, ψ(τ, r) is a two-component Weyl spinor, v is the Fermi
velocity of the Weyl quasiparticles, and σs are the Pauli matrices. The partition function is Z =

∫
DΦ e−S[Φ], where

Φ denotes all the fields in the action. Auxiliary gauge field a0 is chosen so that after integrating it out, the Coulomb
interaction has the usual 1/k2 form in three spatial dimensions

Sc =

∫
d3k d3k′ ρ(k)

2πe2

|k− k′|2
ρ(k′) ≡

∫
dk dk′ ρ(k) VC(k− k′) ρ(k′), (A2)

with ρ(k) as the density operator in momentum space, and VC(k) = 2πe2/k2. The propagators for the Weyl fermion
and the gauge field in terms of a Matsubara frequency iω and a momentum k, respectively, read

Gf (iω,k) =
iω + vσ · k
ω2 + v2k2

, (A3)

Ga0(k) =
2πe2

k2
. (A4)

We now perform a renormalization group analysis using the dimensional regularization in D = 3 − ε dimensions
and a minimal subtraction scheme to find the leading order flow equation for the Fermi velocity and the Coulomb
charge. The one-loop β function for the Fermi velocity follows from the leading order correction to the self-energy for
Weyl fermions due to the long-range tail of the Coulomb interaction which reads as

Σ (iω,q) = i2
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π
VC(k)Gf (i(ω + Ω),k + q). (A5)

An explicit calculation then yields

Σ (iω,q) = −
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π

2πe2

|k|2
i(ω + Ω) + vσ · (k + q)

(ω + Ω)2 + v2(k + q)2
= − 1

2v

∫
dDk

(2π)D
2πe2

|k|2
σ · (k + q)

|k + q|

= −πe
2

2

∫ 1

0

dxx−1/2(1− x)

∫
dDk

(2π)D
σ · q

[k2 + x(1− x)q2]
3/2

= − σ · q
|q|3−D

πe2Γ
(

3−D
2

)
2(4π)D/2Γ

(
3
2

) ∫ 1

0

dx (1− x)
D−1

2 x
D−4

2

= − σ · q
|q|3−D

πe2Γ
(

3−D
2

)
2(4π)D/2Γ

(
3
2

) Γ
(
D
2 − 1

)
Γ
(
D+1

2

)
Γ
(
D − 1

2

) = −
(
e2

3π

) [
σ · q
|q|ε

]
1

ε
, (A6)

for D = 3− ε. On the other hand, the one-loop polarization bubble, leading to charge renormalization, reads as

Π (iω,q) = −i2Tr
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π
[σ0 Gf (iω,k) σ0 Gf (i(ω + Ω),k + q)] . (A7)

To find the renormalization factor that ultimately gives the beta function for the charge, it is sufficient to keep the
terms in the polarization up to q2 order, leading to

Π (iω,q) = −i2 Tr

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

[
σ0

iω + vσ · k
ω2 + v2k2

σ0
i(ω + Ω) + vσ · (k + q)

(ω + Ω)2 + v2(k + q)2

]
= − Π00(iω,q) = − Nq2

12π2v

[
q−ε

ε
+O(1)

]
, (A8)

where the density-density correlator Π00(iω,q) to the q2 order is given by Eq. (B5).
From Eq. (A6), after re-exponentianting it, introducing the wavefunction renormalization Zψ and the renormaliza-

tion factor for the velocity Zv via Zvv = v0, with v0 as the bare velocity, we find

ZΨ(−iω + Zvvσ · q) +
e2q−ε

3πvε
vσ · q = −iω + vσ · q, (A9)

which then yields

Zψ = 1, Zv = 1− e2

3πvε
q−ε. (A10)
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Using renormalization condiction Zvv = v0, we then readily obtain the infrared β−function for the velocity to the
leading order

βv ≡ −
dv

d log q
=
e2

3π
=
vα

3π
, (A11)

where α = e2/v is the fine structure constant.
The flow equation for charge is obtained from Eq. (A8) after re-exponentiating it, and recalling that the form of

the action for the gauge field is given by Eq. (A1). The renormalization condition for the charge then reads

1

2πe2
0

+
Nq−ε

6π2vε
=

1

2πe2
, (A12)

with e0 denoting the bare charge, from which we find renormalization constant for the charge Ze2e
2 = e2

0 to be of the
form

Ze2 = 1 +
Ne2

3πvε
q−ε, (A13)

which yields the leading order beta function for the charge

βe2 = − de2

d log k
= −Ne

4

3πv
. (A14)

Finally, using Eqs. (A11) and (A14), we obtain the flow equation for the fine structure constant α = e2/v

βα = − 1

3π
(N + 1)α2 ≡ −Aα2, (A15)

which therefore yields the coefficient A = (N + 1)/3π that we use in the main text.

On the other hand, the imaginary time action in the presence of only local density-density interaction reads as

SSR = g0

∫
dτ dr

[
ψ†(τ, r)ψ(τ, r)

]2
, (A16)

where g0 denotes the strength of contact interaction. In this notation g0 > 0 represents repulsive interaction. The
scaling dimension of any short-range interaction is [g0] = z−D, implying [g0] = −2 (and thus an irrelevant perturba-
tion) in a three-dimensional (D = 3) Weyl liquid (z = 1), yielding the following leading order beta function (infrared)
for the dimensionless coupling constant, defined as g = g0Ω2/v3 for example,

βg = −2 g +O(g2). (A17)

Appendix B: Optical conductivity in noninteracting system

In two subsequent sections, we will first provide the detailed derivation of the components polarization tensor
corresponding to (a) current-current correlator at zero momentum and (b) density-density correlator at finite but
small momenta, which enter the Kubo formula for the optical conducitivity. Subsequently, we present a proof that
the polarization function in a noninteracting system computed using dimensional regularization about D = 3 spatial
dimensions is consistent with the charge conservation. Finally, we show how to obtain the expression for OC from the
expression of the current-current correlator at zero momentum and finite frequency after the analytic continuation.

1. Current-current correlator at q = 0

The current-current correlation function for noninteracting Weyl fermions at a finite Matsubara frequency and a
momentum reads

Πlm (iΩ,q) = −
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π
Tr [(vσl) Gf (i(ω + Ω),k + q) (vσm) Gf (iω,k)] , (B1)
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since the current operator is of the form j = ψ†vσψ. To find optical conductivity from the current-current correlator
we compute it only at the zero momentum, which yields

Πlm (iΩ, 0) = −
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π
Tr

[
(vσl)

i(ω + Ω) + vσ · k
(ω + Ω)2 + v2k2

(vσm)
iω + vσ · k
ω2 + v2k2

]
= −2Nδl,m v2

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

[
−ω(ω + Ω) +

(
2
D − 1

)
v2k2

[(ω + Ω)2 + v2k2] [ω2 + v2k2]

]

= − 4N

vD−2
δl,m

(
1

D
− 1

)
2πD/2

Γ
(
D
2

)
(2π)D

∫ ∞
0

dk
kD

4k2 + Ω2

= −NΩ2

vD−2
δl,m

(
1

D
− 1

)
21−Dπ1+D/2

Γ
(
D
2

)
(2π)D

sec

(
πD

2

)
= − NΩ2

12π2v
δl,m

[
1

ε
Ω−ε +

a

2

]
, (B2)

for D = 3− ε. Here, D denotes the spatial dimensionality of the system and N is the number of Weyl points. In the
above expression a = [5− 3γE + 3 log(4π)] /3 ≈ 3.62069, where γE ≈ 0.577 is the Euler-Mascheroni constant.

2. Density-density correlator at Ω = 0

The density-density correlation function for noninteracting Weyl fermions at a finite Matsubara frequency and a
momentum reads

Π00 (iΩ,q) = −
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π
Tr [σ0 Gf (i(ω + Ω),k + q) σ0 Gf (iω,k)] . (B3)

Explicit calculation for the density-density correlator (with external frequency and momentum) yields

Π00 (iΩ,q) = −
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π
Tr

[
σ0
i(ω + Ω) + vσ · (k + q)

(ω + Ω)2 + v2 (k + q)
2 σ0

iω + vσ · k
ω2 + v2k2

]

= −2N

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

−ω(ω + Ω) + v2k · (k + q)[
(ω + Ω)2 + v2 (k + q)

2
]

[ω2 + v2k2]

=
N

vD

∫
dDk

(2π)D
|k|+ |k + q|

Ω2 + (|k|+ |k + q|)2

[
1− k · (k + q)

|k|+ |k + q|

]
=

N

vD

∫
dDk

(2π)D
q2k2 − (k · q)

2

k3 (Ω2 + 4k2)
+O

(
q4
)
.

(B4)

While arriving at the final expression we perform Taylor series expansion in powers of q and kept the terms only to
the order q2. In the intermediate step we have rescaled the momentum as vk→ k and vq→ q. Now performing the
integral over k (and restoring the factor of v2 in front of q2) we arrive at the final expression for the density-density
correlator

Π00 (iΩ,q) =
N

vD
(
v2q2

)( 1

D
− 1

)
21−Dπ1+D/2

Γ
(
D
2

)
(2π)D

sec

(
πD

2

)
=

Nq2

12π2v

[
1

ε
q−ε +

a

2

]
, (B5)

where D = 3− ε.
We notice here that charge conservation

∂τρ(τ, r) + ∇ · j(τ, r) = 0 (B6)

implies that the polarization tensor satisfies

− iΩΠ0µ(iΩ,q) + qlΠlµ(iΩ,q) = 0, (B7)

and

Ω2Π00(iΩ,q) + qlqmΠlm(iΩ,q) = 0, (B8)

where index µ includes also the imaginary time, and summation over repeated indices is assumed. Therefore, divergent
parts of the current-current and the density-density correlation functions in Eqs. (B2) and (B5) are consistent with
charge conservation. However, we will now compute the polarization function Π(iΩ,q) for a noninteracting Weyl
at a finite frequency and momentum with D = 3 − ε regularization, and show that the entire function at arbitrary
momentum and frequency is consistent with charge conservation.
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3. Polarization tensor for noninteracting system

We start with the expression for the components of the polarization tensor that includes Eqs. (B1) and (B3) as
special cases

Πµν (iΩ,q) = −
∫

dDk

(2π)D

∫ ∞
−∞

dω

2π
Tr [σµ Gf (i(ω + Ω),k + q) σν Gf (iω,k)] ≡ −Tr(Pµ(iΩ,q)σν), (B9)

where σµ = (σ0, vσ). Following the steps outlined in Appendix A of Ref. [49], we then compute

Pµ(iΩ,q) =

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π
Tr [Gf (iω,k) σµ Gf (i(ω + Ω),k + q)] . (B10)

After introducing using the Feynman parameters, we obtain

Pµ(iΩ,q) =
1

vD

∫ 1

0

dx

∫
dω

2π

∫
dDk

(2π)D
[iω + σ · k]σµ[iω + iΩ + σ · (k + q)]

[(ω + xΩ)2 + (k + xq)2 + ∆]2
, (B11)

with vq → q and ∆ = x(1 − x)(Ω2 + q2). After integrating over ω, shifting the momentum k + xq → k, and using
the subsequent rotational symmetry of the integrand, we arrive at the following expression

Pµ(iΩ,q) =
1

4vD

∫ 1

0

dx

∫
dDk

(2π)D

[
− σµ√

k2 + ∆
+

(σlσµσl)k
2

D(k2 + ∆2)3/2
− x(1− x)(iΩ + σ · q)σµ(iΩ + σ · q)

(k2 + ∆2)3/2

]
. (B12)

After integrating over the momentum, we obtain

Pµ(iΩ,q) =
F (D)

vD(Ω2 + q2)
3−D

2

[
(σlσµσl − σµ)(Ω2 + q2) + (D − 1)(iΩ + σ · q)σµ(iΩ + σ · q)

]
, (B13)

where

F (D) =
Γ[ 1−D

2 ] Γ2[D+1
2 ]

4(4π)D/2 Γ[1/2] Γ[D + 1]
. (B14)

From here, using that σlσl = D, we find

P0(iΩ,q) =
2F (D)(D − 1)

(Ω2 + q2)
3−D

2

[q2 + iΩσ · q], (B15)

which then yields for the components of the polarization

Π00(iΩ,q) = − 4(D − 1)F (D)

vD−2(Ω2 + q2)
3−D

2

q2, (B16)

and

Π0m(iΩ,q) = − 4(D − 1)F (D)

vD−2(Ω2 + q2)
3−D

2

iΩqm, (B17)

where we restored q → vq. To obtain Pm(iΩ,q), we have to recall that since we consider D = 3− ε, all three Pauli
matrices should be used in the scalar products such as σ · q (unlike in D = 2) which then yields

(iΩ + σ · q)σm(iΩ + σ · q) = (−Ω2 + q2)σm + 2iΩqm. (B18)

Ultimately, we obtain

Pm(iΩ,q) =
2(D − 1)F (D)

vD−1(Ω2 + q2)
3−D

2

(iΩqm − σmΩ2), (B19)
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which then yields

Πlm(iΩ,q) =
4(D − 1)F (D)

vD−2(Ω2 + q2)
3−D

2

Ω2δlm, (B20)

and

Πm0(iΩ,q) = − 4(D − 1)F (D)

vD−2(Ω2 + q2)
3−D

2

iΩqm. (B21)

It is now easy to check that the obtained polarization tensor is consistent with charge conservation, i.e. that it
obeys Eqs. (B7) and (B8), and is therefore manifestly gauge invariant. Furthermore, taking D = 3− ε, we obtain the
results for the q = 0 current-current and the Ω = 0 density-density correlators in Eqs. (B2) and (B5).

4. Analytic continuation and optical conductivity

We now proceed with the computation of the optical conductivity from the obtained polarization tensor. In order
to extract the OC from the polarization tensor, we first identify the ultraviolet divergence appearing as 1/ε as

1

ε
≡ −1

2
log

[
1 +

4v2Λ2

Ω2

]
, (B22)

where Λ is the ultraviolet momentum cutoff up to which the energy dispersion of Weyl fermions scales linearly with
momentum. Now we perform the analytic continuation to real frequency according to iΩ→ Ω + iδ and subscribe to
the definition of the real part of the optical conductivity

σjj =

[
e2

0

h
× 2π

]
lim
δ→0

= [Πlm (iΩ→ Ω + iδ)]

Ω
=

Ne2
0

12hv
Ω ≡ σ0(Ω). (B23)

In the final expression we denote the OC in a noninteracting Weyl liquid as σ0, and e0 is the external test charge.

Appendix C: Optical conductivity due to local density-density interaction

Now we systematically incorporate the correction to OC in a Weyl semimetal due to electron-electron interac-
tions. For the sake of simplicity and to establish the methodology, we first focus on the short-range component
of the density-density Coulomb interaction. It should be noted that in any lattice system the long range tail of the
Coulomb interaction is always accompanied by its short-range component. Therefore, in material-based and numerical
experiments one needs to account for both components of the density-density interaction.

1. Interaction correction to current-current correlator

The correction to the current-current correlator due to the short-range component of density-density interaction
(characterized by strength g0) is given by δΠlm(iΩ, 0) = δΠSE

lm (iΩ, 0) + δΠV
lm(iΩ, 0). Respectively, δΠSE

lm (iΩ, 0) and
δΠV

lm(iΩ, 0) accounts for self-energy and vertex diagrams. The contribution from the self-energy diagram reads as

δΠSE
lm (iΩ, 0) = (−1)22g0v

2

∫
dDk

(2π)D

∫
dDp

(2π)D

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
Tr

[
iω + vσ · k
ω2 + v2k2

σl
i(ω + Ω) + vσ · k
(ω + Ω)2 + v2k2

iω′ + vσ · p
(ω′)2 + v2p2

× i(ω + Ω) + vσ · k
(ω + Ω)2 + v2k2

σm

]
≡ 0. (C1)

On the other hand, the contribution from the vertex diagram goes as

δΠV
lm(iΩ, 0) = (−1)2g0v

2

∫
dDk

(2π)D

∫
dDp

(2π)D

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
Tr

[
iω + vσ · k
ω2 + v2k2

σl
i(ω + Ω) + vσ · k
(ω + Ω)2 + v2k2

iω′ + vσ · p
(ω′)2 + v2p2

× σm
i(ω′ − Ω) + vσ · p
(ω′ − Ω)2 + v2p2

]
= g0v

2 Tr [Il (iΩ) Im (−iΩ)] , (C2)
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where

Il (iΩ) =

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

iω + vσ · k
ω2 + v2k2

σl
i(ω + Ω) + vσ · k
(ω + Ω)2 + v2k2

=
σl
vD

22πD/2(1−D)

DΓ
(
D
2

)
(2π)D

∫ ∞
0

dk
kD

4k2 + Ω2

= σl
Ω2

v3

[(
1

D
− 1

)
2−1−D π1+D/2

Γ
(
D
2

)
(2π)D

sec

(
πD

2

)]
. (C3)

The factor of (−1)2 in the correction arises because of the fermion loop, which gives a factor −1, and the Taylor
expansion to the first order in the coupling, which also gives such a factor. Therefore, the net contribution from the
vertex diagram for D = 3− ε reads as

δΠV
lm(iΩ, 0) = δl,m 2N

Ω4

v4

[(
1

D
− 1

)
2−D π1+D/2

Γ
(
D
2

)
(2π)D

sec

(
πD

2

)]2

= δl,m

[
2Ng0Ω4

576π4v4

] [
1

ε2
+
a

ε

]
. (C4)

2. Interaction correction to density-density correlator

We now present the computation of the correction to the polarization tensor due to short-range interaction from
density-density correlator. The contribution arising from the self-energy diagram is

δΠSE
00 (iΩ,q) = (−1)22g0

∫
dDk

(2π)D

∫
dDp

(2π)D

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
Tr

[
iω + vσ · k
ω2 + v2k2

σ0
i(ω + Ω) + vσ · (k + q)

(ω + Ω)2 + v2 (k + q)
2

× iω′ + vσ · p
(ω′)2 + v2p2

i(ω + Ω) + vσ · (p + q)

(ω + Ω)2 + v2 (p + q)
2 σ0

]
≡ 0. (C5)

On the other hand, contribution from the vertex diagram reads as

δΠV
00(iΩ,q) = (−1)2g0Tr

{∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

[
i (ω − Ω) + vσ · (k− q)

(ω − Ω)2 + v2(k− q)2
σ0

iω + vσ · k
ω2 + v2k2

]
×
∫

dDp

(2π)D

∫ ∞
−∞

dω′

2π

[
iω′ + vσ · p
(ω′)2 + v2p2

σ0
i (ω′ − Ω) + vσ · (p− q)

(ω′ − Ω)2 + v2(p− q)2

]}
. (C6)

Note that for short-range interaction the contribution from the vertex diagram breaks into two pieces. We now show
some essential steps of the analysis, which will also be useful while we compute the same diagram, but in the presence
of the long-range tail of the Coulomb interaction. At this stage we first rescale the momentum according to vk→ k,
vp→ p, vq→ q. Note that

I1(p,q,Ω) =

∫ ∞
−∞

dω′

2π

iω′ + σ · p
(ω′)2 + p2

i (ω′ − Ω) + σ · (p− q)

(ω′ − Ω)2 + (k− q)2
=

1

2
[
Ω2 + (p+ |p− q|)2

]
×

[
− (p+ |p− q|)

[
1− p · (p− q)

p|p− q|

]
+ iσ ·

{
Ω

(
p− q

|p− q|
− p

p

)
− (p× q)

p+ |p− q|
p|p− q|

}]
≡ a+ σ · b (C7)

Similarly, after completing the integral over Matsubara frequency ω we can write

I2(p,q,Ω) =

∫ ∞
−∞

dω

2π

i (ω − Ω) + σ · (k− q)

(ω − Ω)2 + (k− q)2

iω + σ · k
ω2 + k2

≡ c+ σ · d, (C8)

with

a = − p+ |p− q|

2
[
Ω2 + (p+ |p− q|)2

] [1− p · (p− q)

p|p− q|

]
, b =

iΩ
(

p−q
|p−q| −

p
p

)
− i (p× q)

(
1

|p−q| + 1
p

)
2
[
Ω2 + (p+ |p− q|)2

] ,

c = − k + |k + q|

2
[
Ω2 + (k + |k + q|)2

] [1− k · (k + q)

k|k + q|

]
, d =

iΩ
(

k+q
|k+q| −

k
k

)
+ i (k× q)

(
1

|k+q| + 1
k

)
2
[
Ω2 + (k + |k + q|)2

] . (C9)
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In terms of above parameters δΠV
00(iΩ,q) can be written as

δΠV
00(iΩ,q) =

g0

v6

∫
dDk

(2π)D

∫
dDp

(2π)D
Tr [(a+ σ · b) (c+ σ · d)] = −2Ng0

v6

∫
dDk

(2π)D

∫
dDp

(2π)D
[ac+ b · d] . (C10)

Since we are interested in contribution proportional to q2, next we expand all these quantities to the order q2, yielding

a =
4(p · q)2 + p2q2

p3 (Ω2 + 4p2)
, b = i

Ω[p(p · q)− p2q]− 2p2(p× q)

p3 (Ω2 + 4p2)
,

c =
4(k · q)2 + k2q2

k3 (Ω2 + 4k2)
, d = i

Ω[k(k · q)− k2q] + 2k2(k× q)

k3 (Ω2 + 4k2)
. (C11)

Notice that the product ac ∼ O(q4) and therefore does not contribute to the conductivity. We can compactly write

b · d = −Ω2

[
p (p · q)− p2q

]
·
[
k (k · q)− k2q

]
4k3p3 (Ω2 + 4k2) (Ω2 + 4p2)

− (p× q) · (k× q)

kp (Ω2 + 4k2) (Ω2 + 4p2)
− Ωq · (k× p)

2k3p3

[
p2(k · q) + k2(p · q)

]
(Ω2 + 4k2) (Ω2 + 4p2)

.

(C12)

As the last term is odd under the exchange of k and p, it does not contribute after the momentum integral. Also
the two pieces in the second term in the last expression are individually odd functions of k and p, and therefore both
vanish. After these simplifications the net contribution from the vertex diagram goes as

δΠV
00(iΩ,q) = −Ng0Ω2

2v6

[∫
dDk

(2π)D
k(k · q)− k2q

k3 (Ω2 + 4k2)

]
·
[∫

dDp

(2π)D
p(p · q)− p2q

p3 (Ω2 + 4k2)

]

= −
2Ng0Ω2

(
v2q2

)
v6

[(
1

D
− 1

)
2−D π1+D/2

Γ
(
D
2

)
(2π)D

sec

(
πD

2

)]2

= −
[

2Ng0Ω2q2

576π4v4

] [
1

ε2
+
a

ε

]
. (C13)

Notice that the results for the interaction correction to the current-current and the density-density correlators in
Eqs. (C4) and (C13), respectively, are consistent with the charge conservation, Eq. (B8).

3. Optical conductivity

From expression for the polarization tensor, now identifying the ultraviolet divergence following Eq. (B22) and
following the definition of the real part of optical conductivity [see Eq. (B23)], we find the correction of the OC due
to the short-range component of the density-density interaction to be

δσjj(Ω) = σ0(Ω)

[
g0Ω2

24π2v3

] {
a− 2 log

(
EΛ

Ω

)}
, (C14)

where EΛ = 2Λv and the quantity inside the straight bracket “[]” is the dimensionless short-range coupling constant
in D = 3.

Appendix D: Optical conductivity due to long-range tail of the Coulomb interaction

Finally, we turn our focus to the computation of the correction to the OC due to the long-range tail of the Coulomb
interaction. This is the most challenging part of the analysis. Nonetheless, we have already developed a vast amount of
technical aspect of this problem to facilitate the discussion in this section. Once again we will compute the polarization
tensor from (a) current-current correlator and then (b) density-density correlator. And finally from either of these
two expressions we will compute the correction to the OC.
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1. Current-current correlator

The correction to the current correlator has the self-energy and the vertex parts, which we compute separately.
Contribution to the current-current correlator, for which we consider only one of the diagonal components due to

isotropy, at zero momentum arising from the self-energy diagram is of the form

δΠSE
xx (iΩ, 0) = −i2(2N)

∫
dω

2π

∫
dω′

2π

∫
dDk

(2π)D

∫
dDp

(2π)D
Tr[Gf (iω,k) vσxGf (iω + iΩ,k)

× vσxGf (iω,k)Gf (iω′,p)VC(k− p)]. (D1)

Here, a fermion loop gives a factor of −1, while the Coulomb vertex which appears twice to the leading order produces
the factor i2. The integrals over the Matsubara frequencies are performed from−∞ to∞, i.e.

∫
dω ≡

∫∞
−∞ dω. Explicit

form of this contribution then reads

δΠSE
xx = −2N

v2
Tr

∫
dDk

(2π)D

∫
dω

2π

iω + σ · k
ω2 + k2

σx
i(ω + Ω) + σ · k
(ω + Ω)2 + k2

σx
iω + σ · k
ω2 + k2

[
i2
∫

dDp

(2π)D

∫
dω′

2π

iω′ + σ · p
(ω′)

2
+ p2

2πe2

|k− p|2

]

= −2N

v2
Tr

{∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

iω + σ · k
ω2 + k2

σx
i(ω + Ω) + σ · k
(ω + Ω)2 + k2

σx
iω + σ · k
ω2 + k2

Σ (k)

}
, (D2)

where Σ(k) is the self-energy correction due to long-range interaction, given by Eq. (A6), which for convenience we
write again

Σ(k) = −πe
2

2

[
Γ
(

3−D
2

)
Γ
(
D
2 − 1

)
Γ
(
D+1

2

)
(4π)D/2Γ

(
3
2

)
Γ
(
D − 1

2

) ]
σ · k
|k|3−D

≡ −E(D)
σ · k
|k|3−D

. (D3)

After performing the trace algebra we arrive at the following compact expression for the self-energy diagram

δΠSE
xx = 4NE(D)

∫
dDk

(2π)D

∫
dω

2π

[
(ω2 − k2)(k2 − 2k2

x)− 2ω(ω + Ω)k2
]

k3−D [ω2 + k2]
2

[(ω + Ω)2 + k2]
. (D4)

Performing the integral over the Matsubara frequency ω we obtain

δΠSE
xx = −2Nπe2

v2

[
Γ
(

3−D
2

)
Γ
(
D
2 − 1

)
Γ
(
D+1

2

)
(4π)D/2Γ

(
3
2

)
Γ
(
D − 1

2

) ](
1− 1

D

) ∫
dDk

(2π)D
kD−2

(
4k2 − Ω2

)
(Ω2 + 4k2)

2

=
2Nπe2Ω2

v2

[
Γ
(

3−D
2

)
Γ
(
D
2 − 1

)
Γ
(
D+1

2

)
(4π)D/2Γ

(
3
2

)
Γ
(
D − 1

2

) 2πD/2

4Γ
(
D
2

)
(2π)D

(
1− 1

D

)]∫ ∞
0

dk
k2D−5

(
Ω2 + 12k2

)
(Ω2 + 4k2)

2

=
2Nπe2Ω2

v2

[
Γ
(

3−D
2

)
Γ
(
D
2 − 1

)
Γ
(
D+1

2

)
(4π)D/2Γ

(
3
2

)
Γ
(
D − 1

2

) 2πD/2

4Γ
(
D
2

)
(2π)D

(
1− 1

D

)]
23−2Dπ(2D − 3) cosec(πD)

=
Ne2Ω2

72π3v2

[
3

ε2
+

1

ε
[7− 3γE + 3 log(4π)]

]
, (D5)

for D = 3− ε. We point out that while arriving to the second line, we subtract the Ω = 0 piece of the bubble.

Now we turn our attention to the vertex diagram. The expression for the polarization bubble arising from this
diagram reads as

δΠV
xx(iΩ, 0) = −i2N

∫
dDk

(2π)D

∫
dDp

(2π)D

∫
dω

2π

∫
dω′

2π
Tr[Gf (iω,k) vσxGf (iω + iΩ,k)Gf (iω + iΩ,p)

× vσxGf (iω,p)VC(k− p)]. (D6)

Again, a fermion loop gives a factor of −1, while the Coulomb vertex which appears twice to the leading order produces
the factor i2. We now explicitly write this expression as

δΠV
xx(iΩ, 0) = −i2N

v2

∫
dDk

(2π)D

∫
dDp

(2π)D

∫
dω

2π

∫
dω′

2π
Tr

{
iω + σ · k
ω2 + k2

σx
i(ω + Ω) + σ · k
(ω + Ω)2 + k2

i(ω + Ω) + σ · p
(ω + Ω)2 + p2
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× σx
iω′ + σ · p
(ω′)

2
+ k2

}
2πe2

|k− p|2
. (D7)

After performing the trace algebra and completing the frequency integrals using the residue technique we find

δΠV
xx(iΩ, 0) =

4πNe2

v2

∫
dDk

(2π)D

∫
dDp

(2π)D
Ω2 (pxkx − k · p) + 4

(
kxpxk · p + k2p2 − p2

xk
2 − k2

xp
2
)

kp (Ω2 + 4k2) (Ω2 + 4p2) |k− p|2
. (D8)

Now we subtract the zero frequency piece of δΠV
xx(iΩ, 0), given by

δΠV
xx(0, 0) =

4πNe2

v2

∫
dDk

(2π)D

∫
dDp

(2π)D
4
(
kxpxk · p + k2p2 − p2

xk
2 − k2

xp
2
)

16k3p3|k− p|2
, (D9)

to arrive at the following compact expression for the vertex diagram

δΠV
xx(iΩ, 0)

= −4πNe2Ω2

v2

∫
dDk

(2π)D

∫
dDp

(2π)D
4k2p2 (k · p− pxkx) +

[
Ω2 + 4

(
k2 + p2

)] (
kxpxk · p + k2p2 − p2

xk
2 − k2

xp
2
)

4k3p3 (Ω2 + 4p2) (Ω2 + 4k2) |k− p|2

= − 1

v2

[
δΠV,1

xx,1(iΩ, 0) + δΠV,2
xx,1(iΩ, 0) + δΠV,3

xx,1(iΩ, 0) + δΠV
xx,2(iΩ, 0)

]
. (D10)

Various pieces appearing in the above expression read as

δΠV,1
xx,1(iΩ, 0) =

NΩ2

4

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
kxpxk · p + k2p2 − p2

xk
2 − k2

xp
2

k3p3 [k2 + (Ω/2)2]
, (D11)

δΠV,2
xx,1(iΩ, 0) = −NΩ4

32

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
1

kp [k2 + (Ω/2)2] [p2 + (Ω/2)2]
, (D12)

δΠV,3
xx,1(iΩ, 0) = −NΩ4

32

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
kxpxk · p− 2p2k2

x

k3p3 [k2 + (Ω/2)2] [p2 + (Ω/2)2]
, (D13)

δΠV
xx,2(iΩ, 0) =

NΩ2

8

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
k · p− pxkx

kp [k2 + (Ω/2)2] [p2 + (Ω/2)2]
. (D14)

Now we present some details of the computation of each term.

Note that following identity involving Feynman parameters is extremely useful to compute these terms

1

Aα Bβ Cγ
=

Γ (α+ β + γ)

Γ (α) Γ (β) Γ (γ)

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)α−1xβ−1yγ−1

[(1− x− y)A+ xB + yC]
α+β+γ

. (D15)

Now the term δΠV,1
xx,1(iΩ, 0) can be written as

δΠV,1
xx,1(iΩ, 0) =

NΩ2

4
(2πe2)

Γ
(

7
2

)
Γ
(

3
2

) ∫ 1

0

dx

∫ 1−x

0

dy

∫
dDp

(2π)D
p2 − p2

x

p3

∫
dDk

(2π)D

[(
1− 1

D

)
k2 + x2p2

]
(1− x− y)

1/2

[k2 + x(1− x)p2 + y(Ω/2)2]
7/2

=
NΩ2

4
(2πe2)

(
1− 1

D

)
Γ
(

5−D
2

)
Γ
(

3
2

)
(4π)D/2

2πD/2

Γ
(
D
2

)
(2π)D

∫ 1

0

dx

∫ 1−x

0

dy

∫ ∞
0

dp
pD−2

√
1− x− y

[x(1− x)p2 + y(Ω/2)2]
5−D

2

[
D − 1

2

+
5−D

2 x2p2

x(1− x)p2 + y(Ω/2)2

]
= NΩ2e2π

1+ D
2 Γ(3−D)Γ

(
1+D

2

) (
1− 1

D

)
Γ
(

3
2

)
Γ
(
D
2

)
(2π)D(4π)D/2

∫ 1

0

dx
x

1−D
2

(1− x)
D+1

2

∫ 1−x

0

dyyD−3
√

1− x− y

= NΩ2e2π
1+ D

2 Γ(3−D)Γ
(

1+D
2

) (
1− 1

D

)
Γ
(

3−D
2

)
Γ
(
D
2 − 1

)
Γ (3/2) Γ (D/2) (2π)D(4π)D/2Γ (1/2)

Γ(D − 2) =
Ne2Ω2

72π3

[
2

ε2
+

6− 2γE + 2 log(4π)

ε

]
.(D16)

Next we compute δΠV,2
xx,1(iΩ, 0) given by

δΠV,2
xx,1(iΩ, 0)
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= −2πe2NΩ4

32

Γ
(

5
2

)
Γ
(

1
2

) ∫ 1

0

dx

∫ 1−x

0

dy√
1− x− y

∫
dDk

(2π)D
1

k [k2 + (Ω/2)2]

∫
dDp

(2π)D
1

[p2 + x(1− x)k2 + y(Ω/2)2]
5/2

= −2πe2NΩ4

32

2πD/2Γ
(

5−D
2

)
Γ
(
D
2

)
(2π)DΓ(1/2)(4π)D/2

∫ 1

0

dx

∫ 1−x

0

dy

∫ ∞
0

dk
kD−2 [1− x− y]

−1/2

[k2 + (Ω/2)2] [x(1− x)k2 + y(Ω/2)2]

= Ne2Ω2D−4 24−2Dπ
1+D

2

(2π)D(4π)D/2Γ(D/2)

∫ 1

0

dx

∫ 1−x

0

dy√
1− x− y

[
π

sin(πD)
Γ

(
5−D

2

)
[x(1− x)]

D−5
2

− Γ(3−D)Γ

(
D − 1

2

)
yD−3 [x(1− x)]

1−D
2

2F1

[
1,
D − 1

2
, D − 2,

y

x(1− x)

] ]
= −Ne2Ω2 7 ζ (3)

128π2
. (D17)

Here, 2F1(a, b, c, z) is the ordinary hypergeometric function. Next we compute δΠV,3
xx,1(iΩ, 0) which can be expressed

as

δΠV,3
xx,1(iΩ, 0)

= −πe2NΩ4

16

Γ
(

7
2

)
Γ
(

3
2

) ∫ 1

0

dx

∫ 1−x

0

dy

∫
dDp

(2π)D
[1− x− y]

−1/2

p3
[
p2 +

(
Ω
2

)2] ∫ dDk

(2π)D

1
D

[
k2p2

x − 2p2k2
]
− x2p2p2

x[
k2 + x(1− x)p2 + y

(
Ω
2

)2]7/2
= −πe2NΩ4

16

2πD/2Γ
(

5−D
2

)
(2π)D(4π)D/2Γ(D/2)

∫ 1

0

dx

∫ 1−x

0

dy

∫ ∞
0

dp
pD−2 [1− x− y]

−1/2
[x(1− x)]

D−5
2[

p2 +
(

Ω
2

)2] [
p2 + y

x(1−x)

(
Ω
2

)2] 5−D
2

×

[
1

2

(
1

D
− 2

)
− x2

D

5−D
2 p2

x(1− x)p2 + y
(

Ω
2

)2
]
≡ δΠV,3,1

xx,1 (iΩ, 0) + δΠV,3,2
xx,1 (iΩ, 0). (D18)

After the integral over the radial momentum variable p, one of the two entries in the final expression for δΠV,3
xx,1(iΩ, 0)

reads as

δΠV,3,1
xx,1 (iΩ, 0)

=
Ne2

32

Ω2D−428−2Dπ1+D/2
(

1
D − 2

)
Γ(3/2)(4π)D/2(2π)DΓ(D/2)

∫ 1

0

dx

∫ 1−x

0

dy
√

1− x− y
[

[x(1− x)− y]
D−5

2
πΓ
(

5−D
2

)
sin(πD)

− Γ(3−D)Γ

(
D − 1

2

)
yD−3 [x(1− x)]

1−D
2

2F1

[
1,
D − 1

2
, D − 2,

y

x(1− x)

] ]
= Ne2Ω2 5

192π3
, (D19)

while the second term goes as

δΠV,3,1
xx,1 (iΩ, 0)

=
N

32
Ω2D−4 29−2DπD/2Γ

(
5−D

2

) (
5−D
2D

)
Γ(3/2)(4π)D/2(2π)DΓ

(
D
2

) ∫ 1

0

dxx2

∫ 1−x

0

dy(1− x− y)1/2

[
− [x(1− x)− y]

D−7
2

× π

sin(πD)
+ yD−3 [x(1− x)]

−D+1
2

Γ(3−D)Γ
(
D+1

2

)
Γ
(

7−D
2

) 2F1

[
1,
D + 1

2
, D − 2,

y

x(1− x)

] ]
= Ne2Ω2

[
7ζ(3)− 6

384π3

]
.

(D20)

Therefore, the net contribution from δΠV,3
xx,1(iΩ, 0)

δΠV,3
xx,1(iΩ, 0) =

Ne2Ω2

π3

[
5

192
− 6

384
+

7ζ(3)

384

]
= N

e2Ω2

384π3
[4 + 7ζ(3)] (D21)

is finite. Finally, the last term in the expression of δΠV
xx(iΩ, 0) is given by

δΠV
xx,2(iΩ, 0)

= πe2NΩ2

4

Γ
(

5
2

)
Γ
(

1
2

) ∫ 1

0

dx

∫ 1−x

0

dy

∫
dDk

(2π)D
[1− x− y]

−1/2

k [k2 + (Ω/2)2]

∫
dDp

(2π)D
x
[
k2 − k2

x

]
[p2 + x(1− x)k2 + y(Ω/2)2]

5/2
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= πe2NΩ2

4

2πD/2
(
1− 1

D

)
Γ
(

5−D
2

)
(2π)D(4π)D/2Γ

(
1
2

)
Γ
(
D
2

) ∫ 1

0

dx

∫ 1−x

0

dy

∫ ∞
0

dk
kd x [1− x− y]

−1/2
[x(1− x)]

D−5
2[

k2 +
(

Ω
2

)2] [
k2 + y

x(1−x)

(
Ω
2

)2] 5−D
2

=
Ne2Ω2

8

(D − 1)27−2Dπ1+D/2

D(2π)D(4π)D/2Γ
(

1
2

)
Γ
(
D
2

) ∫ 1

0

dx

∫ 1−x

0

dyx [1− x− y]
−1/2

{
[x(1− x)− y]

D−5
2

πΓ
(

5−D
2

)
sin(πD)

+ yD−2 [x(1− x)]
−D+1

2 Γ(D − 2)Γ

(
D + 1

2

)
2F1

[
1,
D + 1

2
, D − 1,

y

x(1− x)

]}
=
Ne2Ω2

72π3

[
3

2ε

]
. (D22)

Therefore the net divergent contribution arising from the vertex diagram is given by

δΠV
xx(iΩ, 0) = −Ne

2Ω2

72π3v2

[
2

ε2
+

15− 4γE + 4 log(4π)

2ε

]
. (D23)

After accounting for the divergent piece coming from the self-energy diagram we obtain the net leading order correction
to the polarization bubble due to the long-range tail of the Coulomb interaction to be

δΠxx(iΩ, 0) = N
e2Ω2

72π3v2

[
1

ε2
− 1

2ε
[1 + 2γE − 2 log(4π)]

]
. (D24)

2. Density-density correlator

Contribution to the density-density correlator from the self-energy diagram reads as

δΠSE
00 (iΩ,q) = −i2(2N)

∫
dω

2π

∫
dω′

2π

∫
dDk

(2π)D

∫
dDp

(2π)D
Tr[Gf (iω,k)σ0Gf (iω + iΩ,k + q)

× σ0Gf (iω,k)Gf (iω′,p)VC(k− p)], (D25)

or explicitly

δΠSE
00 (iΩ,q) = −2N

v4
Tr

{∫
dDk

(2π)D

∫
dω

2π

iω + σ · k
ω2 + k2

[
i2
∫

dDp

(2π)D

∫
dω′

2π

2πe2

|k− p|2
iω′ + σ · p
ω′2 + p2

]
iω + σ · k
ω2 + k2

× i(ω + Ω) + σ · (k + q)

(ω + Ω)2 + (k + q)
2

}
= −2N

v4
Tr

{∫
dDk

(2π)D

∫
dω

2π

iω + σ · k
ω2 + k2

Σ(k)
iω + σ · k
ω2 + k2

i(ω + Ω) + σ · (k + q)

(ω + Ω)2 + (k + q)
2

}
,

(D26)

with Σ(k) given by Eq. (D3). After performing the trace algebra we arrive at the following compact expression for
the self-energy contribution

δΠSE
00 (iΩ,q) = −2E(D)

∫
dDk

(2π)D

∫
dω

2π

kD−3
[
−2ω(ω + Ω)k2 + (k2 − ω2) k · (k + q)

]
(ω2 + k2)2 [(ω + Ω)2 + (k + q)2]

. (D27)

After expanding the above expression in powers of q and retaining the terms only to the order q2, we find δΠSE
00 (iΩ,q) =

δΠSE,1
00 (iΩ,q) + δΠSE,2

00 (iΩ,q), where

δΠSE,1
00 (iΩ,q)

= 4E(D)
q2

D

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

kD−1(k2 − ω2)

(ω2 + k2)2 [(ω + Ω)2 + k2]
2

= E(D)
q2

D

2πD/2

Γ
(
D
2

)
(2π)D

∫ ∞
0

dk
32k4 − 12k2Ω2 − Ω4

k5−2D (4k2 + Ω2)

= E(D)q2 24−2Dπ1+D/2

D Γ
(
D
2

)
(2π)D

[(
5− 7D + 2D2

)
Ω2D−6cosec(πD)

]
= − Ne

2q2

36π3v2

[
1

ε2
+

1− γE + log(4π)

ε

]
, (D28)

for D = 3− ε and after taking q → vq. The remaining contribution from the self-energy diagram goes as

δΠSE,2
00 (iΩ,q)
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= −2E(D)
q2

D

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

kD−1
[
−2ω(ω + Ω) + k2 − ω2

]
(ω2 + k2)2 [(ω + Ω)2 + k2]

2

[
4(k · q)2

(ω + Ω)2 + k2
− q2

]
= 2q2E(D)

2πD/2

Γ
(
D
2

)
(2π)D

∫ ∞
0

dk
16(D − 5)k4 + 24k2Ω2 − (D − 3)Ω4

4Dk5−2D [Ω2 + 4k2]
3

= −q2Ω2D−6E(D)
23−2Dπ1+D/2

D Γ
(
D
2

)
(2π)D

(D − 1)(2D − 5)cosec(πD) =
Ne2q2

72π3v2

[
1

ε2
+

1− γE + log(4π)

ε

]
. (D29)

Therefore, net self-energy correction reads as

δΠSE
00 (iΩ,q) = − Ne

2q2

72π3v2

[
1

ε2
+

1− γE + log(4π)

ε

]
. (D30)

Next we turn our attention to the vertex diagram. The contribution from the vertex diagram in the presence of
external frequency and momentum reads as

δΠV
00(iΩ,q) = −i2N

∫
dDk

(2π)D

∫
dDp

(2π)D

∫
dω

2π

∫
dω′

2π
Tr[Gf (iω,k)σ0Gf (iω + iΩ,k)Gf (iω + iΩ,p)

× σ0Gf (iω,p)VC(k− p)]. (D31)

We now write this term as

δΠV
00(iΩ,q) =

N

v4
Tr

{∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2

[∫ ∞
−∞

dω

2π

i (ω − Ω) + σ · (k− q)

(ω − Ω)2 + (k− q)2

iω + σ · k
ω2 + k2

]
×
[∫ ∞
−∞

dω′

2π

iω′ + σ · p
(ω′)2 + p2

i (ω′ − Ω) + σ · (p− q)

(ω′ − Ω)2 + (k− q)2

]}
. (D32)

The frequency integrals in the above expression can readily be performed following Eqs. (C7) and (C8). Upon
expanding four parameters a, b, c, d defined through Eq. (C9), up to the quadratic order in q2 as shown in Eq. (C11),
we arrive at the following compact expression for the vertex function

δΠV
00(iΩ,q) =

N

2v4

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
−Ω2

[
p (p · q)− p2q

]
·
[
k (k · q)− k2q

]
+ 4k2p2 (p× q) · (k× q)

k3p3 [Ω2 + 4k2] [Ω2 + 4p2]
.

(D33)

The momentum integrals can be performed most efficiently by separating the above expression into two pieces yielding

δΠV
00(iΩ,q) =

[
δΠV,1

00 (iΩ,q) + δΠV,2
00 (iΩ,q)

]
/v4. Now we present evaluation of each term. The two terms are of the

form

δΠV,1
00 (iΩ,q) = N

∫
dDk

(2π)D

[
k (k · q)− k2q

]
k3 [Ω2 + 4k2]

· I1(q,k,Ω),

δΠV,2
00 (iΩ,q) = 2N

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
(p× q) · (k× q)

kp [Ω2 + 4k2] [Ω2 + 4p2]
. (D34)

The quantity I1(q,k,Ω) appearing in the expression of δΠV,1
00 (iΩ,q) reads as

I1(q,k,Ω) = −Ω2

8

∫
dDp

(2π)D
2πe2

|k− p|2

[
p (p · q)− p2q

]
p3 [Ω2 + 4p2]

= −2πe2Ω2

8

Γ
(

7
2

)
Γ
(

3
2

) ∫ 1

0

dx

∫ 1−x

0

dy
√

1− x− y
∫

dDp

(2π)D
p (p · q) + x2k (k · q)− p2q− x2k2q[

p2 + x(1− x)k2 + y (Ω/2)
2
]7/2

= − 2πe2Ω2

8Γ
(

3
2

)
(4π)D/2

∫ 1

0

dx

∫ 1−x

0

dy
√

1− x− y

 (1−D)Γ
(

5−D
2

)
q

2
[
x(1− x)k2 + y (Ω/2)

2
] 5−D

2

+
x2
[
k (k · q)− k2q

]
Γ
(

7−D
2

)
[
x(1− x)k2 + y (Ω/2)

2
] 7−D

2

 .
(D35)
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After some algebraic simplifications we arrive at the following expression for

δΠV,1
00 (iΩ,q) = Nq2Ω2V (D)

∫ 1

0

dx

∫ 1−x

0

dy

√
1− x− y

[x(1− x)]
7−D

2

∫ ∞
0

dk
A(x,D) kD +B(y,D)Ω2 kD−2[
k2 +

(
Ω
2

)2] [
k2 + y

x(1−x)

(
Ω
2

)2] 7−D
2

, (D36)

where x and y are Feynman parameters and

V (D) =
πe2

(
1− 1

D

)
π1+ D

2

16Γ
(
D
2

)
(2π)D(4π)

D
2

, A(x,D) =
x(1− x)D−1

2 Γ
(

5−D
2

)
− 2x2Γ

(
7−D

2

)
2

, B(y,D) =
(D − 1)Γ

(
5−D

2

)
8

.(D37)

After some lengthy algebra it can be shown that δΠV,1
00 (iΩ,q) = O(ε) and thus does not contribute to the conductivity.

On the other hand, after algebraic manipulation the second term in the expression of δΠV
00(iΩ,q) becomes

δΠV,2
00 (iΩ,q) = Nπe2 Γ

(
5
2

)
Γ
(

1
2

) ∫ 1

0

dx

∫ 1−x

0

x dy√
1− x− y

∫
dDk

(2π)D

∫
dDp

(2π)D
(k× q)

2

[p2 + x(1− x)k2 + y(Ω/2)2]
5/2

= Ne2q2

(
1− 1

D

)
Γ
(

5−D
2

)
π1+D/2

2Γ
(

1
2

)
Γ
(
D
2

)
(2π)D(4π)D/2

∫ 1

0

dx

∫ 1−x

0

dy

∫ ∞
0

dk
x [x(1− x)]

D−5
2 [1− x− y]

−1/2[
k2 +

(
Ω
2

)2] [
k2 + y

x(1−x)

(
Ω
2

)2] 5−D
2

kD. (D38)

After a lengthy calculation and at the end setting D = 3 − ε and q → vq we arrive at the final expression for the
vertex correction to the density-density correlator coming from the Coulomb interaction

δΠV
00(iΩ,q) =

Ne2q2

72π3v2

[
3

2
× 1

ε

]
+O(1). (D39)

Therefore, after accounting for the contribution from self-energy diagram we obtain the net correction to the polar-
ization tensor due to the long-range tail of the Coulomb interaction from density-density correlation to be

δΠ00(iΩ,q) = δΠSE
00 (iΩ,q)+δΠV

00(iΩ,q) = − Ne
2q2

72π3v2

[
1

ε2
− 1

2ε
[1 + 2γE − 2 log(4π)]

]
≡ − Ne

2q2

72π3v2

[
1

ε2
+
b

ε

]
, (D40)

where b = − [1 + 2γE − 2 log(4π)] /2 ≈ 1.454.
We point our here that the results for the Coulomb correction to the current-current correlator in Eq. (D24) and
to the density-density correlator in Eq. (D40) are consistent with the charge conservation, Eq. (B8), and therefore
dimensional regularization employed manifestly preserves gauge invariance of the theory.

3. Correction to optical conductivity

Upon obtaining the same expression for the polarization bubble from both current-current and density-density
correlators we can proceed with the computation of the correction to the OC due to the long-range piece of the
Coulomb interaction. Following the steps highlighted in Sec. B 4, we find

σjj(Ω) = σ0(Ω)

[
1− α

6π

{
b− 2 log

(
EΛ

Ω

)}]
, (D41)

where α = e2/(~v) is the fine structure constant in the Weyl medium. Here EΛ = 2vΛ, where Λ is the ultraviolet
momentum cut-off and therefore EΛ is the band width of a WSM in linearized approximation. If we also account for
the correction to the OC due to the short-range piece of the density-density interaction the OC of an interacting Weyl
liquid (to the leading order in interaction couplings) is given by

σjj(Ω) = σ0(Ω)

[
1− α

6π

{
b− 2 log

(
EΛ

Ω

)}
+

(
g0Ω2

24π2v3

) {
a− 2 log

(
EΛ

Ω

)}]
, (D42)

with a ≈ 3.62069 and b ≈ 1.454. Recall σ0(Ω) is the conductivity of a N -flavored non-interacting Weyl semimetal,
given by σ0(Ω) = Ne2

0/(12hv), where N is the number of Weyl points in the Brillouin zone.
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We realize that coupling constants appearing in the above expression for the optical conductivity are renormalized
ones. Therefore, two dimensionless couplings, namely α and g = g0Ω2/v3 in the above expression needs to be
substituted by their scale dependent strengths, which we can readily obtained from the renormalization group flow
equations of these two couplings appearing respectively in Eq. (A15) and Eq. (A17). After expressing βx as dx/dl,
where x = α, ĝ0 and l is the logarithm of the renormalization, and therefore l = log (EΛ/Ω), we obtain the running
couplings

α(Ω) =
α0

1 + α0
N+1
3π log

(
EΛ

Ω

) ≈ 1
N+1
3π log

(
EΛ

Ω

) , g(Ω) = ĝ0

(
Ω

EΛ

)2

, (D43)

where the quantities with subscript “0” denote their bare strength. Upon substituting these running couplings back
in Eq. (D42), we find

σjj(Ω) = σ0(Ω)

[
1 +

1

N + 1
− b

2(N + 1) log
(
EΛ

Ω

) − ĝ0Ω2

12π2E2
Λ

{
log

(
Ω

EΛ

)
− a

2

}]
, (D44)

which matches with Eq. (13) of the main text, and ultimately simplifies to Eq. (1) from the main text for Ω� EΛ.

Appendix E: Alternative computation of current-current correlator with long-range Coulomb interaction

We here present an alternative route to compute the current-current correlator in the presence of long-range
Coulomb interaction. In the previous calculation we have chosen l = m = x at the fermion-current vertex and
performed the analysis. Alternatively, we can sum over this contribution for all spatial components of the current
operator, and then devide the final expression by D (spatial dimensionality) to obtain the contribution of each
diagram/term to longitudinal conductivity.

If we sum over the contribution from the self-energy diagram from all spatial components of current operators, its
contribution to conductivity goes as (after performing the trace algebra)

δΠSE
lm (iΩ, 0) =

4NE(D)

D
δlm

∫
dDk

(2π)D

∫ ∞
−∞

dω

2π

[
−2Dk2ω(ω + Ω)− (2−D)

(
ω2k2 − k4

)]
k3−D [ω2 + k2]

2
[(ω + Ω)2 + k2]

=
Ne2Ω2

72π3v2

[
3

ε2
+

1

ε
[7− 3γE + 3 log(4π)]

]
δlm, (E1)

which is identical to the result obtained in Eq. (D5). Since the frequency integral produces a lengthy expression, we
here do not wish to present all the intermediate steps, which, however, follow those in Eq. (D5).

We can proceed with the same strategy for the vertex diagram by computing the terms in Eqs. (D11)-(D14). In

this framework δΠV,2
lm,1(iΩ, 0) remains unchanged, while three other components appearing in δΠV

lm,1(iΩ, 0) read as

δΠV,1
lm,1(iΩ, 0) =

NΩ2

4D
δlm

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
(k · p)

2
+ (D − 2)k2p2

k3p3 [k2 + (Ω/2)2]
, (E2)

δΠV,3
lm,1(iΩ, 0) = −NΩ4

32D
δlm

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
(k · p)

2 − 2p2k2

k3p3 [k2 + (Ω/2)2] [p2 + (Ω/2)2]
, (E3)

δΠV
lm,2(iΩ, 0) =

NΩ2

8D
(D − 1)δlm

∫
dDk

(2π)D

∫
dDp

(2π)D
2πe2

|k− p|2
k · p

kp [k2 + (Ω/2)2] [p2 + (Ω/2)2]
. (E4)

Now we present some key steps of the computation of each term and display the final result.

After some algebraic simplification δΠV,1
lm,1(iΩ, 0) reads as

δΠV,1
lm,1(iΩ, 0) =

NΩ2

4D

[
1

4
I1 +

1

4
I2 +

(
D − 2

3

)
I3

]
δlm. (E5)
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The integral I1 in the above expression goes as

I1 =

∫
dDk

(2π)D

∫
dDp

(2π)D
k

p3|k− p|2 [k2 + (Ω/2)2]
=

2πD/2Γ
(

5−D
2

)
Γ
(
D−3

2

)
Γ
(
D
2 − 1

)
(4π)D/2(2π)DΓ

(
3
2

)
Γ
(
D
2

)
Γ
(
D − 5

2

) ∫ ∞
0

dk
k2D−5

k2 + (Ω/2)2

=
2πD/2Γ

(
5−D

2

)
Γ
(
D−3

2

)
Γ
(
D
2 − 1

)
(4π)D/2(2π)DΓ

(
3
2

)
Γ
(
D
2

)
Γ
(
D − 5

2

) [Ω2D−6 25−2D π cosec(πD)
]
. (E6)

The quantity in the straight bracket comes from the integral over radial momentum variable k. The following integral
identity will be extremely useful to compute I2 and I3∫

dDp

(2π)D
1

|k− p|2 (|p|2)
a =

Γ
(
1 + a− D

2

)
Γ
(
D
2 − 1

)
Γ
(
D
2 − a

)
Γ(a)Γ(D − 1− a)

(
k2
)−1−a−D

2 . (E7)

With the help of the above integral identity, the second term is given by

I2 =

∫
dDk

(2π)D

∫
dDp

(2π)D
p

k3|k− p|2 [k2 + (Ω/2)2]
=

2πD/2Γ
(

1−D
2

)
Γ
(
D+1

2

)
Γ
(
D
2 − 1

)
(4π)D/2(2π)DΓ

(
D
2

)
Γ
(
− 1

2

)
Γ
(
D − 1

2

) ∫ ∞
0

dk
k2D−5

k2 + (Ω/2)2

=
2πD/2Γ

(
1−D

2

)
Γ
(
D+1

2

)
Γ
(
D
2 − 1

)
(4π)D/2(2π)DΓ

(
D
2

)
Γ
(
− 1

2

)
Γ
(
D − 1

2

) [Ω2D−6 25−2D π cosec(πD)
]
. (E8)

The last term in the expression of δΠV,1
lm,1(iΩ, 0) assumes the form

I3 =

∫
dDk

(2π)D

∫
dDp

(2π)D
1

kp|k− p|2 [k2 + (Ω/2)2]
=

2πD/2Γ
(

3−D
2

)
Γ
(
D−1

2

)
Γ
(
D
2 − 1

)
(4π)D/2(2π)DΓ

(
D
2

)
Γ
(

1
2

)
Γ
(
D − 3

2

) ∫ ∞
0

dk
k2D−5

k2 + (Ω/2)2

=
2πD/2Γ

(
3−D

2

)
Γ
(
D−1

2

)
Γ
(
D
2 − 1

)
(4π)D/2(2π)DΓ

(
D
2

)
Γ
(

1
2

)
Γ
(
D − 3

2

) [Ω2D−6 25−2D π cosec(πD)
]
. (E9)

Now combining the contributions from I1, I2 and I3, we obtain

δΠV,1
lm,1(iΩ, 0) =

Ne2Ω2

72π3

[
2

ε2
+

6− 2γE + 2 log(4π)

ε

]
δlm, (E10)

for D = 3− ε, which is in agreement with the result in Eq. (D16).

Now we proceed with the computation of δΠV,3
lm,1(iΩ, 0). After some simple algebraic manipulation we find

δΠV,3
lm,1(iΩ, 0) = −2πe2 NΩ4

32D
[K1 − 2K2] δlm, (E11)

where K1 = 1
2 (J1 + J2 + J3), with

J1 = −
∫

dDk

(2π)D

∫
dDp

(2π)D
1

k3p3 [k2 + (Ω/2)2] [p2 + (Ω/2)2]
= Ω2D−8 (16π)2−D sec2

(
πD
2

)[
Γ
(
D
2

)]2 . (E12)

The second term in K1 reads as

J2 =

∫
dDk

(2π)D
k

[k2 + (Ω/2)2]

∫
dDp

(2π)D
1

p3|k− p|2 [p2 + (Ω/2)2]

=
Γ
(

7−D
2

)
(4π)D/2Γ

(
3
2

) 2πD/2

(2π)DΓ (D/2)

∫ 1

0

dx

∫ 1−x

0

dy

∫ ∞
0

dk
kD
√

1− x− y [x(1− x)]
D−7

2

[k2 + (Ω/2)2]
[
k2 + y

x(1−x) (Ω/2)2
]D−7

2

. (E13)

Further analysis of J2 produces extremely lengthy expression and we perform the analysis in mathematica. The last
term in K1 goes as

J3 =

∫
dDk

(2π)D

∫
dDp

(2π)D
1

kp|k− p|2 [k2 + (Ω/2)2] [p2 + (Ω/2)2]
=

[
Ne2Ω2 7ζ(3)

128π3

]
× 32

2πNΩ2e2
, (E14)
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and K2 = J3. Upon collecting all these contribution we arrive at the final expression for δΠV,3
lm,1(iΩ, 0), given by

δΠV,3
lm,1(iΩ, 0) = −2πe2NΩ4

32D

[
1

2
(J1 + J2)− 3

2
J3

]
δlm ≈

Ne2Ω2

π3

[
−0.000531776

96
π4 +

7ζ(3)

256

]
δlm

≈ Ne2Ω2

π3
(0.0323292) δlm =

Ne2Ω2

384π3
[4 + 7ζ(3)] δlm, (E15)

in agreement with the result in Eq. (D21).
Finally we come to the computation of δΠV

lm,2(iΩ, 0), which after some algebraic simplification can be expressed as

δΠV
lm,2(iΩ, 0) = −πe2NΩ2

8

(
1− 1

D

) [
(L1)

2 − 2L2 + 2L3

]
δlm, (E16)

where

L1 =

∫
dDk

(2π)D
1

k [k2 + (Ω/2)2]
=

2πD/2

Γ
(
D
2

)
(2π)D

[
−π 22−D ΩD−3 sec

(
πD

2

)]
. (E17)

The second entry in the expression of δΠV
lm,2(iΩ, 0) goes as

L2 =

∫
dDk

(2π)D

∫
dDp

(2π)D
1

kp|k− p|2 [p2 + (Ω/2)2]

=
Γ
(

5−D
2

)
(4π)D/2Γ

(
1
2

) 2πD/2

(2π)DΓ
(
D
2

) ∫ 1

0

dx [x(1− x)]
D−5

2

∫ 1−x

0

dy

∫ ∞
0

dk
kD−2 [1− x− y]

−1/2[
k2 + y

x(1−x)

(
Ω
2

)2] 5−D
2

=
2πD/2 Γ(3−D)Γ

(
D−1

2

)
(2π)D(4π)D/2Γ

(
D
2

)
Γ
(

1
2

)25−2D
(
Ω2
)D−3

∫ 1

0

dx [x(1− x)]
1−D

2

∫ 1−x

0

dyyD−3 [1− x− y]
−1/2

=
2πD/2 Γ(3−D)Γ

(
D−1

2

)
(2π)D(4π)D/2Γ

(
D
2

)
Γ
(

1
2

)25−2D
(
Ω2
)D−3 Γ(D − 2)Γ

(
3−D

2

)
Γ
(
D
2 − 1

)
Γ
(
D − 3

2

) . (E18)

The last entry in the expression of δΠV
lm,2(iΩ, 0) is given by

L3 =

(
Ω

2

)2 ∫
dDk

(2π)D

∫
dDp

(2π)D
1

kp|k− p|2 [p2 + (Ω/2)2] [k2 + (Ω/2)2]

=

(
Ω

2

)2 Γ
(

5−D
2

)
(4π)D/2Γ

(
1
2

) 2πD/2

(2π)DΓ
(
D
2

) ∫ 1

0

dx

∫ 1−x

0

dy

∫ ∞
0

dk
kD−2 [x(1− x)]

D−5
2 [1− x− y]

−1/2[
k2 +

(
Ω
2

)2] [
k2 + y

x(1−x)

(
Ω
2

)2] 5−D
2

=
1

32π4

∫ 1

0

dx

∫ 1−x

0

dy
[1− x− y]

−1/2

x(1− x)

log
[

y
x(1−x)

]
y

x(1−x) − 1
=

7ζ(3)

32π4
. (E19)

Now collecting the contributions from L1, L2 and L3 we obtain the divergent piece of δΠV
lm,2(iΩ, 0) to be

δΠV
lm,2(iΩ, 0) =

Ne2Ω2

72π3

[
3

2ε

]
δlm, (E20)

in agreement with the result in Eq. (D22). Thus in this alternative approach to compute the current-current correlator
we obtain identical results for each and every contribution to both self-energy and vertex diagram.

Appendix F: Kramers-Kronig relations and dielectric constant

Finally, we present the computation of the imaginary part of the optical conductivity [=(σ)], which is tied with the
real part of the dielectric constant [ε(Ω)] according to

ε(Ω) = 1− 4π

Ω
=(σ), (F1)
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from its real component [<(σ)] by applying the Kramers-Kronig relation

=(σ) = −2π

Ω
P
∫ EΛ

0

dΩ′
<(σ)

Ω′2 − Ω2
. (F2)

In the above expression P denotes the principle value of the integral. Since we are interested in the regime Ω� EΛ

so that signature of Weyl fermions are prominent, we take the simplified expression for the real part of the optical
conductivity after accounting for the leading correction due to Coulomb interaction, given by [Eq. (1) of main text]

<(σ) = σ0(Ω)

[
1 +

1

N + 1

]
. (F3)

The corresponding imaginary part of the optical conductivity is then given by

=(σ) = −e
2
0

h

NΩ

6πv

[
1 +

1

N + 1

]
log

(
EΛ

Ω

)
. (F4)

The above expression in conjunction with the definition of the real part of the dielectric constant [see Eq. (F1)] leads
to

ε(Ω) = 1 +
2Ne2

3hv

[
1 +

1

N + 1

]
log

(
EΛ

Ω

)
, (F5)

in agreement with Eq. (14) of the main text.
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