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In a recent manuscript,1 we showed how an electron
pocket in the shape of a diamond with concave sides (see
for example Fig. 1a) could potentially explain changes in
sign of the Hall coefficient RH in the underdoped high-Tc

cuprates as a function of magnetic field and tempera-
ture. For simplicity, this Fermi surface is assumed to be
constructed from arcs of a circle connected at vertices
(see Fig. 1b),1 which is an idea borrowed from Banik
and Overhauser.2 Such a diamond-shaped pocket is pro-
posed to be the product of biaxial charge-density wave
order,3 which was subsequently supported by x-ray scat-
tering experiments.4,5 Since those x-ray scattering ex-
periments were performed, the biaxial Fermi surface re-
construction scheme has garnered widespread support
in the scientific literature.6–8 It has been shown to ac-
count for the cross-section of the Fermi surface pocket
observed in quantum oscillation measurements,9–11 the
sign and behavior of the Hall coefficient,1,12 the size of
the high magnetic field electronic contribution to the
heat capacity13 and more recently the form of the angle-
dependent magnetoresistance.14 The measured charge
density wave correlation length is comparable to the
mean free path obtained from quantum oscillations,10 in-
dicating it may be reasonably expected to yield Fermi
surface reconstruction.
In their comment,15 Chakravarty and Wang raise sev-

eral important questions relating to the validity of the
Hall coefficient we calculated for such a diamond-shaped
Fermi surface pocket. These questions concern specifi-
cally (1 ) whether a change in sign of the Hall coefficient
RH with magnetic field and temperature is dependent on
a ‘special’ form for the rounding of the vertices in Fig. 1a,
(2 ) whether a pocket of such a geometry can produce
quantum oscillations in RH in the absence of other Fermi
surface sections and (3 ) whether a reconstructed Fermi
surface consisting of a single pocket is less ‘natural’ than
one consisting of multiple pockets. Below we consider
each of these in turn.

1. Rounding of the diamond vertices

Bragg reflection, similar to that occurring with regard
to the crystalline lattice in conventional metals,2 is likely
to be a crucial factor in determining the form of the
Hall coefficient in underdoped cuprates. Bragg reflec-
tion, in which quasiparticles scatter elastically from a
periodic potential, is consistent with the fundings of a
static charge-density wave in both x-ray scattering4,5 and
quantum oscillation9–11 experiments. In such a case, we
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FIG. 1: (a), Schematic diamond-shaped electron pocket from
Ref. 1, with blue arrows indicating the direction of cyclotron
motion and v1 and v2 indicating the Fermi velocity direction.
(b), Schematic showing how the electron pocket is produced
by connecting ‘arcs’ of a larger hole Fermi surface, with α

being the angle subtended by the arc and the dotted lines
indicating how they are connected.

can consider the sharp corners of the Fermi surface in
Fig. 1a to be the product of mixing between states εk,1
and εk,2 = εk+Q,1 (where Q is the charge-density wave
ordering vector), whose Fermi velocities before (vk,1) and
after (vk,2) reflection point in different directions (see
Fig. 2a). Irrespective of the magnitude ∆ of the periodic
charge-density wave potential, the y component of the
Fermi velocity vk,y tangential to the Bragg plane illus-
trated in Fig. 2b is unchanged by the Bragg reflection
process. The x component of the velocity vk,x normal to
the Bragg plane, by contrast, passes through zero and un-
dergoes a change sign. The vanishing of vk,x at the point
of intersection between εk,1 and εk,2 upon mixing the two

bands implies that the magnitude vk =
√

v2k,x + v2k,y of

the Fermi velocity is reduced at the vertices relative to
the magnitudes of vk,1 and vk,2. It is this local reduction
in the magnitude of the velocity at the vertices that is
fundamentally responsible for the change in sign of the
Hall coefficient with magnetic field, as originally reported
by Banik and Overhauser.2

When one neglects the rounding of the vertices, the
effect of Bragg reflection is implicitly included in the
calculation of the Hall coefficient using the Shockley-
Chambers tube integral method17,18 by virtue of the fact
that vk,x (normal to the reflection plane) changes sign at
the vertex while vk,y (tangential to the reflection plane)
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FIG. 2: a, Solid lines showing the reconstructed Fermi sur-
face in the vicinity of a vertex produced by Bragg reflection.
Dotted lines indicate the Fermi surface in the absence of hy-
bridization. v1 and v2 are velocities before and after a quasi-
particle traverses the vertex. (b) Schematic of the Bragg re-
flection in real-space assumed to be responsible for the sharp
corner.

remains unchanged. In modeling the Hall coefficient us-
ing the Jones-Zener method,16 by contrast, the velocity
reduction associated with Bragg reflection needs to be
carefully inserted by hand.1 Only when one correctly ac-
counts for the reduction in the magnitude of the Fermi
velocity at the vertices does one obtain consistency of
the Jones-Zener16 method with Shockley-Chambers tube
integral17,18 method.
An important question in the cuprates is whether there

exists an alternative inelastic mechanism that can lead
to a different form for the rounding of the vertices of
the diamond-shaped pocket in Fig. 1a. Chakravarty and
Wang,15 refer to a scenario postulated in Ref.19 in which
the magnitude |lk| of the mean free path vector lk = vkτk
is invariant over the Fermi surface, leading to a situation
in which the sign of RH no longer changes with magnetic
field. We note that a constant |lk| runs into compatibil-
ity problems with Bragg reflection. For example, in order
to maintain a constant |lk| while traversing the vertices,
either of two unlikely situations would need to apply. In
one of these, the scattering rate would need to be locally
suppressed at the vertices to compensate for the momen-
tarily reduced magnitude of the velocity at the vertices.
In the other, the y-component of quasiparticle velocity
would need to momentarily accelerate at the vertices in
order to maintain both vk and τk constant. Neither of
these scenarios appear to be more realistic than the stan-
dard Bragg reflection scenario considered above and in
Ref. 1.
When interactions do accompany Bragg reflection, as

in the case of ‘hot spots,’ it is more likely that these
will suppress the contribution to RH from the vertices,
causing a sign change in RH to become more pronounced,
or to occur for smaller values of the parameter α in Fig. 1.

Possibilities include a local increase in the effective mass
at the hot spots,20 or an increase in the quasiparticle
scattering rate.21

2. Oscillations in the Hall coefficient

The comment of Chakravarty and Wang15 focuses on
the Drude treatment of a multiband metal, and does not,
we believe, adequately consider the non-geometric nature
of the Hall coefficient RH in a bulk metal in the interme-
diate regime regime in which ~ωc is neither in the limit
ωcτ → 0 nor ωcτ → ∞.

It is well known that for a multiband metal consist-
ing of pockets with different mobilities, or different val-
ues of the product ωcτ , RH is a function of ωcτ , causing
it to vary with the strength of a magnetic field. Only
in limits ωcτ → 0 and ωcτ → ∞ does RH become a
truly geometric quantity and approach constant low and
high magnetic field values. Since σxx,yy/σxy ≈ ωcτ for
a given section of Fermi surface and Shubnikov-de Haas
oscillations occur only in σxx,yy, oscillations in the quasi-
particle scattering rate τ−1 provide a natural means for
modeling the Shubnikov-de Haas effect in metals. Such
a method also reproduces the correct behavior for vari-
ous different limits. For example, in the case of a single
band metal, it correctly predicts that there are no oscil-
lations in RH.

22,23 Meanwhile, for a multiband metal, it
correctly predicts that oscillations are present in RH,

24

yet vanish in the limits ωcτ → 0 and ωcτ → ∞. The jus-
tification for considering the oscillations to occur in τ−1

is provided by Fermi’s golden rule, which states that the
transport scattering rate that enters into the electrical re-
sistivity is approximately proportional to the number of
states available for scattering25 – in other words, the elec-
tronic density-of-states. The oscillatory τ̃−1 is therefore
expected to be approximately proportional to the oscilla-
tory density-of-states, which is precisely what we assume
for our calculations in Ref. 1. A more rigorous model
for quantum oscillations in the Hall coefficient of the un-
derdoped cuprates could be developed by a fully quan-
tum mechanical derivation for a diamond-shaped pocket,
which we look forward to.

Banik and Overhauser showed that, in a similar man-
ner to a multiband metal, the Hall conductivity of a
diamond-shaped pocket in a function of ωcτ .

2 There-
fore, in a similar manner as for a multiband metal, RH

of a diamond-shaped pocket varies with the strength of
a magnetic field. In a similar manner to a multiband
metal, RH also becomes constant (i.e. non oscillatory) in
the limits ωcτ → 0 and ωcτ → ∞. The quantum oscil-
lations in the underdoped cuprates are observed in the
intermediate regime in which ωcτ ∼ 1 for which RH does
not have a simple geometric representation and for which
oscillations in RH can therefore not be excluded.
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3. Single versus multiple pockets

The occurrence of multiple pockets in the majority
of Fermi surface reconstruction scenarios6,7,26–28 does
not make these scenarios more likely, as argued by
Chakravarty and Wang.15 Other considerations such as
the small value of the electronic heat capacity at high
magnetic field in fact point to a single pocket per CuO2
plane,29 making such multiple pocket scenarios less likely.
We note that while low frequency oscillations have been
detected in underdoped YBa2Cu3O6+x

30 (displayed in
one of the Supplementary Figures), the weight of the ex-
perimental evidence points to their origin from a Stark
quantum interference effect1,31 rather than additional
small pockets.9

There are at least two other materials32,33 in which
Fermi surface reconstruction by incommensurate spin-
and or charge-density wave order has been shown exper-
imentally to yield only a single reconstructed pocket. In
the case of the underdoped cuprates as well, two Fermi
surface reconstruction scenarios based on biaxial charge-
density wave order11,34 have been shown to be capable

of producing a reconstructed Fermi surface consisting of
only a single electron pocket. In addition to the bi-
axial charge-density wave YBa2Cu3O6+x, which associ-
ated with the electron pocket,35 a uniaxial charge-density
wave with longer correlation lengths is found to onset
at lower temperatures.35,36 The lower integrated spectral
weight of the uniaxial charge-density wave compared to
the biaxial charge-density wave, indicates the role of the
uniaxial charge-density wave in Fermi surface reconstruc-
tion to be secondary.
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