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Frustrated magnetic systems exhibit many fascinating phases. Prime among them are quantum
spin liquids, where the magnetic moments do not order even at zero temperature. A subclass of
quantum spin liquids called Kitaev spin liquids are particularly interesting, because they are exactly
solvable, can be realized in certain materials, and show a large variety of gapless and gapped phases.
Here, we show that non-symmorphic symmetries can enrich spin liquid phases, such that the low-
energy spinon degrees of freedom form three-dimensional Dirac cones or nodal chains. In addition,
we suggest a realization of such Kitaev spin liquids in metal-organic-frameworks.

I. INTRODUCTION

As a paradigmatic example of nontrivial collective
physics associated with interacting quantum many body
systems, quantum spin liquids (QSLs) have been a topic
of much interest in recent years [1–3]. QSLs are strongly
correlated magnetic systems, ordinarily characterized by
the following three features: the absence of a sponta-
neous symmetry breaking, the absence of a long-range
magnetic order, and the existence of fractionalized exci-
tations and/or emergent gauge fields [4]. They are also
long-range entangled [5, 6] — a property that is often
used to identify spin liquids theoretically [7].

Owing to the strong frustration, such systems are usu-
ally not analytically tractable. However, one significant
class of exceptions has been Kitaev spin liquids(KSLs) [8–
10]. These are generalizations of Kitaev’s exactly solvable
honeycomb model [11] — a spin-1/2 quantum magnet on
the honeycomb lattice described by the Hamiltonian

HKitaev = −
∑

γ−bonds

Jγσ
γ
j σ

γ
k , (1)

where γ ∈ {x, y, z} labels the j–k bond. These models
exhibits strong exchange frustration arising from bond di-
rectional interactions, which leads to a spin liquid phase.

The fundamental idea of Kitaev’s solution is to rep-
resent the spin in terms of Majorana fermion operators,
so that the Kitaev Hamiltonian reduces to a model of
noninteracting Majorana fermions coupled to a static Z2

gauge field. As the excitations of the gauge field are usu-
ally gapped, one is left with a free hopping Hamiltonian
for Majorana fermions. If this band structure associ-
ated with this Hamiltonian is gapped/gapless, then so
is the resulting quantum spin liquid. Furthermore, the
associated bulk bands may carry topological invariants,
analogous to the case of topological insulators.

The Kitaev model is, in fact, exactly solvable on
any tricoordinated lattice, and has been studied in a
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wide variety of two-dimensinal (2D) [12–15] and three-
dimensional (3D) systems [16–21]. A comprehensive clas-
sification of 3D KSLs — based on time-reversal and in-
version symmetries — has been arrived at in Ref. [21]
recently. This classification is very similar to that of
complex fermions (see e.g. [22] and references therein),
except in some important aspects due to the possibil-
ity of a projective representation of the time-reversal
and/or lattice symmetries. The 3D KSLs have been
shown to harbor many interesting 3D gapless phases of
Majorana fermions, some notable examples being Majo-
rana Fermi surfaces [18, 20], nodal lines [17, 23, 24] and
Weyl points [19, 21].

Lattice symmetries have been known to enrich the
physics of topological insulators and superconduc-
tors [25–28], beyond the conventional tenfold classifica-
tion of topological insulators and superconductors [29–
31]. A prominent set of examples of such phases are the
so-called topological crystalline insulators [32, 33], which
possess a bulk topological invariant protected by lattice
rotation [34, 35] and/or inversion symmetries [36–38].
[39] Semi-metallic phases, harboring e.g. Dirac nodes
or nodal lines, can be classified using similar methods
as for the gapped phases [40–45]. In certain cases, the
presence of non-symmorphic symmetries can ensure the
existence of topologically protected gapless points [46–51]
in fermionic systems at half filling, which would conven-
tionally be expected to be gapped.

In this article, we show that non-symmorphic lattice
symmetries can also enrich KSL phases. We study the
Kitaev model on two closely related inversion symmet-
ric tricoordinated lattice structures, termed 82.10-a and
(10,3)d [52].[53] Both lattices are closely related to the
hyperoctagon or (10,3)a lattice [54], as shown in Fig. 1,
but show very different KSL phases. The 82.10-a lattice
harbors a gapless KSL, where the dispersion exhibits two
3D Dirac cones in the bulk Brillouin zone, protected by
a combination of the 4-fold screw and glide symmetry.
The (10,3)d lattice exhibits a set of touching nodal lines
— a nodal chain [55] — in the bulk Brillouin zone, where
the touching points are protected by the combination of
time-reversal and a glide symmetry.

Generically, nodal lines in KSLs are protected by time-
reversal symmetry. Breaking this symmetry gaps the
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FIG. 1. Projection along the crystallographic c-axis (ẑ in the following) for the (a) (10,3)a, (b) (10,3)d, (c) 82.10-a, and (d)
82.10-b lattice. The numbers indicate the height (in multiples of 1/4) along the ẑ axis and the lines denote the nearest-neighbor
bonds. Dashed lines are used to indicate that the ‘squares’/‘octagons’ form spirals. The first lattice is chiral, while the other
three are inversion symmetric and contain square-spirals of both chiralities. Note that the octagons in (a) and (b) are spirals,
while they close for (c) and (d).

lines, leaving behind an even number of Weyl nodes [19,
21]. In the Kitaev model on (10,3)d, however, one of the
nodal lines remains stable even when the time-reversal
symmetry is broken, owing to the glide symmetry [56].
Thus, the presence of non-symmorphic lattice symme-
tries leads to interesting gapless topological phases, not
anticipated by the earlier classification based on the time-
reversal and inversion symmetries. This indicates that
there are a lot of phases protected by space group sym-
metries yet to be discovered in Kitaev spin liquids.

Although the Kitaev model looks like a theoretical toy
model, the strongly anisotropic spin interactions of the
Kitaev model can arise in real materials from the spin-
orbit entangled nature of j = 1/2 magnetic moments in
4d or 5d transition metal ions with a strong spin-orbit
coupling [57, 58]. Besides conventional materials like iri-
dates [24, 59, 60] and α-RuCl3 [61], a new avenue of mate-
rial candidates has been opened by metal-organic frame-
works (MOFs) [62]. In essence, they consist of metal ions
bonded to organic ligands, and can form highly complex
networks. This is an exciting avenue to realize crystal
structures and, thus, types of KSLs that cannot be sta-
bilized in conventional materials. A prominent example
is the hyperoctagon lattice [18], which occurs naturally
in MOFs [63] and possibly harbors a gapless Kitaev spin
liquid with a Majorana Fermi surface.

In fact, the 82.10-a lattice has also been realized [64],
albeit in a somewhat distorted form and with the ‘wrong’
metal ions. An undistorted version of this lattice can be
embedded in a network of edge-sharing octahedra (vi-
sualized in Fig. 2), which leads us to expect that this
lattice topology with Ir or Ru as the metal ion will be
a good candidate for the realization of dominant Kitaev
interactions.

The rest of this paper is organized as follows: In Sec. II,
we discuss the MOFs as a potential realization of the 3D
lattices of interest. In Sec. III, we summarize the ba-
sic physics associated with Kitaev spin liquids on trico-
ordinated lattices, as well as discuss their classification.
We introduce the details of our lattices in Sec. IV, and

study the physics of the Kitaev models on the 82.10-a and
(10,3)d lattices in Sec. V and VI, respectively. We con-
clude our discussions in Sec. VII.

A point about notation: in the rest of this article,
we shall use k = (kx, ky, kz) to denote the lattice mo-
menta with components along the Cartesian directions.
We shall also use qj to denote the reciprocal lattice vec-
tors corresponding to the lattice translation vectors aj
and define kj = k · aj , j = 1, 2, 3, so that k =

∑
j kj qj .

II. METAL-ORGANIC FRAMEWORKS

In this section, we provide a brief introduction to
metal-organic frameworks (MOFs), a class of materials
which can potentially realize Kitaev physics on certain
tricoordinated lattices. We also discuss the mechanism
that generates the Kitaev interactions, and some possible
candidates for materials that realize the 3D nets studied
in the rest of this article.

A. Structure and construction

An MOF [65], also known as a porous coordination
polymer [66], is a coordination polymer consisting of
metal ions and organic ligands, which are connected by
coordinate bonds, i.e, the organic ligands donate a pair of
electrons to the metal ion to form chemical bonds. The
metal ions are typically referred to as nodes, while the
ligands are often referred to as struts or linkers. During
the last few decades, these materials have been a sub-
ject of much interest, owing to their diverse applications
as well as the possibility of realizing diverse structural
topologies in 1, 2 or 3 dimensions [67]. Their applica-
tions range from catalysis [68] and gas storage [69] to
usage in electronic devices [70], spanning chemistry and
physics.

A guiding principle in determining the structure of
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FIG. 2. (a) Idealized structure of 82.10-a MOF, Ru2(C2O4)3 with an I41/amd symmetry. The abc-axes are crystallographic
cubic axes. Gray spheres inside the oxygen octahedra represent Ru atoms with a j = 1/2 magnetic moment due to the
octahedral ligand field in combination with a strong SOC of Ru3+. (b) Skeletal structure of the corresponding MOF. Only Ru
atoms are shown here and they form the complete 82.10-a lattice.

MOFs is the ligand field experienced by the transition
metal ions. The originally degenerate d or f -orbitals of
the metal ion split in the presence of ligands, and the re-
sulting energy gain leads to the chemical bonding via co-
ordinate bonds. There are several possible coordinations
— octahedral, tetrahedral, tetragonal, etc. — and for a
given metal-ligand combination, one can be energetically
favorable over the others. This leads to a ‘default’ struc-
ture of the ligands around the metal ions and opens up
a way to ‘design’ MOFs corresponding to a given lattice
structure by a suitable choice of metal-ligand combina-
tion. In the resulting MOF, the metal ions form the nodes
of the corresponding 3D lattice, while the organic ligands
form the links. This provides a bottom-up approach for
synthesis of MOFs by self-assembly [71].

Based on the node-linker construction of MOFs, many
tricoordinated nets have been synthesized, including (but
not limited to) the layered honeycomb lattice, as well
as (10,3)a (hyperoctagon), (10,3)b (hyperhoneycomb),
(10,3)d, and the 82.10-a lattice, see [63] for a more com-
plete list. However, if one wants to realize the Kitaev
model on these lattices, one needs to consider a special
subclass of MOFs, as discussed in the following section.

B. Realization of Kitaev physics

Let us first briefly discuss, how Kitaev interactions
can arise in materials. That the Kitaev model is not
just an interesting toy model, but can be relevant for
actual materials, was first pointed out by Jackeli and
Khaliullin [57, 58]. They showed that Kitaev interac-
tions can be the most dominant interaction in certain
transition metal compounds, where the ions are in a
d5 electronic configuration — the experimentally real-
ized materials contain Ir4+ (5d5) and Ru3+ (4d5), but

FIG. 3. Superexchange paths for the (a) Ru-oxalate-Ru and
(b) Ru-tetraaminopyrazine-Ru structure, where the Ru atoms
are surrounded by (a) oxygen or (b) nitrogen octahedra. In
each figure, the black dashed lines represent the two exchange
paths whose destructive interference suppresses the Heisen-
berg interaction.

one would also expect the same physics for osmates,
rhenates [9], and rhodates [72]. The central ingredients
needed for dominant Kitaev interactions are oxygen octa-
hedra, spin-orbit-coupling (SOC) and multiple superex-
change paths. The crystal field created by the oxygen oc-
tahedron splits the degenerate d-orbitals into two (high-
energy) eg-orbitals and three (low-energy) t2g-orbitals.
The latter multiplet is further split by the strong SOC
into a completely filled j = 3/2 quartet and a half-filled
j = 1/2 Kramers doublet. Even moderately strong elec-
tronic correlations can now drive the system into a Mott
insulator regime where spin-orbit-entangled j = 1/2 mo-
ments are localized on the transition metal sites.

The interaction between these local moments depends
on the microscopic arrangement of the oxygen octahedra.
Because of the large distance between the magnetic sites,
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the main contribution comes from the superexchange via
the oxygen atoms. For an edge-sharing [57, 58] or a
parallel-edge-sharing [73] configuration, there are two ex-
change path that interfere destructively. For ideal oc-
tahedra, this mechanism suppresses the Heisenberg ex-
change almost completely (a small contribution always
comes from the direct exchange, which however is sup-
pressed exponentially in the distance between magnetic
ions) and leaves the Kitaev exchange as the dominant
interaction.

Using the bottom-up (self-assembly) approach dis-
cussed in the previous subsection, one can propose a
sub-class of MOFs where Kitaev interactions should be
dominant [? ]. If we choose the node to be a transition
metal ionM favoring an octahedral coordination, and the
linker to be an organic ligand L with two oxygen atoms
at each end, then they would self-assemble into the struc-
ture M2L3, where M is surrounded by six oxygen atoms
forming an octahedron and the bond angle between the
three ligands L is 120 degrees. As a concrete example,
let us consider the case where M is Ru and L is oxalate.
As evident from Fig. 3, the local structure around the Ru
ion is very similar to that of the conventional materials
that were considered in Ref. [58], and we expect the exis-
tence of local, spin-orbit entangled Kramers doublets at
the metal ion sites. The two exchange paths are longer
than those in the conventional materials because of the
larger size of the organic ligand, but they still interfere
destructively (see Fig. 3(a)), leading to a dominant Ki-
taev interaction [? ]. In fact, the longer exchange path
is an advantage, because the direct overlap between the
orbitals of neighboring ions is very strongly suppressed.
There still are other possible interactions arising from the
superexchange, e.g. Heisenberg interactions. Their rela-
tive strengths can be calculated for each individual case
starting from the microscopic description of the system
in the framework of fragment molecular orbital theory [?
].

Another advantage of MOFs over iridates (and other
conventional systems) is that we can ‘tune’ the inter-
action strength between neighboring atoms without de-
forming the oxygen octahedra. For instance, we can (i)
replace the oxygen in oxalate with other elements, such as
sulphur (tetrathiooxalate (C2S4)2−) or the amide group
(tetraaminooxalate (C2(NH)4)2−), or (ii) use ligands
based on other organic motifs, such as the tetraaminopy-
razine ((C4N6H4)2−) family [see Fig. 3(b)]. This freedom
allows us to explore the phase diagram of the Kitaev
model on a given lattice. For instance, using identical
ligands for all three bond types, we expect to realize the
isotropic Kitaev model with Jx = Jy = Jz. However,
using different ligands — e.g. the tetraaminooxalate-
based ligands for the z-bonds and tetraaminopyrazine-
based ligands for the x- and y-bonds — we can tune the
value of Jz with respect to Jx = Jy.

The octahedral coordination is favorable for most tran-
sition metals, so we can expect a variety of MOFs where
the metal ions form tricoordinated lattices. In fact, M2L3

MOFs forming the (10,3)b lattice [74] as well as the lay-
ered honeycomb lattice [75] have already been reported.
Another important 3D tricoordinated net is the hype-
roctagon, or (10,3)a, lattice [18]. This lattice is diffi-
cult to realize in inorganic materials due to its chiral-
ity, but it can naturally be realized in MOFs [76]. Also
the 82.10-a lattice can be realized as an M2L3 MOF, as
shown in Fig. 2, even though the current MOF realization
— Mn/Cr-oxalate framework (MnCr(C2O4)3) — is still
quite distorted [64]. To the best of our knowledge, there
is no realization of (10,3)d MOF which can potentially be
used to realize the Kitaev model on the (10,3)d lattice.
Further materials search is necessary in this direction.

III. KITAEV SPIN LIQUIDS

In this section, we briefly review the analytical solution
of the Kitaev model and the classification of Kitaev spin
liquids based on time-reversal and inversion symmetries.
This discussion is intended merely to orient the reader
and set up our notation; for more details, we refer the
reader to Ref. [21].

A. Solution of Kitaev model

The original solution [11] of the Kitaev model of Eq. (1)
hinges on the existence of an infinite number of conserved
quantities associated with the loops (“plaquettes”) of the
lattice. For each such loop `, one defines a loop operator

W` =
∏
s∈`

σγss σ
γs
s−1, (2)

where the (s − 1, s) bond is of type γs. It has eigen-
values ±1 for loops of even length and ±i for loops of
odd length. All the loop operators W` commute with the
Hamiltonian and with each other and, thus, can be diag-
onalized simultaneously. Consequently, the Hilbert space
decomposes into subspaces — one for each particular flux
configuration of the emergent Z2 gauge field — and we
can restrict the discussion to a single ‘flux sector’.

For 3D lattices, the set of eigenvalues of W` are not
all independent; instead, they are restricted by a set of
volume constraints [21]. These arise because for a set of
loops `j , j = 1, . . . N` forming a closed volume, the prod-
uct of loop operators must satisfy

∏
jW`j = 1, since each

edge forming the closed volume appears in an even num-
ber of loop operators. This is equivalent to the statement
that there are no monopoles in the emergent Z2 gauge
field.

To expose this gauge structure and solve the model,
Kitaev wrote the spin operators in terms of four Majo-
rana operators axj , a

y
j , a

z
j , cj for each j as

σγj = iaγj cj , (3)
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with the anticommutation relations{
aγj , a

δ
k

}
= 2δγδδjk,

{
cj , ck

}
= 2δjk,

{
aγj , ck

}
= 0.

Since four Majorana fermions are equivalent to two com-
plex fermions, this prescription extends the Hilbert space
at each lattice site from two dimensional to four di-
mensional. Thus, to recover the original spin Hilbert
space, we project down to the one (complex) fermion
sector of this Hilbert space by defining the operator
Dj = axj a

y
ja
z
jcj and demanding that the physical states

satisfy Dj |ψ〉 = |ψ〉 ∀ j.
The Z2 gauge field can be written as the operators

ûjk ≡ iaγj a
γ
k , (where γ is the type of the j-k bond), whose

eigenvalues are ±1 in the extended Hilbert space. As the
bond operators, ûjk, commute with the Hamiltonian and
each other, we can simply fix their eigenvalues (‘fix a
gauge’) for any fixed flux configuration of the loop oper-
ators (2). We, thereby, obtain a noninteracting hopping
Hamiltonian in terms of cj ’s, which we shall term the
Kitaev-Majorana Hamiltonian. The latter can be stud-
ied using the techniques conventionally employed for the
noninteracting fermionic systems.

The remaining, essential classical, problem is to de-
termine the flux sector that minimizes the ground state
energy, i.e. the ground state flux configuration of the Z2

gauge field. Most generally, one can compute the lowest
energy sector by exhaustively searching in the space of all
configurations by numerically diagonalizing the Hamilto-
nian on a finite lattice. However, for a few lattices, we
can use Lieb’s theorem, which, predicts the ground state
flux configuration for certain plaquettes posessing a mir-
ror symmetry [77].

B. Symmetries

Symmetries play an important role in studying the
various phases of the Kitaev spin liquids. While the
original symmetry operators, acting on the spins, form
an ordinary representation of the associated symmetry
group, the corresponding operators acting on the Ma-
jorana fermions form a projective representation of the
symmetry group [78]. The essential reason for this is the
presence of a Z2 gauge symmetry, so that the symme-
try operations can be (and often are) complemented by
a gauge transformation, which corresponds to the “pro-
jective” part of the representation.

The most basic “symmetry” of the Kitaev-Majorana
Hamiltonian is the particle-hole symmetry, which is es-
sentially a redundancy in the description arising from the
enlargement of the Hilbert space when we represent the
spins in terms of the Majorana operators. Besides, the
original spin model possesses a time-reversal symmetry,
which turns out to be closely related to the sublattice
(or chiral) symmetry in the effective Majorana Hamilto-
nian [11, 21].

For bipartite lattices, the Bloch Hamiltonian can al-
ways be recast in the form

H(k) =

(
0 A(k)

A†(k) 0

)
, (4)

This representation is convenient since detH(k) =

|detA(k)|2, which we can use to efficiently determine zero
modes of the Hamiltonian. Furthermore, the matrix A
can be used to conveniently write the Berry phase associ-
ated with a curve C in the momentum space and compute
the chiral invariant associated with nodal lines as

θ =
1

4πi

∮
C

tr
{
A−1dA−

(
A†
)−1

dA†
}
. (5)

In order to study the interplay of KSLs with symme-
tries, we also seek to break those symmetries in a con-
trollable fashion. The lattice symmetries can naturally
be broken by various distortions of the lattice, which basi-
cally amounts to changing the hopping parameters. The
only relevant intrinsic symmetry, viz the time-reversal
symmetry, can be broken by addition of a Zeeman term
(h · σ) to the original Kitaev Hamiltonian. The model
is not exactly solvable anymore; however, for small mag-
netic field, the effect of this term can be analyzed by a
perturbative expansion about the exactly solvable h = 0
point [11]. The first nontrivial contribution occurs at the
third order in perturbation theory, and can be written as

Heff ∝
∑
j,l,k

σαj σ
β
kσ

γ
l , (6)

where j, k, l are three lattice sites such that (j, l) and
(l, k) are nearest neighbors with bond types α and β,
respectively, and γ 6= α, β is the remaining bond label.
This Hamiltonian can again be rewritten in terms of the
Majorana operators, resulting in a next-nearest-neighbor
hopping term.

C. Classification of Kitaev spin liquids

When classifying KSLs we are interested in the projec-
tive representation of the symmetry group. For the pro-
jective symmetry of the Majorana system, the associated
gauge transformation may enlarge the unit cell, resulting
in the implementation of the symmetry with an addi-
tional translation in the momentum space. This makes
the symmetry classification of KSL richer than the cor-
responding classification for free fermions [22]; in partic-
ular, the Majorana system may realize phases of matter
that are forbidden for complex fermions. A systematic
classification of KSLs based on time-reversal and inver-
sion symmetry was presented in Ref. [21]. Here we only
discuss the main results in order to contrast the generic
behavior of KSLs to the (partially) atypical behavior of
the KSL on both (10,3)d and 82.10-a.
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FIG. 4. (Left) The unit cell and translation vectors for the 82.10-a lattice, with the x-,y- and z-bonds colored by green, red,
blue respectively. (Middle) The Brillouin zone for the 82.10-a lattice. We also depict the lines in the Brillouin zone symmetric
under fourfold screw (red) and twofold screw (black). (Right) The phase diagram for the Kitaev model on 82.10-a. The
parameter region shaded blue corresponds to the gapless regime, while the region shaded pink represents the gapped regime.
The solid red line corresponds to Jx = Jy, where the system exhibits 3D Dirac nodes in the bulk, while the dashed black line
denotes the parameter values for which the two nodal lines touch (see Fig. 10).

Let us first discuss time-reversal symmetry for bipar-
tite lattices. If the sublattices have the same transla-
tion vectors as the full lattice — that is true e.g. for
the honeycomb or hyperhoneycomb lattice — then time-
reversal is implemented trivially, i.e. without any addi-
tional translation in momentum space. This is the most
common behavior for KSLs, and both the (10,3)d and
the 82.10-a lattice fall in this category. Such systems
generically harbor gapless spin liquid phases with one or
more nodal lines, which are protected by time-reversal
symmetry. Breaking the time-reversal symmetry generi-
cally gaps the nodal line(s) up to an even number of Weyl
points. In the following sections, we show that neither
82.10-a nor (10,3)d follow this generic behavior, mostly
due to additional symmetries present in the systems.

If the sublattice is not invariant under the transla-
tion vectors of the full lattice — i.e. the sublattice
gauge transformations enlarge the unit cell — then time-
reversal is implemented with an additional translation in
momentum space. This is e.g. the case for the hyperoc-
tagon and the hyperhexagon lattices. The resulting KSLs
generically harbor an even number of Fermi surfaces that
are often topological — i.e. they surround a Weyl node
that lies below the chemical potential. If the Majorana
Hamiltonian is, in addition, inversion symmetric, then
these Weyl nodes are constrained to lie exactly at the
chemical potential, and the system becomes a Weyl spin
liquid. The latter is a prominent example of how projec-
tive symmetries may lead to a richer variety of phases:
Weyl nodes are forbidden in free fermion systems with
both inversion and time-reversal symmetry, but they can
exist in KSLs, e.g. for the Kitaev model on the hyper-
hexagon lattice [21]. Breaking the time-reversal symme-
try usually has very little effect on this class of KSLs
— the Majorana Fermi surfaces deform and the Weyl
nodes move in momentum space, but the overall nature
of the KSL remains unchanged. Weyl spin liquids are, in
fact, stable against arbitrary perturbations (e.g. a small

Heisenberg exchange) away from the exactly solvable Ki-
taev model, whereas the Majorana Fermi surface under-
goes a Spin-Peierls-BCS transition that gaps the Fermi
surfaces up to an (odd) number of nodal lines [20].

IV. LATTICE DESCRIPTIONS

In this section, we describe the 82.10-a and (10,3)d
lattices and their symmetries relevant to Kitaev physics.
They belong to a class of 3D lattices whose projection
along the crystallographic c direction (chosen as ẑ in the
following) is a square-octagon lattice, as shown in Fig. 1.
In the following, we use the terms ‘square’ and ‘octagon’
to describe the lattices. However, the reader should keep
in mind that the ‘squares’ do not close, but instead form
spirals along ẑ. The nonplanar octagons close for 82.10-a,
but not for (10,3)d.

A. The 82.10-a lattice

The 82.10-a lattice can be described as a body-centered
tetragonal lattice with 8 sites per unit cell. Within the
unit cell centered at origin, the positions of these sites
are given by

r1 =
1

4
(a, b, 1) , r2 =

1

4
(0, a+ b, 2) ,

r3 =
1

4
(−a, b, 3) , r4 =

1

4
(0,−a+ b, 4) ,

r5 =
1

4
(0, a− b, 4) , r6 =

1

4
(−a,−b, 3) ,

r7 =
1

4
(0,−a− b, 2) , r8 =

1

4
(a,−b, 1) , (7)

where a = 1/
√

2 and b = 2a =
√

2 (see Fig. 4). The
lattice is bipartite, and we choose the A sublattice as all
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(a) (b)

b
b

ac c

a

FIG. 5. (a) Symmetries of the 82.10-a lattice: The purple
arrow shows the rotation axis of the 2- and 4-fold screw rota-
tion. The gray plane indicates one of the glide mirror planes,
with the corresponding translation indicated by the black ar-
row. The red plane indicates one of the mirror planes that
are relevant for Lieb’s theorem. (b) Glide symmetry of the
(10,3)d lattice. The black arrow indicates the corresponding
translation.

the odd numbered sites, and the B sublattice as all the
even numbered sites. We take the lattice vectors as

a1 =
1

2
(b,−b, 1) , a2 =

1

2
(b, b, 1) ,

a3 = (0, 0, 1) , (8)

and the corresponding reciprocal lattice vectors are given
by

q1 =

(
2π

b
,−2π

b
, 0

)
, q2 =

(
2π

b
,

2π

b
, 0

)
,

q3 =

(
−2π

b
, 0, 2π

)
. (9)

The first Brillouin zone is illustrated in the middle panel
of Fig. 4.

The symmetries of the 82.10-a lattice correspond to
the space group I41/amd (No. 141). For the Kitaev
physics, the most relevant symmetries are the inversion,
mirror, screw and glide symmetries. The inversion and
mirror symmetries are defined with respect to the centers
of the octagons. The screw symmetries involve a fourfold
or twofold rotation around a rotation axis along ẑ that
is located at the center of the square spirals, followed by
a translation along the rotation axis. The glide symme-
tries involve a reflection about planes cutting through the
square spirals followed by a translation, which is visual-
ized in Fig. 5(a).

The 82.10-a lattice is an example of a net, where not
all the elementary loops are of the same length. There
are six elementary loops associated with each unit cell:
two of length 8 (8-loops) and four of length 10 (10-loops),
as shown in Fig. 6. The two 8-loops correspond to the
two distinct (nonplanar) octagons, while the remaining
four 10-loops involve spiraling up along one square and
then down along an adjacent one.

FIG. 6. There are two distinct types of loops in 82.10-a:
(a) 8-loops that run along the nonplanar octagons, and (b)
10-loops that spiral up along one square and down along a
neighboring square. Closed volumes are formed by six loops,
as shown in (c).

B. The (10,3)d lattice

The (10,3)d lattice can be described as a primitive or-
thorhombic lattice with 8 sites per unit cell. Within the
unit cell centered at origin, the positions of these sites
are given by

r1 =
1

4
(a, b, 1) , r2 =

1

4
(0, a+ b, 2) ,

r3 =
1

4
(−a, b, 3) , r4 =

1

4
(0,−a+ b, 4) ,

r5 =
1

4
(0, a− b, 3) , r6 =

1

4
(−a,−b, 2) ,

r7 =
1

4
(0,−a− b, 1) , r8 =

1

4
(a,−b, 4) , (10)

where a = 4 − 2
√

2 and b = 2 (see Fig. 7). This lattice
is also bipartite, and similar to the case of 82.10-a, we
choose the A sublattice as all the odd numbered sites,
and the B sublattice as all the even numbered sites. We
define the lattice translation vectors as

a1 =
1

2
(b,−b, 0) , a2 =

1

2
(b, b, 0) ,

a3 = (0, 0, 1) , (11)
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FIG. 7. (Left) The unit cell and translation vectors for the (10,3)d lattice, with the x-,y- and z-bonds colored by green,
red, blue respectively. (Middle) The Brillouin zone with some of the high-symmetry points indicated for (10,3)d. (Right) The
phase diagram for the Kitaev model on (10,3)d. The parameter region shaded blue corresponds to the gapless regime, while
the region shaded pink represents the gapped regime. The dashed black line denotes the parameter values for which the two of
the nodal lines gap out, leaving a single nodal line located on the kz = 0 plane (see Fig. 11).

and the corresponding reciprocal lattice vectors are given
by

q1 =

(
2π

b
,−2π

b
, 0

)
, q2 =

(
2π

b
,

2π

b
, 0

)
,

q3 = (0, 0, 2π) . (12)

The first Brillouin zone, along with some of the high-
symmetry points, is illustrated in the middle panel of
Fig. 7.

The symmetries of the (10,3)d lattice correspond to
the space group Pnna (No. 52). For the Kitaev physics,
the most relevant symmetries are the inversion symmetry
about the center of the bonds connecting the squares, and
the glide mirror symmetry, which involves a reflection
about the xy-plane followed by a translation, as shown
in Fig. 5(b).

The (10,3)d lattice has eight elementary loops associ-
ated with each unit cell. Four of these are essentially
identical to the 10-loops on the 82.10-a lattice — spiral-
ing up along one square and down along any of the four
neighboring squares — while the remaining four involve
spiraling up along a square and then down along the oc-
tagon, as depicted in Fig. 8.

V. KITAEV SPIN LIQUID ON 82.10-a

In this section, we analyze the Kitaev model on the
82.10-a lattice, based on the Majorana representation dis-
cussed in Sec. III.

A. Kitaev model and symmetries

We study the Kitaev model on the tricoordinated
82.10-a lattice with a bond coloring that is commensurate
with the unit cell and preserves the inversion symmetry

of the lattice, as shown in Fig. 4. This choice of bond
coloring is the one that should be realized in MOFs, in
accordance with Ref. [58]. Thus, explicitly, we consider
the spin Hamiltonian

H = −
∑
R

{Jx [σx1 (R)σx2 (R) + σx3 (R)σx4 (R)

+σx5 (R)σx8 (R + a3) + σx6 (R)σx7 (R)]

+Jy [σy1 (R)σy4 (R− a3) + σy2 (R)σy3 (R)

+σy5 (R)σy6 (R) + σy7 (R)σy8 (R)]

+Jz [σz1(R)σz6(R + a2 − a3)

+σz2(R)σz7(R− a1 + a2)

+σz3(R)σz8(R− a1 + a3) + σz4(R)σz5(R)]}
(13)

To analyze the Hamiltonian, we follow the discussion in
Sec. III to derive an effective hopping model for Majorana
fermions with a fixed background Z2 gauge field in the
ground state sector. To fix the fluxes associated with
loops, we note that 82.10-a has six elementary loops per
unit cell. Furthermore, we need six elementary loops to
enclose a volume, so that the volume constraint demands
that for any flux configuration, the number of loops for
each bounded volume carrying a π flux must be even.
In fact, one can actually determine the ground state flux
configuration rigorously using Lieb’s theorem [77], since
82.10-a possesses mirror planes (100) and (010) passing
through the centers of the octagons, which do not pass
through any of the lattice sites [see Fig. 5(a)]. Thus,
each loop of length 8 is threaded by a π flux, while the
10-loops have no flux.

To define a gauge field configuration that realizes this
flux configuration, we need to choose a direction for each
bond. We use the bipartite nature of the 82.10-a lattice
to define the positive bond directions from sublattice A
to B for all bonds. Then, the desired flux configuration
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FIG. 8. There are two distinct types of 10-loops in (10,3)d:
loops that spiral up along one square and down along (a) a
neighboring square and (b) a neighboring octagon. Closed
volumes are formed by four loops, as shown in (c).

can be realized by setting the bond operators ujk = +1
(−1) if j is odd (even), except for the 1-6 bond where
u16 = −1. After a permutation of the sites, the resulting
Kitaev-Majorana Hamiltonian can then be expressed in
the form of Eq. (4) with

A = i


0 −Jze2πik23 Jx Jye

−2πik3

Jze
2πik31 0 Jy Jx

Jxe
2πik3 Jy 0 Jz
Jy Jx Jze

2πik12 0

 ,

(14)
where kmn = km − kn.

We start by noting that since the sublattice transfor-
mation and inversion do not enlarge the unit cell, both
time-reversal and inversion symmetries are implemented
trivially. Thus, based on the general classification ap-
proach, one would expect the system to exhibit nodal
lines in the bulk. However, the Kitaev-Majorana Hamil-
tonian is symmetric under many of the lattice symme-
tries, which leads to a richer set of bulk nodes. In par-
ticular, the screw and glide symmetries are implemented
projectively, which we now describe in more detail.

Screw symmetry: The 82.10-a lattice possesses four-
fold screw symmetries, which map x-bonds to y-bonds
and vice versa. Thus, they are symmetries of the Hamil-
tonian only when Jx = Jy. They can be written as

H(S4k) = US4(k)H(k)U†S4(k), ε(S4k) = −ε(k), (15)

where

S4 (k1, k2, k3) =

(
k3 − k2, k1 +

1

2
, k3

)
,

and the unitary matrix US4(k) depends on the rotation
axis. Here and in the following, we suppress the band

index when writing the energy relations. However, the
reader should keep in mind that the symmetries generi-
cally relate different bands to each other. The locus of
momenta invariant under the fourfold screw symmetries
is a line in the Brillouin zone (depicted in red in the mid-
dle panel of Fig. 4). It can be parametrized as

γt = tq1 +

(
t+

1

2

)
q2 +

(
2t+

1

2

)
q3, (16)

and is periodic under t 7→ t+ 1.
The twofold screw, which is nothing but two successive

fourfold screws, maps each bond type onto itself, so that
it is a symmetry throughout the phase diagram. It can
be written as

H(S2k) = US2(k)H(k)U†S2(k), ε(S2k) = ε(k), (17)

where

S2 (k1, k2, k3) =

(
k3 − k1 +

1

2
, k3 − k2 +

1

2
, k3

)
,

where US2(k) = U2
S4(k). The locus of lattice momenta

invariant under the twofold screw symmetry is a set of
two lines in the Brillouin zone, viz, the fourfold axis of
Eq. (16), as well as the line

γ̃t = tq1 + tq2 +

(
2t+

1

2

)
q3. (18)

The latter is depicted in black in the middle panel of
Fig. 4.
Glide symmetry: Inspecting Fig. 5, it becomes clear

that the glide symmetries map each bond type onto itself,
so that they are symmetries of the model throughout the
phase diagram. They can be implemented as

H(Gk) = UG(k)H(k)U†G(k), ε(Gk) = ε(k), (19)

where

G (k1, k2, k3) =

(
k1, k3 − k2 +

1

2
, k3

)
,

and the unitary matrix UG(k) depends on the mirror
plane.

We note that the screw symmetric lines of Eq. (16)
and Eq. (18) are also symmetric under a glide-mirror.
On these lines, the interplay of the glide and the screw
symmetries leads to an interesting situation, since both
UG(k) and US2(k) commute with the Hamiltonian for
k = γt, γ̃t, and furthermore,

US2(γt)UG(γt) = − UG(γt)US2(γt),

US2(γ̃t)UG(γ̃t) = UG(γ̃t)US2(γ̃t). (20)

Thus, for γ̃, the three operators, viz, H,US2 and UG, can
be diagonalized simultaneously, so that each band car-
ries a unique glide and twofold screw quantum number.
However, for γ, since the glide and the screw operators
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do not commute, they cannot be simultaneously diag-
onalized. Thus, each eigenstate of the Hamiltonian at
these momenta must be doubly degenerate for all values
of the parameters.

Let us note a subtlety regarding the screw symmetries:
it turns out that only the twofold screw remains a sym-
metry when time-reversal is broken, but not the fourfold
screw. This is a consequence of the close relation between
the time-reversal and sublattice symmetries — they are
actually equivalent symmetries in KSLs. Breaking the
sublattice symmetry destroys the fourfold screw symme-
try, as the latter maps the sublattice A onto B. The other
symmetries are unaffected as they only map sublattice A
to A and B to B.

B. Phase diagram

We next study the various phases of the Kitaev model
on 82.10-a by diagonalizing the Kitaev-Majorana Hamil-
tonian and studying its spectrum. Since the phases are
invariant under a rescaling of all Jγ ’s, we restrict ourself
to the plane Jx+Jy+Jz = 1. We observe a gapless phase
with two Dirac cones on the line Jx = Jy. In addition,
we observe two gapless phases with nodal lines near the
isotropic point. For Ja & Jb + Jc ∀ a 6= b 6= c, the KSL is
gapped, as shown in Fig. 4.

1. 3D Dirac nodes

The system exhibits a pair of 3D Dirac nodes for
Jx = Jy, located on the fourfold screw symmetric line
of Eq. (16) with

t0 = ± 1

2π
cos−1

(
J2
z

2J2

)
, J = Jx = Jy. (21)

For Jz ≥ J
√

2, the two Dirac nodes collide at k =
1
2 (q2 + q3) and gap out.

Näıvely, one might think that the 3D Dirac nodes can
be trivially gapped out by the addition of a local oper-
ator to the Hamiltonian, corresponding to the fermionic
“mass”. However, for the case at hand, the Dirac nodes
are protected by the combination of the glide and the
fourfold screw rotation — the latter is a symmetry of the
Hamiltonian only on the Jx = Jy line. Explicitly, we
note that for any momentum γt on the symmetric line γ,

[US4(γt),H(γt)] = 0, (22)

and [US4(γt)]
4

= −e−12 iπt
18. Thus, the eigenstates |ϕt〉

of H(γt) satisfy

US4(γt)|ϕt〉 = ρne
−3 iπt|ϕt〉, (23)

with ρn = exp
{
i 2n+1

4 π
}

; n = 0, 1, 2, 3, and to each bulk
band we associate a screw eigenvalue corresponding to
ρn. From the discussion below Eq. (20), we know that

0 t0-t0

-0.4

0

0.4

t

ε

FIG. 9. Spectrum of the four bulk bands that are closest to
ε = 0 and that form the Dirac nodes, plotted along the screw
symmetric line of Eq. (16). The parameters are given by Jx =
Jy = 0.37, Jz = 0.26, with the Dirac nodes corresponding to
t0 = ±0.42π [Eq. (21)]. The bands are labeled by their screw

eigenvalues ρne
−3 iπt with ρn = ei(2n+1)π/4. The bands with

eigenvalues ρ0, ρ1 are denoted by red solid and dashed lines,
and those with eigenvalues ρ2, ρ3 by blue solid and dashed
lines, respectively.

each of the bulk bands must be (at least) doubly degen-
erate. In Fig. 9, we plot the bulk bands on the screw
symmetric line with the corresponding screw eigenvalue
identified, and note that the bands are inverted at the
Dirac point. Since the ρn cannot change continuously,
the Dirac nodes are topologically protected in the pres-
ence of fourfold screw and glide symmetry, and can only
be gapped out by colliding with another Dirac node.

2. Nodal lines

As one moves away from the Jx = Jy line, the Dirac
nodes turn into nodal lines formed by the intersection of
two bands, while the remaining two bands that formed
the Dirac nodes simply gap out. As one moves away from
the isotropic point in the phase diagram, the two nodal
lines touch at four points and flip inside out. Moving
further away from the isotropic point, the nodal lines
finally gap out. This progression of bulk nodes is depicted
in Fig. 10.

Using the fact that the gapless points are given by
|detA(k)| = 0, we can obtain closed form expressions for
the various phase boundaries. In particular, the nodes
always touch in the k3 = 0 plane at the time-reversal
invariant momenta for parameters along the lines given
by

Jz =
√∣∣J2

x − J2
y

∣∣, (24)

which form rectangular hyperbolae in the plane given by
Jx + Jy + Jz = constant. Furthermore, since the twofold
screw is a symmetry of the Hamiltonian throughout the
phase diagram, if k = k0 is a gapless point, then so is
k = S2k0. Thus, the point of contraction of the line
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FIG. 10. (Top) The bulk nodes for the 82.10-a lattice in the first Brillouin zone for parameters Jx = 1
3

+ ∆J, Jy,z = 1
3
− 1

2
∆J ,

with ∆J = 0.01, 0.05, 0.0808, 0.10, 0.12 (from left to right). (Bottom) The chiral invariant computed for the loops along the k3
axis as a function of (k1, k2), where the values 0, and −1 are represented by yellow and green, respectively. The black solid line
depicts the projection of the bulk nodal line along k3.

nodes must satisfy S2k0 = k0, i.e, it must lie on the
twofold screw symmetric line given by Eq. (18). Using
this fact, the phase boundaries between the gapless and
the gapped phases can be computed to be

2Jx =

∣∣∣∣Jz ±√J2
z − 4iJxJy

∣∣∣∣ ,
Jz =

√
J2
x + J2

y , (25)

as depicted in Fig. 4. The nodal lines are associated
with the chiral invariant defined in Eq. (5), which is
plotted in Fig. 10 as a function of k1, k2, i.e. the in-
variant is computed for (noncontractible) loops along k3.
A nonzero value of the chiral invariant implies that there
is symmetry-protected zero-energy mode on the surface.
Consequently, we find a flat zero-energy surface band in
the gapped phase with Jx � Jy, Jz. Note that there is
no strong topological index that can distinguish different
gapped KSLs, because there are no topological phases in
symmetry class D for noninteracting fermions [30, 79].

C. Breaking the time-reversal symmetry

By breaking the time-reversal symmetry (turning on
an external magnetic field), the two nodal lines gap out
completely, in stark contrast to the generic behavior. In
particular, in Ref. [21] it was argued that Weyl nodes
have to appear when breaking the time-reversal symme-
try in a KSL with a nodal line. This argument relies
on interpreting the 3D model as a 2D one with one mo-
mentum, e.g. k3, regarded as a ‘tunable parameter’. De-
pending on the value of k3, the corresponding 2D system
is either a trivial insulator or harbors 2D Dirac nodes.
Breaking the time-reversal symmetry leaves the trivial

insulator intact, but gaps out the Dirac nodes, resulting
in a Chern insulator. At the interface between these two
insulators resides a gapless node — the Weyl node.

So why do Weyl nodes not occur in 82.10-a? One ob-
vious caveat of the argument in Ref. [21] is that it only
applies to KSLs with an odd number of nodal lines —
i.e. in cases where there is one ‘special’ nodal line that
is invariant under the particle-hole symmetry. This im-
plies that in the corresponding 2D model, Dirac cones
always occur in odd number of pairs, and breaking the
time-reversal symmetry results in an odd Chern num-
ber. Applying above argument to 82.10-a, we always
encounter an even pair of Dirac nodes, and the corre-
sponding Chern number is also even. In particular, there
is nothing that prevents the Chern number to be zero,
in which case there will be no Weyl nodes. One should
be able to make this argument more rigorous using the
particle-hole symmetry.

VI. KITAEV SPIN LIQUID ON (10,3)d

In this section, we analyze the Kitaev model on the
(10,3)d lattice.

A. Kitaev model and symmetries

We assign the bond coloring that respects the inversion
symmetry as well as the lattice periodicity, as shown in
Fig. 7, and again define all bond to be directed from sub-
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lattice A to B. Thus, we consider the spin Hamiltonian

H = −
∑
R

{Jx [σx1 (R)σx2 (R) + σx3 (R)σx4 (R)

+σx5 (R)σx8 (R) + σx6 (R)σx7 (R)]

+Jy [σy1 (R)σy4 (R− a3) + σy2 (R)σy3 (R)

+σy5 (R)σy6 (R) + σy7 (R)σy8 (R− a3)]

+Jz [σz1(R)σz6(R + a2) + σz2(R)σz7(R− a1 + a2)

+σz3(R)σz8(R− a1) + σz4(R)σz5(R)]} . (26)

Next, we need to assign the Z2 fluxes to the bonds,
subject to the volume constraints for each closed surface
consisting of four loops, as shown in Fig. 8(c). Since we
do not have mirror planes for (10,3)d, strictly speaking,
we cannot resort to Lieb’s theorem to deduce the ground
states sector. However, if Lieb’s theorem were to apply,
the ground states would have 0 flux through each closed
loop. This is indeed the correct ground state flux config-
uration [80], as can be verified using the quantum Monte
Carlo techniques introduced in Ref. [81].

Since (10,3)d is bipartite, the Kitaev-Majorana Hamil-
tonian, after a permutation of the sites, can be expressed
in the form of Eq. (4), with

A = i


0 Jze

2πik2 Jx Jye
−2πik3

Jze
−2πik1 0 Jy Jx
Jx Jy 0 Jz

Jye
−2πik3 Jx Jze

2πik12 0

 .

(27)
For (10,3)d, as is the case of 82.10-a, both time-reversal

and inversion symmetries are implemented trivially, and
we expect nodal lines in the bulk. However, the ex-
istence of additional lattice symmetries again leads to
richer physics, as discussed below. In particular, the
glide-mirror symmetry of (10,3)d, implemented trivially,
is given by

H(Gk) = UG(k)H(k)U†G(k), ε(Gk) = ε(k), (28)

where

G (k1, k2, k3) = (k1, k2,−k3) ,

and the unitary matrix UG(k) depends on the mirror
plane. Thus, the planes k3 = 0, 1/2 are invariant un-
der this glide-mirror.

B. Phase diagram

The system exhibits a gapless Majorana phase with
nodal lines for Ja + Jb ≥ Jc, a 6= b 6= c, and a gapped
insulating phase otherwise, as plotted in Fig. 7. Near the
isotropic point, we observe three touching nodal lines,
which lie on orthogonal planes. As we move towards
the phase boundary, two of the three nodes are gapped
out at the dotted line in the phase diagram, either by

contracting to a point or colliding with each other. We
are left with a single nodal line, which finally contracts
to a point and gaps out at the phase boundary between
the gapped and gapless phases .

Explicitly, there is a nodal line in the k3 = 0 plane,
given by

J2
x cos(2πk1) + J2

y cos(2πk2) =

(
J2
x − J2

y

)2
+ J4

z

2J2
z

. (29)

It can be checked that this equation has a solution iff

|Jx − Jy| ≤ Jz ≤ Jx + Jy. (30)

The other set of nodal lines lie on the k2–k3 planes defined
by

cos (2πk1) =
J4
x − J4

y + J4
z

2J2
xJ

2
z

, (31)

which has a solution iff

− 2J2
xJ

2
z ≤ J4

x − J4
y + J4

z ≤ 2J2
xJ

2
z . (32)

The nodal lines are described by the equation

J2
y cos(2πk3)− J2

z cos(2πk2) = J2
x , (33)

which has a solution iff J2
x ≤

∣∣J2
y − J2

z

∣∣. From these con-
ditions, we deduce that the phase boundaries are given
by J2

a + J2
b = J2

c , a 6= b 6= c, which form a set of rect-
angular hyperbolae in the phase diagram.

The physics of these nodal lines can be captured by a
simple 2-band model, defined as

H(k) = ηx(k)σx + ηy(k)σy, (34)

whose spectrum is given by ε = ±
√
η2
x + η2

y, so that the

bulk spectrum exhibits nodal lines given by

ηx(k) = ηy(k) = 0.

For (10,3)d in the gapless regime, using the explicit ex-
pressions for the nodal lines, we set

ηx(k) = ϕ1(2πk1) sin(2πk3),

ηx(k) =

3∑
i=1

ϕi(2πki) + γϕ1(2πk1)ϕ3(k3), , (35)

with ϕi(q) = αi cos q − βi. The parameters are given by

α =
(
J2
x , −J2

z , J2
y

)
,

β =

(
J4
x − J4

y + J4
z

2J2
z

, J2
x + J2

y , −J2
y

)
,

γ = −
J2
y + J2

z

2J4
y

,

with α = (α1, α2, α3), etc. This model captures the in-
teresting behavior of the nodal lines, and owing to its
simplicity, it can be further used to compute interest-
ing quantities associated with the physics of the (10,3)d
Kitaev model.[82]
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FIG. 11. (Top) The bulk nodes for the (10,3)d lattice in the first Brillouin zone for parameters Jz = 1
3
, Jx,,y = 1

3
± ∆J , with

∆J = −0.1,−0.08, 0, 0.05, 0.1 (from left to right). (Bottom) The chiral invariant computed for the loops along the k3 axis as a
function of (k1, k2), where the values 0, 1, 2 are represented by yellow, red and blue, respectively. The black solid line depicts
the projection of the bulk nodal line along k3.

Γ M K Γ
-0.35

0

0.35

ε

FIG. 12. Spectrum of the two bulk bands that are closest
to ε = 0 and that form the nodal lines, plotted along the
high symmetry line in the glide-mirror symmetric plane of the
Brillouin zone and for isotropic couplings Jx = Jy = Jz = 1/3.

The bands are labeled by their glide eigenvalues ρne
iπ(k1−k2)

with ρn = ei(2n+1)π/2. The bands with eigenvalues ρ0, ρ1 are
denoted by red and blue solid lines, respectively.

C. Breaking the time-reversal symmetry

By breaking the time-reversal symmetry, the two ver-
tical nodal lines (see Fig. 11) gap out completely, but the
nodal line in the k3 = 0 plane remains intact. To explain
this, we recall that the k3 = 0 plane is invariant under
the glide-mirror symmetry, so that for k‖ = k1q1 +k2q2,
the Hamiltonian commutes with UG(k‖), and the bands
can be labeled by their glide eigenvalues. Furthermore,[
UG(k‖)

]2
= −e2πi(k1−k2), so that its eigenvalues are

λn = ρne
iπ(k1−k2), ρn = ei

2n+1
2 π, n = 0, 1. (36)

Plotting these eigenvalues associated with the conduc-
tion and valence bands in the Brillouin zone in Fig. 12,
we clearly see that they are inverted across the nodal line.
Thus, the nodal line in the k3 = 0 plane is topologically
protected, even in the absence of the time-reversal sym-
metry. Upon breaking also the glide mirror symmetry,

the nodal line gaps out, leaving two Weyl nodes behind.
These are then stable against any other perturbation that
is local in momentum space.

VII. CONCLUSIONS

We have studied the Kitaev model on two 3D lattices,
where the existence of lattice symmetries lead to a richer
physics than what would be expected from a classifica-
tion based only on the time-reversal and inversion sym-
metries. In particular, we found that non-symmorphic
symmetries can stabilize 3D Dirac cones as well as nodal
chains in Kitaev spin liquids. Our results suggest that
there is still a host of interesting spin liquid phases to
be discovered that rely on the interplay of fractionalized
excitations with lattice symmetries. We also give a con-
crete proposal for realizing these quantum spin liquids in
metal-organic frameworks.

The tunability and bottom-up construction of MOFs
allows for the realization of a wide variety of lattices.
The four-fold spiral — a common feature among the lat-
tices in Fig. 1 — occurs naturally in MOFs [83]. This
makes studying Kitaev physics on these lattices inter-
esting because they can potentially be realized experi-
mentally. Consider, for instance, the 82.10-b lattice in
Fig. 1(d). Like the 82.10-a lattice, it is inversion sym-
metric, has equal-length bonds with 120◦ bond angles,
and can be embedded in a network of edge-sharing octa-
hedra. The Kitaev model on this lattice exhibits a Weyl
spin liquid [19], and shows qualitatively the same behav-
ior as the Kitaev model on the (8,3)b (hyperhexagon)
lattice [21]. Although MOFs with the (8,3)b net topol-
ogy have been realized [84, 85], the synthesis of an (8,3)b
metal-oxalate framework has, to the best of our knowl-
edge, not yet been achieved. Thus, the 82.10-b lattice
provides an alternative route for realizing this fascinat-
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ing KSL phase.
Admittedly, in real materials, Kitaev interactions may

be dominant, but other (symmetry-allowed) interactions
will always be present. Due to the finite gap of the Z2

flux loop excitations, the Kitaev spin liquid phase is sta-
ble against small perturbations away from the exactly
solvable Kitaev model. Unfortunately, in three dimen-
sions, it is hard to accurately determine the extent of the
spin liquid phase [24], but numerical simulations in two
dimensions show that the Kitaev coupling must be larger
than the Heisenberg coupling by a factor of 8 in order to
stabilize the quantum spin liquid ground state [86, 87],
but it may in fact be less for generic interactions [88].

For perfect crystal structures, non-Kitaev-like inter-
actions will be suppressed exponentially because of the
small direct overlap of the magnetic ions. However, for
metal-oxalate MOF, there generically exists a trigonal
compression in the MO6 octahedra. A recent study [89]
discovered that this may in fact be beneficial to the real-
ization of KSLs. They considered materials of the form
A2IrO3 and showed that Kitaev interactions are most
dominant when the O–Ir–O angle is about 80◦ (instead
of 90◦ as depicted in Fig. 3). The observed bond angles
in Ru-based MOFs [90] range from 81◦ to 83◦, which in-
dicates that this trigonal distortion in MOFs should sup-
port our proposal, assuming that the effect of trigonal
distortion is similar for RuO6 and IrO6 [? ]. Moreover,
this trigonal distortion does not break any space group
symmetries, including glide and screw symmetries, so our
symmetry analysis should remain valid.

Smoking-gun experimental signatures for quantum
spin liquids have so far proven elusive. Nevertheless,
there are several experimental probes that can detect
remnants of the spin fractionalization in such systems.
The simplest is the specific heat, which clearly shows the
dichotomy present in these phases — a metallic specific
heat behavior occurring in a Mott insulator. For nodal
lines, the specific heat behaves as C(T ) ∝ T 2 at low
temperatures [23]. In contrast to other nodal line Kitaev
spin liquids, this behavior persists even for small mag-
netic fields in (10,3)d. The specific heat for the isotropic

Kitaev model on 82.10-a behaves as C(T ) ∝ T 3, and
tuning the model away from the isotropic point changes
the behavior to that of a nodal line spin liquid. The exact
solvability of these models also make them amenable to
the computation of other experimental signatures, such
as the spin-structure factor [91, 92] accessible in neutron
scattering [93], as well as Raman scattering [94–96] and
resonant inelastic scattering (RIXS) [97] signatures. The
combination of all these signatures should be able to give
fairly conclusive evidence of whether the experimental
system is in (or at least close to) a KSL phase.

Our results emphasize that the interplay between frac-
tionalized excitations and symmetries may lead to new
types of quantum spin liquids. In principle, one could
construct counterparts of the whole zoo of symmetry-
protected noninteracting fermionic phases in Kitaev spin
liquids. Furthermore, MOFs may prove to be the ideal
platform to design and investigate this type of physics.
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