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When solid state systems possess active orbital-band structures subject to spin-orbit coupling,
their multi-component electronic structures are often described in terms of effective large-spin
fermion models. Their topological structures of superconductivity are beyond the framework of
spin singlet and triplet Cooper pairings for spin- 1

2
systems. Examples include the half-Heusler

compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled elec-
tronic structures are described by the Luttinger-Kohn model with effective spin- 3

2
fermions and

are characterized by band inversion. Recent experiments provide evidence to unconventional su-
perconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study
topological pairing structures in spin- 3

2
systems with the cubic group symmetries and calculate the

surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on
the specific symmetry of the superconducting gap functions. The signatures of these surface states
in the quasi-particle interference patterns of tunneling spectroscopy are studied, which can be tested
in future experiments.

I. INTRODUCTION

Topological superconductivity and paired superfluidity
have been attracting intense research interests in recent
years1–3. The nontrivial topology manifests itself in the
Andreev-Majorana zero modes on boundaries and topo-
logical defects like vortices4–7. Such Andreev-Majorana
modes are of particular interests since they are poten-
tially useful for topological quantum computations8–10.
Early topological classifications mostly focus on the fully
gapped superconducting systems11–13, including the two-
dimensional px + ipy superconductor5, and the three-
dimensional 3He-B phase with the isotropic p-wave triplet
pairing3,14,15. Recently, gapped topological superconduc-
tivity has also been proposed for high Tc cuprates in the
very underdoped regime16.
Gapless, or, nodal, superconductors/pairing superflu-

ids often exhibit unconventional pairing symmetries, such
as the d-wave superconductors of high Tc cuprates17,
the three-dimensional 3He-A phase with the px + ipy
triplet pairing5,18, the pz-triplet pairing phase of elec-
tric dipolar fermions19, and spin-orbit coupled p-wave
pairing with total angular momentum J = 1 induced
by magnetic dipolar interactions20. For these examples,
their gap functions exhibit spherical or spin-orbit cou-
pled harmonic symmetries. In contrast, the doped mag-
netic Weyl semi-metals can support monopole harmonic
pairing21, which is a class of topological superconducting
states characterized by non-trivial monopole structures.
Their pairing phases cannot be globally well-defined on
Fermi surfaces.
The gapless superconducting systems also exhibit in-

teresting topological structures22,23, which are typically
weaker than those in the gapped cases in the sense that
only suitably oriented surfaces can support the zero en-
ergy Andreev-Majorana states. These surfaces are with
particular orientations such that a relative sign change
occurs between the gap functions along the incident and

reflected wavevectors. There do not exist well-defined
global topological numbers for a gapless system. How-
ever, a topological number can be defined for each mo-
mentum within the surface Brillouin zone, as the wind-
ing number of the effective one-dimensional system per-
pendicular to the surface with the fixed in-surface mo-
mentum. This topological number is related to the exis-
tence of zero energy Andreev-Majorana modes through
the bulk-edge correspondence principle24,25.

The non-centrosymmetric superconductors add to the
diversity of gapless superconductivity24–28. In their nor-
mal state band structures, the spin degeneracy is lifted
by spin-orbit coupling, and pairing gap functions typ-
ically show mixed-parity due to the breaking of inver-
sion symmetry. Depending on the pairing symmetry
and the nodal structure, there appear Majorana flat
bands and zero energy arcs on the surfaces with suitable
orientations25–27,29. The experimental signatures include
zero-energy peaks in the tunneling spectra30,31, and cer-
tain patterns in the quasi-particle interference(QPI)32.
The instability of the Majorana flat bands has been stud-
ied with respect to the spontaneous time-reversal (TR)
symmetry breaking effects arising from the Majorana
fermion-superfluid phase interaction33, or, the magnetic
interactions34, and also by the self-consistent mean field
theory35.

The superconducting pairing symmetries can be
greatly enriched in multi-component fermion/electron
systems. In ultra-cold fermion systems, many fermions
carry large-hyperfine-spin S larger than 1

2 . In solid state
systems, electrons can be effectively multi-component
due to orbital degeneracy and spin-orbit splitting, such
as the effective spin- 32 Luttinger-Kohn model for the hole
band of semi-conductors. The spin of their Cooper pair-
ing can take values from 0 to 2S beyond the conventional
singlet and triplet scenarios36–40. For example, the spin
quintet pairing (the spin of Cooper pair S = 2) has been
found to support the non-Abelian Cheshire charge in the
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presence of half-quantum vortex loop39. Recently, the
3He-B type isotropic topological pairing has been gen-
eralized to multi-component fermion systems40. For the
simplest case of spin-3/2 systems, both the p-wave triplet
and the f -wave septet pairings are non-trivial, possess-
ing topological index 4 and 2, respectively. They sup-
port surface spectra with multiple linear and cubic Dirac-
Majorana cones40,41. The interaction-induced TR sym-
metry breaking effects are investigated in Ref. [42]. The
topological nature of this class of pairings is most clearly
seen in the helicity basis, and thus it also applies to spin-
orbit coupled multi-orbital solid state band systems.

Recently, the half-Heusler compound YPtBi has at-
tracted considerable attention43,44. The band struc-
ture can be described by the effective spin-orbit coupled
spin- 32 Kohn-Luttinger Hamiltonian with parity symme-
try breaking terms. The chemical potential lies close
to the Γ-point of the p-like Γ8 band43 as shown in
the angluar-resolved-photo-emission-spectroscopy. Ex-
periment evidence to unconventional superconductivity
has been found in the half-Heusler compound YPtBi44.
A mixed parity pairing immune to pair breaking effect
has been proposed for YPtBi45, with a small fraction of
an s-wave singlet component superposed on the p-wave
septet pairing.

Motivated by the advancements in non-
centrosymmetric superconductors, we systematically
study the Majorana surface states of topological super-
conductors based on the spin- 32 Luttinger-Kohn model
subject to the cubic symmetries. For the Td point group
symmetry, we show that the double degeneracy along
the [0 0 1] direction and its equivalent ones are protected
by the little group SD16, i.e., the semi-dihedral group of
order 16. The pairing patterns in non-centrosymmetric
systems are in general of mixed-parity nature as dis-
cussed under concrete cubic symmetry groups. For the
YPtBi, the proposed mixed s-wave singlet and p-wave
septet pairing exhibits line nodes on one of the spin
split Fermi surfaces as shown in Ref. [45], and the six
nodal loops centering around [0 0 1] and its equivalent
directions are topological. We show that for the [1 1 1]
surface, the Majorana zero modes appear in regions
enclosed by the projections of the nodal loops to the
surface Brillouin zone, but disappear in the overlapping
regions. The QPI patterns are calculated on the [1 1 1]
surface due to the scattering with a single impurity in
the Born approximation. For a non-magnetic impurity,
the chiral symmetry forbids the scatterings between
Majorana islands with the same chiral index, while for
a magnetic impurity, the scatterings between Majorana
islands with opposite chiral indices are forbidden. The
structures of the QPI patterns of a magnetic impurity
are richer than those of a non-magnetic impurity under
the C3v group, which is the symmetry group of the
[1 1 1]-surface. Experiments on the QPI patterns will
provide tests to the proposed pairing symmetries of
YPtBi.

The rest of this article is organized as follows. In Sec.

II, the Luttinger-Kohn Hamiltonian and the band inver-
sion are reviewed. The inversion breaking terms with the
cubic symmetries are classified, and the protected dou-
ble degeneracy of the Td group along the [0 0 1] direction
is proved. In Sec. III, the non-centrosymmetric Copper
pairings with the cubic symmetries are discussed. The
Majorana surface modes are solved in Sec. IV. The QPI
patterns are calculated in Sec. V.

II. NON-CENTROSYMMETRIC SPIN- 3
2

SYSTEMS WITH THE CUBIC SYMMETRIES

In this section, we first discuss the Luttinger-Kohn
Hamiltonian in spin-orbit coupled systems, and classify
the inversion breaking terms according to the cubic point
groups. We then show that for the Td group, there exits
a protected double degeneracy along [0 0 1] and its equiv-
alent directions. Finally the band structure properties of
the YPtBi material are reviewed.

A. The Luttinger-Kohn Hamiltonian and band

inversion

Although electrons carry spin- 12 , the effective spin- 32
systems are not rare in solid state materials due to spin-
orbit coupling. Examples include the half-Heusler com-
pounds, where spin-orbit coupling recombines the outer-
shell s- and p- orbitals into s 1

2
(Γ6), p 1

2
(Γ7) and p 3

2
(Γ8)

orbitals, with the subscripts denoting the spin-orbit cou-
pled total angular momentum. The p 1

2
-band is denoted

the “spin-split” band, which is far from the Fermi energy,
and will be neglected below. The s 1

2
and p 3

2
bands are

active, and typically the s 1
2
band energy is higher. The

gap between them is tunable by varying the spin-orbit
coupling strength, which can be realized in experiments
by substituting the heavy atom with other atomic ele-
ments. The gap vanishes at a critical spin-orbit coupling
strength, and then becomes negative, i.e, the energy of
the s 1

2
-band becomes lower, which is termed as “band

inversion”. The p 3
2
-band further splits due to spin-orbit

coupling according to the helicity quantum number, i.e.,
the spin projection on the momentum direction. The
heavy hole band is of the helicity quantum numbers ± 3

2 ,

and the light hole one is of the helicity numbers ± 1
2 .

The heavy and light hole bands touch at the Γ-point, as
protected by the cubic group symmetry. All bands are
doubly degenerate when TR and inversion symmetries
are present.

At the critical spin-orbit coupling strength, where the
s 1

2
- and p 3

2
-bands touch at the Γ-point, the dispersions of

s 1
2
- and light hole bands become linear, while the heavy

hole band remains parabolic. After the band inversion,
the curvature of the dispersion of s 1

2
-band becomes neg-

ative, while that of the light hole actually is positive. A
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schematic plot of the band structure after band inversion
is shown in Fig. 1.
The process of band inversion can be understood by a

k · p analysis as follows. Consider systems with the full
spin-orbit coupled SO(3) symmetry for simplicity. The
k · p basis for s 1

2
and p 3

2
-bands are chosen as

|s; ↑〉, |s; ↓〉, (1)

and

|px + ipy; ↑〉,
1√
3

(

|px + ipy; ↓〉+
√
2|pz; ↑〉

)

,

1√
3

(

| − px + ipy; ↑〉+
√
2|pz; ↓〉

)

,

| − px + ipy; ↓〉, (2)

which are eigen-basis of Sz = Lz+
1
2σz with eigenvalues in

a descending order. The three basis at the Γ-point with
positive eigenvalues of Sz are s 1

2
, |px + ipy ↑〉, 1√

3
(|px +

ipy ↓〉 +
√
2|pz ↑〉), and the other ones with negative Sz

can be obtained from them by the TR operation. Apart
from an overall constant the Hamiltonian at the Γ-point
in the positive Sz sector is given by

H+(Γ) =





m
−m

−m



 , (3)

in which m is half of the band gap. To obtain the Hamil-
tonian away from the Γ-point, it is sufficient to consider
the z-direction due to the rotation invariance. The lit-
tle group along this direction is the U(1) group e−iSzφ,
hence, hybridizations only occur between states with the
same Sz. The k · p Hamiltonian in the positive Sz sector
up to the linear order in kz is

H+(kz) =





m λkz
−m

λ∗kz −m



 , (4)

in which m > 0 and < 0 correspond to before and after
band inversion, respectively. The Hamiltonian H− in
the negative Sz sector can be obtained by applying the
TR operation to Eq. (4). The k · p Hamiltonian in the

basis of Eqs. (1, 2) along a general direction of ~k can be
constructed by performing the rotation operation U =
e−iSzφke−iSyθk on H+(kz) + H−(kz) where θk and φk
are the polar and azimuthal angles of ~k, respectively. At
the critical point m = 0, the s 1

2
- and light hole band

dispersions become linear with the velocity ± |λ|
~
.

Consider the case with band inversion as illustrated
in Fig. 1, where the Fermi energy lies close to the Γ-
point of the p 3

2
-bands. Only the p 3

2
-bands are taken into

account with the k · p basis chosen as the four states
in Eq. (2), and the band structure is captured by the

FIG. 1: Schematic plots of the p 3
2
- bands (Γ8), p 1

2
- bands

(Γ7), and s 1
2
- bands (Γ6). The abbreviations of “h. h.” and

“l. h.” within the p 3
2
-bands represent the heavy and light hole

bands, respectively. The Fermi level crosses the heavy hole
bands. Each pair of bands exhibit spin splitting due to the

presence of the inversion symmetry breaking term δ
kf

A(~k) in

Eq. (6).

Luttinger-Kohn Hamiltonian

HL(~k) = (λ1 +
5

2
λ2)k

2 − 2λ2(~k · ~S)2

+ λ3
∑

i6=j

kikjSiSj, (5)

in which ~S = (Sx Sy Sz) are the spin- 32 operators. The
λ3 term breaks the full spin-orbit coupled SO(3) rota-
tional symmetry, but is allowed for the cubic symmetry
group. When λ3 = 0, the mass of helicity ± 3

2 bands is
~
2

2(λ1−2λ2)
, and that of the helicity ± 1

2 bands is ~
2

2(λ1+2λ2)
.

For the band inverted case, we need −2λ2 < λ1 < 2λ2
to ensure the opposite signs of the light and heavy hole
masses.

B. Non-centrosymmetric spin-orbit couplings with

the cubic symmetries

We classify all the TR and cubic symmetry allowed k ·p
terms up to the quadratic order in k. The Hamiltonian
Eq. (5) includes all the inversion invariant terms up to
the k2-apart from an overall constant. Inversion breaking
terms are allowed for the three cubic groups O, Td, T .
The corresponding band Hamiltonian becomes

H0(~k) = HL(~k) +
δ

kf
A(~k), (6)

in which A(~k) = −A(−~k) breaks inversion symmetry, kf
is the Fermi wave vector, and δ parameterizes the inver-
sion breaking strength. To the lowest order in momen-
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FIG. 2: The decorated cube with the Td symmetry.

tum, the TR invariant A(~k) takes the form

Td : ki · (Si+1SiSi+1 − Si+2SiSi+2),

O : ki · Si + a1ki · S3
i ,

T : ki · Si + b1ki · S3
i + b2ki · (Si+1SiSi+1

−Si+2SiSi+2), (7)

in which a1, b1, b2 are numerical factors, and the indices
i, i+1 are defined cyclicly for x, y, z and the summation
over i is assumed. Detailed discussions are included in
Appendix A.

C. Protected degeneracy along the [0 0 1] direction
with the Td symmetry

The band structure of Eq. (6) does not exhibit dou-
ble degeneracy in general due to the breaking of inver-
sion symmetry. Interestingly, for the Td group, there is
a protected non-Kramers degeneracy along [0 0 1] and its
equivalent directions explained as follows.
The illustration of the Td symmetry in terms of a dec-

orated cube is shown in Fig. 2. Its little group along
the [0 0 1] direction contains two mirror reflections along
the diagonal directions y = ±x denoted as x′ and y′,
respectively. The corresponding operations are denoted
as Mx′ and My′ , respectively. Since Mx′My′ = R(ẑ, π),

where R(n̂, φ) denotes the rotation around the n̂ axis at
the angle of φ, the little group L0 of Td along the [0 0 1]
direction is

L0 = {1,Mx′ ,My′ , R(ẑ, π)}, (8)

which is isomorphic to the dihedral group D2. In half-
odd integer spin representations, the 2π-rotation equals
−1, and hence L0 is doubled as

L1 = {1,Mx′ ,My′ , R(ẑ, π),

1̄, 1̄Mx′ , 1̄My′ , 1̄R(ẑ, π)}, (9)

in which 1̄ denotes the 2π-rotation. As discussed in Ap-
pendix B, L1 is in fact isomorphic to the quaternion
group Q8. Different from D2, Q8 is non-Abelian, and

has four 1D irreducible representations and one 2D ir-
reducible representation. The half-odd integer spin rep-
resentations do not contain the 1D representation of Q8

shown as follows:

Mx′My′ = −My′Mx′ (10)

for half-odd integer spins, since (Mx′My′ )2 = R2(ẑ, π) =

1̄. This anti-commutativity protects the double degener-
acy along the [0 0 1] direction.
There is another mechanism of the degeneracy protec-

tion based on an anti-unitary symmetry S. It is con-
structed based on the Td group and the TR operation T
as

S = R(ẑ,
π

2
)I · T (11)

where I is the inversion operator which flips the mo-
mentum direction and acts as the identity operator in
spin space, and T is the Kramers TR operation satisfy-
ing T 2 = −1. S leaves the [0 0 1]-direction invariant. It
is easy to verify that S’s quartic power is −1, i.e.,

S4 = −1. (12)

Nevertheless, unlike the Kramers operation, S2 =
−R(z, π) which remains an operator instead of a con-
stant. Still S ensures the double degeneracy of electron

states with ~k ‖ ẑ46, which can be proved by contradiction.
If there was no degeneracy, each Bloch wave state |ψk〉
must be a simultaneous eigenstate of both the Hamil-
tonian and the operator S, then S|ψ〉 = λ|ψ〉, where λ
is a complex number of unit norm. This implies that
S2|ψ〉 = |λ|2|ψ〉 due to the anti-unitarity of S, and then
S4|ψ〉 = |ψ〉 which is in contradiction with the property
S4 = −1.
Including the anti-unitary operation S, the little group

along the [0 0 1] direction is extended from the double
group L1 to SD16, the semi-dihedral group of order 16
Detailed discussions about SD16 are included in Ap-
pendix B.
Both degeneracy protection mechanisms are general

beyond the k · p approximation. The degeneracy is held
for any band Hamiltonian with the Td and TR symme-
tries realized by half-integer fermions. It even applies to
the Bogoliubov excitation spectra in the superconducting
states which maintain these symmetrys.

D. The YPtBi material

We briefly review the YPtBi material and its band
structure. It is an half-Heusler compound with band in-
version. The active atomic orbitals are the 6s and 6p
orbitals from the Bi atom. The Pt and Bi atoms form a
zinc-blende sublattice, and the Y atoms fill in the lattice
such that the Pt and Y atoms form another zinc-blende
sublattice47–49. The system has the TR and Td point
group symmetries, but is not inversion symmetric.
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The charge carrier density of YPtBi is very low around
2×1018cm−3 as revealed by the Shubnikov-de Hass (SdH)
oscillation experiments44. The corresponding Fermi en-
ergy is on the order of 102K with the Fermi wave vector
one order smaller than the Brillouin zone boundary, such
that the k ·p description around the Γ-point is applicable.

The k · p Hamiltonian H0(~k) of effective spin- 32 particles

has been proposed for YPtBi45 as a combination of the
Luttinger-Kohn Hamiltonian in Eq. (5) and an inversion
breaking term given corresponding to the Td group in
Eq. (7). The inversion breaking term breaks the double
degeneracy except along [0 0 1] directions, and leads to
the spin-split Fermi surfaces with the energy splitting on
the order of 10K. The distortion of the Fermi surfaces
away from the perfect sphere induced by the λ3-term in
Eq. (5) is shown to be a small effect as revealed by the
SdH oscillation experiments44, which will be neglected in
later calculations.

III. NON-CENTROSYMMETRIC SPIN- 3
2

COOPER PAIRINGS

In this section, we first discuss the non-
centrosymmetric Cooper pairings under cubic group
symmetries. Then the possible pairing symmetries of
YPtBi are briefly reviewed.

A. Non-centrosymmetric Cooper pairings with

cubic symmetries

We discuss the Cooper pairings in non-
centrosymmetric sytsems with the TR and cubic
group symmetries, which can be viewed as analogues of
the 3He-B pairing in the lattice. The generalization of
the 3He-B pairing to the large spin and high partial-wave
channels in continuum has been studied in Ref. [40].
The Bogoliubov-de Gennes (B-deG) Hamiltonian of a

spin- 32 superconductor is

HB-deG =

′
∑

~k

(c†(~k), c(−~k)T )H(~k)

(

c(~k)

c†(−~k)

)

, (13)

in which
∑′

~k denotes summing over half of momentum

space, and c(~k) = (c3/2(~k), c1/2(~k), c−1/2(~k), c−3/2(~k))
T .

The matrix kernel H(~k) is represented as

H(~k) =

(

H0(~k)− µ ∆(~k)

∆†(~k) −(H0(−~k)− µ)T

)

, (14)

in which H0(~k) is the band structure given by Eq. (6),
and µ is the chemical potential measured from the Γ point

of the p3/2-bands. The pairing term ∆(~k) is given as

∆(~k) = K(~k)R, (15)

in which K(~k) denotes the pairing kernel, and R
is the charge conjugation matrix defined as Rαβ =

(−)α+
1
2 δα,−β with α spin indices38. For non-

centrosymmetric systems, the breaking of the inversion
symmetry mixes pairings with different parities. The

pairing kernelK(~k) has been proposed to take the form50

K(~k) = ∆s +
∆p

kf
A(~k), (16)

in which A(~k) is given by Eq. (7) for the cubic groups
O, Td, T ; ∆s and ∆p parameterize the strength of the
s and p-wave components, respectively. Such pairing
avoids the pair breaking effect induced by the inversion

breaking term δ
kf
A(~k) in the band structure50, and thus

is conceivably to be energetically favorable. The pair-
ing only takes place between electrons from the same
spin-split Fermi surface. Nevertheless, we would like to
emphasize that the actual superconducting gap symme-
try of the YPtBi material is still undetermined, and this
is only one possibility that needs to be tested in future
experiments.

B. The superconducting properties of the YPtBi

material

In this part we give a brief review to the supercon-
ducting properties of the YPtBi material, particularly
its topological nodal line structure in the gap func-
tion. Its transition temperature is Tc = 0.78K. Its
London penetration depth exhibits a linear temperature
dependence44, which is a strong evidence for a gap func-
tion with nodal lines.
Let us first consider the band eigenstates of H0 defined

in Eq. (6) with A defined as

A(~k) =
∑

i=x,y,z

ki(Si+1SiSi+1 − Si+2SiSi+2), (17)

which maintains the TR and Td symmetries. At |δ| ≪
|µ|, the main effect of the inversion symmetry breaking
term is within the heavy hole band and the light hole
one to split the double degeneracy. The mixing between
heavy and light hole bands is small and will be neglected.
Since the Fermi surface cuts the heavy hole band, we

project the 4× 4 matrix kernel A(~k) into the heavy hole

bands. Then A(~k) becomes a 2× 2 matrix ~Λ(~k) ·~τ where
~τ is the Pauli matrices under the basis with helicities ± 3

2 ,
and

Λx(~k) = −9k

8
sin 2θk cos 2φk,

Λy(~k) =
9k

16
(3 + cos 2θk) sin θk sin 2φk,

Λz(~k) = 0, (18)

with θk and φk the polar and azimuthal angles of ~k, re-
spectively. Then the heavy hole energies exhibit the split-
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FIG. 3: Nodal loops of the superconducting gap function on
the larger spin-split Fermi surface for a) ∆s/∆p = 0.3 and b)
∆s/∆p = 0.7, and projections of the nodal loops to the (1 1 1)-
surface for c) ∆s/∆p = 0.3 and d) ∆s/∆p = 0.7. In (c) the
topological numbers are +1 and −1 in the regions enclosed
by the red loops and the blue loops, respectively, and are zero
outside the loops. In (d) the situation is similar except that
the topological numbers are zero in the overlapping regions of
the loops. The three axes in a), b) and the two axes in c), d)
are momenta in the bulk Brillouin zone and surface Brillouin
zone, respectively, in which the momenta are measured in the
unit of

√
2kf . The Luttinger parameters are taken as λ1 = 0

and λ2 = |µ|/(2k2
f ).

ting of δ/kf |Λ(~k)| which becomes zero along the [0 0 1]
and its equivalent directions.
It has been proposed for YPtBi that its pairing sym-

metry is likely of the mixed s-wave singlet and p-wave
septet45. The B-deG Hamiltonian is given by Eq. (14),
which maintains the TR and Td symmetries. The Bogoli-
ubov quasi-particle spectrum exhibits line nodes center-
ing around [0 0 1] directions when ∆s/∆p 6= 045. Based
on a similar basis as above, when projected into the two
spin-split Fermi surfaces belonging to the heavy holes,

the diagonalized gap functions becomes ∆s ± ∆p|~Λ(~k)|.
Hence, the gap function becomes nodal on one of the

spin-split Fermi surfaces at |~Λ(~k)| = ∆s/∆p, and the
node lines form closed loops centering around [0 0 1] and
its equivalent directions. The plots of the nodal loops
on the corresponding Fermi surface are shown in Fig. 3
(a,b) for two representative ratios between ∆s and ∆p,
for which the nodal loops do not cross, or, cross, respec-
tively.
The nodal loops centering around [0 0 1] and its equiv-

alent directions are topologically non-trivial24,44. An
integer-valued index can be assigned to each nodal loop
as the topological number of a closed loop in momentum
space linked with the nodal one on the Fermi surface24.

For a non-trivial nodal loop, the gap functions located in-
side and outside the nodal loop on the Fermi surface are
with opposite signs. Now consider a 2D surface and the
associated surface Brillouin zone, the projection of the
nodal loop in the 2D Brillouin zone becomes a 2D pla-
nar loop. For each momentum in the surface Brilliouin
zone, it represents an effective 1D system perpendicu-
lar to the surface. Hence, a topological number can be
defined for each 2D surface momentum except that on
the nodes24. The gap functions of the incident wave and
the reflection wave perpendicular to the surface change
sign if their common 2D momentum is inside the pla-
nar projection loop. Hence, for the surface states, their
topological numbers are non-trivial for those inside the
2D projection loop but trivial for those outside. But for
those in the overlapping regions between two projection
loops, they become trivial again. The schematic plot for
the case of the [1 1 1]-surface is taken as an example for
illustration, as shown in Fig. 3 (c, d) for two representa-
tive ratios between ∆s and ∆p. Detailed discussions of
the topological properties of the nodal loops are included
in Appendix D.

IV. MAJORANA SURFACE STATES

In this section, we first derive the equation solving
the Majorana surface states for the spin- 32 systems. The
corresponding calculations were performed for the fully
gapped isotropic p-wave triplet and f -wave septet for the
continuum model before40. Here we consider the gapless
mixed parity pairing state explained in the last section.
For simplicity, we set λ3 = 0 in the band Hamiltonian,
and consider the limit of ∆s,∆p << δ << |µ|. This
limit is justified in YPtBi, since ∆s,∆p ∼ 1K, δ ∼ 10K,
and µ ∼ 102K. The equation is then applied to obtain
the Majorana surface modes for systems with TR and Td
symmetries and also for those with the T , or, O symme-
try.

A. The methodology

Consider a surface with the normal direction along
n̂ = (sin θn cosφn, sin θn sinφn, cos θn). To simplify cal-
culations, we rotate n̂ into the z-axis. The bulk of the
system lies at z < 0, and the side of z > 0 is vacuum. The
boundary condition is that the wavefunction vanishes at
z = 0 and exponentially decays to zero when z → −∞.
Within the rotated coordinates, the Luttinger Hamilto-
nian, the inversion breaking term in band structure, and
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the pairing Hamiltonian are expressed as follows,

HL(−i~∇) = −(λ1 +
5

2
λ2)∇2 − 2λ2

(

Rn(−i~∇) · ~S
)2

− µ,

HA(−i~∇) =
δ

kf
A
(

Rn(−i~∇)
)

,

∆(−i~∇) = K
(

Rn(−i~∇)
)

R, (19)

where Rn = R(ẑ, φn)R(ŷ, θn) is the rotation operation

transforming ẑ to n̂, Rn(−i~∇) represents the rotation of

the vector operator −~i∇, i.e,

Rn,a(−i~∇) = −iRn,ab∇b, (20)

where a = x, y, z, and Rn,ab is the 3× 3 rotation matrix.
The momenta kx and ky parallel to the surface plane
remain conserved.
We use the trial plane wavefunction as

Ψ(~r) =
∑

l

ClΦle
i~kl·~r, (21)

where Φl is an eight-dimensional column vector with four
spin components of both particle and hole degrees of free-
dom. Plug Eq. (21) into the eigen-equation, we obtain

(

H0(Ra
~kl)− µ ∆(Ra

~kl)

∆†(Ra
~kl) −(H0(−Ra

~kl)− µ)T

)

Φl = EsΦl,

(22)

where ~kl = (kx ky kzl), and Es is the surface state en-
ergy. The boundary condition requires that Imkzl < 0,
and there are eight solutions of kzl satisfying this condi-
tion, i.e., 1 ≤ l ≤ 8: Four come from the sector of helicity
eigenvalues ± 3

2 and the other four from helicity eigenval-

ues ± 1
2 . Furthermore, the boundary conditions require

that

8
∑

l=1

ClΦl = 0. (23)

In order to have non-trivial solutions of Cl, the determi-
nant composed of the eight column vectors needs to be
zero, i.e.,

det
(

{Φl}1≤l≤8

)

= 0, (24)

which determines the surface state eigen-energies. The
explicit forms of the eight column vectors Φl’s in the
limit of ∆s,∆p << δ << |µ| are derived in Appendix E.

B. Majorana zero modes under the Td symmetry

In this part, we solve for the zero energy Majorana
surface modes. Let us consider the (0 0 1), and (1 1 0)-
surfaces. From the gap nodal loop configurations shown

FIG. 4: Distribution of Majorana zero modes in the surface
Brillouin zone in the (1 1 1)-surface for a) ∆s/∆p = 0.3 and b)
∆s/∆p = 0.7. The white circle denotes the boundary of the
projection of the Fermi surface. Majorana zero modes exist
in the bright regions. The chiral index is marked for each
island of the Majorana flat band, where “e” and “o” represent
“even” and “odd” with the chiral eigenvalue ±1, respectively.
The horizontal and vertical axes are momenta in the surface
Brillouin zone measured in the unit of

√
2kf . The Luttinger

parameters are taken as λ1 = 0 and λ2 = |µ|/(2k2
f ). The

numerical computations are carried out for a 200×200 lattice
in momentum space.

in Fig. 3, the nodal loop projections fully overlap with
each other, such that all the momentum-dependent topo-
logical numbers are trivial. Hence we will only consider
the (1 1 1)-surface. Through out the calculations the Lut-
tinger parameters are taken as λ1 = 0, λ2 = |µ|/(2k2f )
and λ3 = 0.

The results of Majorana spectra on the (1 1 1)-surface
are presented in Fig. 4. Fig. 4 (a) shows the case that
the projections of the gap nodal loops do not overlap,
and the surface zero Majorana modes appear inside the
projection loops. In Fig. 4 (b), the projections over-
lap, and the zero Majorana modes in the overlap re-
gion disappear. The former corresponds to a smaller
value of ∆s/∆p = 0.3, and the latter is with a larger
one ∆s/∆p = 0.7. Since each non-trivial momentum de-
pendent topological index equals either 1 or -1 as shown
in Fig. 3, these surface zero Majorana modes are non-
degenerate. The surface spectra solved from matching
boundary conditions are consistent with the previous
analysis based on bulk topological number. This can be
seen as a verification of the bulk-edge correspondence
principle in the spin-3/2 situation.

We then analyze the symmetry properties of the Ma-
jorana surface states. Based on the Td and the TR sym-
metry, the symmetry subgroup for the (1 1 1)-surface is
C3v × {1, T }, where T is the TR operation defined as

T c†(~k)T −1 = c†(~k)R ·K, with K the complex conjugate
operation. The surface spectra in Fig. 4 exhibit the C3v-
symmetry. The TR operation reverses the momentum di-
rection, and the spectra are also invariant under the TR
operation. Consider the particle-hole operation PH de-

fined as PHc
†
α(
~k)P−1

H = cα(~k)K. PH anti-commutes with
B-deG Hamiltonian Eq. (14) and transforms a state to
another state with the opposite energy. Since Majorana
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FIG. 5: Surface spectrum of p-wave triplet pairing along ra-
dial direction. The horizontal axis is the momentummeasured
in the unit of ku =

√
2kf , and vertical axis is the surface en-

ergy measured in the unit of ∆p.

surface modes are at zero energy, they are particle-hole
symmetric.
We can also define a chiral operator as

Cch = iT PH . (25)

It is Hermitian in half-odd integer spin spaces: C†
ch =

−iP †
HT † = Cch, since T † = T −1 = −T (as T 2 = −1),

P †
H = PH , and [T , PH ] = 0. Both TR and particle-

hole operations reverse the sign of the momentum, hence,
Cch maintains momentum invariant. This implies that
each Majorana zero mode solved above can be chosen
as a chiral eigen-state with a chiral index of ±1. Since
Cch commutes with the C3v group, the islands related
by the C3v group carry the same chiral index. While
the two islands related by TR operation carry opposite
chiral indices, because Cch anti-commutes with the TR
operator.

C. The T and O groups

In this part we briefly present the surface spectra cal-
culation of the p-wave triplet pairing for point groups O
and T . While the situation of the p-wave triplet pairing
with band inversion and the Fermi energy tuned to cross
the heavy hole bands has been sketched based on physi-
cal intuitions41, here, we perform a detailed calculation.
The band structure and the Cooper pairing are given by

Eq. (6) and Eq. (15), respectively, in which A(~k) takes
the corresponding form for O and T groups in Eq. (7).
Here we consider the p-wave triplet dominant pairing,

i.e., A(~k) = ki · Si. Unlike the case of p-wave septet
pairing under the Td symmetry, the p-wave triplet pair-
ing under the T and O point groups is SO(3) invariant
under the combined orbital and spin rotations. Hence,
the quasi-particle spectrum is fully gapped on the Fermi
surface. For small enough parameters a1, b1, b2 in Eq. 7
and the ratio ∆s/∆p in Eq. (16), they can be set to zero
without affecting topological properties since the pairing
is fully gapped. In this case, the B-deG Hamiltonians
for the T and O point group symmetries are the same.
The system belongs to the DIII class due to the TR and

particle-hole symmetries. The bulk topological number
is 3 as a sum of those from the helicity ± 3

2 bands40. Fig.
5 shows the surface spectrum along the radial direction
in the polar coordinate within the surface Brillouin zone.
The full spectrum can be obtained by performing a ro-
tation around the normal direction. The overall surface
spectrum exhibit the cubic Dirac dispersions40,41, which
is consistent with the bulk topological number.

V. QUASI-PARTICLE INTERFERENCE

PATTERNS

The scanning tunneling spectroscopy measures the
local density of states (LDOS) on the sample sur-
face. In the presence of an impurity, the LDOS ex-
hibits interference pattern due to the scattering of
electrons by impurities. The quasi-particle interfer-
ence (QPI) patterns provide information to the pair-
ing symmetry of high-Tc superconductors51, orbital or-
dering in 2D materials52, surface states of topolog-
ical insulators53 and semi-metals54. The QPI pat-
terns have also been discussed for various spin-1/2 non-
centrosymmetric superconductors32.
In this section, we use the wavefuntions of the surface

states solved from Sec. IVB to compute the QPI pat-
terns of a single impurity on the surface of the spin- 32
topological superconductor with the TR and Td symme-
tries. Experiments on QPI patterns provide test to the
proposed pairing form in Eq. (16).

A. Spin-resolved local density of states

The impurity can be either magnetic or non-magnetic,
and the tunneling spectroscopy can be either spin-
resolved or non-spin-resolved. In consideration of these,
the LDOS tensor ρµν is defined with µ, ν = 0, 1, 2, 3, 4,
whose (µ, ν) element is the spin-resolved LDOS for spin
in µ-direction with impurity spin polarized in ν-direction.
The cases of µ = 0 and ν = 0 correspond to non-
spin-resolved and non-magnetic impurity, respectively.
To facilitate the symmetry analysis, we rotate the co-
ordinate frame to x̂

′

= 1√
6
(1, 1,−2), ŷ

′

= 1√
2
(−1, 1, 0),

ẑ
′

= 1√
3
(1, 1, 1), The little group of Td along the (1 1 1)-

direction is C3v. The three-fold rotation axis in C3v is
the ẑ

′

-axis, and the three vertical reflection planes are
the x

′

z
′

-plane and the ± 2π
3 rotations of the x

′

z
′

-plane

around z
′

-axis. To simply notation, below we still use
x, y, z to represent x′, y′ and z′, i.e., to suppress the ′

symbol, and use the Greek index ν = 1, 2, 3 to represent
them, respectively.
Let us comment on the modeling of the impurity po-

tential in calculations below. For simplicity, the non-
magnetic impurity potential Vimp is used as an example,
which can be straightforwardly extended to the magnetic
impurity potential. Typically, it is taken a short range δ-
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potential in real space. However, due to the open bound-
ary condition, the surface state wavefunctions vanish on
the surface. If the impurity is located exactly on the sur-
face, then it will not cause any scattering. This artifact
can be cured by using a more realistic model to take into
account the finite range of the impurity potential. Hence,
we assume the following form of Vimp,

Vimp(~r) = NaV0e
−z/a0δ(x)δ(y), (26)

in which V0 parameterizes the potential strength and Na

is a normalization factor. Although the detailed distribu-
tion of QPI patterns depends on the explicit form of Vimp,
the overall characteristic features should not be sensitive
on the choice of Vimp.
For an impurity whose spin is polarized in ν-direction

with potential Vimp(~r), or, a non-magnetic impurity for
ν = 0, the retarded Green’s function Gν

R(ω,~r) of the fre-
quency ω at the position ~r is defined by

Gν
R(ω,~r) = 〈~r| 1

ω − (H +Hν
imp) + iǫ

|~r〉, (27)

in which |~r〉 represents the coordinate eigen-state located
at ~r. In principle, Gν

R exhibits a matrix structure with
respect to all the spin, Nambu, coordinate, and frequency
indices. For Gν

R(ω,~r), it takes the diagonal elements in
terms of coordinate and frequency, and leave the spin
and Nambu indices general. H is the matrix-kernel of
the B-deG Hamiltonian without impurity in Eq. (14)
expressed in the coordinate representation. Hν

imp is the
impurity potential in the Nambu representation, defined
as

Hν
imp = Vimp(~r)Σ

ν , (28)

where Σν = τ3 ⊗ Sν for ν = 0, 1, 3, and Σ2 = τ0 ⊗ S2. τ3
is the Pauli matrix and τ0 is the identity matrix acting
in Nambu space, and S0 is the identity matrix acting in
spin space.
We define the 3D local density of states (LDOS) tensor

as

ρµν(ω,~r) = − 1

2π
ImTr

(

(1 + τ3)Σ
µ Gν

R(ω,~r)
)

, (29)

in which 1 + τ3 is the abbreviation of (I2 + τ3) ⊗ I4.
ρµν(ω,~r) refers to the density distribution in the presence
of the magnetic or non-magnetic impurity for µ = 0, and
the spin-density distribution at polarization µ at µ 6= 0.
Then the surface LDOS tensor ρµνsf (ω, ~r‖) for the position
~r‖ on the surface is defined by

ρµνsf (ω,~r‖) =

∫

d~rF(~r − ~rc)ρ
µν(ω,~r), (30)

where ~rc = (~r‖, 0) is the 3D coordinate, and F(~r − ~rc)
is an envelop function describing the sensitivity of the
STM tip to the local density of state distribution along
the z-axis. Here, we do not use the δ-function along the z-
direction either, due to the open boundary condition used

for the calculation of surface states. Instead, a Gaussian
distribution envelop function is used

F(~r) = Nbe
−( z

b0
)2
δ(x)δ(y), (31)

in which Nb is the normalization factor. The character-
istic features of the LODS should not be sensitive to the
detailed form of the function F .
Subtracting the background contribution in the ab-

sence of the impurity from ρµνsf (ω,~r‖), we extract the
impurity contribution to the LDOS defined as

∆ρµνsf (ω,~r‖) = − 1

2πi

∫ 0

−∞
dzF(z)Tr

[

(1 + τ3)Σ
µ

(

∆Gν
R(ω,~r‖, z)−∆Gν∗

R (ω,~r‖, z)
)]

, (32)

where

∆Gν
R(ω,~r) = Gν

R(ω,~r)− G(0)
R (ω,~r), (33)

with

G(0)
R (ω,~r) = 〈~r| 1

ω −H + iǫ
|~r〉. (34)

The QPI pattern in momentum space ∆ραβsf (ω, ~q) is

defined to be the Fourier transform of ∆ραβsf (ω,~r‖) with
respect to ~r‖, as

∆ρµνsf (ω, ~q) = − 1

2πi

∫ 0

−∞
dzF(z)

(

Λµν(ω, ~q, z)

− Λµν∗(ω,−~q, z)
)

, (35)

in which Λµν(ω, ~q, z) is the Fourier transform of Tr[(1 +
τ3)Σ

µ∆Gν
R(ω,~r‖, z)].

B. The T -matrix formalism and Born

approximation

The retarded Green’s function GR(ω,~r‖, z) can be eval-
uated using the T-matrix formalism. Define the operator
GR(ω) as

GR(ω) =
1

ω −H −Himp + iǫ
, (36)

and that in the absence of impurity G(0)
R (ω) as

G(0)
R (ω) =

1

ω −H + iǫ
. (37)

GR(ω) can be solved through

GR(ω) = G(0)
R (ω) + G(0)

R (ω)T (ω)G(0)
R (ω), (38)

in which the T -matrix operator T (ω) satisfies the equa-
tion

T (ω) = Himp +HimpG(0)
R (ω)T (ω). (39)
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The Born approximation will be performed to solve the
T -matrix.
Now we outline the procedure of calculating ∆ρµνsf

based on Eq. 35. First, ∆Gν
R(ω, ~q, z) can be evaluated

by inserting the complete basis to both the left and right
hand sides of T (ω) in Eq. (38). A general eigenstate of

the HamiltonianH is of the form 1
Le

i~k‖·~r‖Ψ~k‖,α
(z), where

L stands for the average inter-impurity distance, and the
index α labels the states with fixed in-surface momentum
~k‖, which can be either scattering state or surface state.
Ψ~k‖,α

(z) is the 8-component normalized wavefunction in

z-direction. After carrying out the Fourier transform, we
obtain

Λµν(ω, ~q, z) =
Na

L2

∑

~k‖α,~k
′

‖
β

δ~k‖−~k
′

‖
,~q

1

ω − E~k‖,α
+ iǫ

× 〈Ψ~k‖,α
|Hν

imp,z|Ψ~k
′

‖
,β〉

1

ω − E~k
′

‖
,β + iǫ

× Tr
[

(1 + τ3)Σ
µΨ~k‖,α

(z)Ψ†
~k
′

‖
,β
(z)
]

, (40)

in which E~k‖,α
is the energy of the wavefunction Ψ~k‖,α

(z),

Hν
imp,z(z) is the impurity potential in z-direction defined

as Hν
imp,z(z) = ΣνV0e

−z/a0 , and 〈Ψ~k‖,α
|Hν

imp,z|Ψ~k
′

‖
,β〉

represents
∫ 0

−∞ dz V0e
−z/a0Ψ†

~k‖,α
(z)ΣνΨ~k

′

‖
,β(z). In Eq.

40, the expression of Ψ~k‖,α
(z)Ψ†

~k
′

‖
,β
(z) represents a 8× 8

matrix structure in the combined spin and Nambu space.
We consider the QPI patterns for at the frequency less

than the gap energy. Since the density of states is sin-
gular at zero energy arising from the surface flat bands,
only the Majorana zero modes are kept in the summation
over states. With this approximation, Eq. (40) becomes

Λµν(ω, ~q, z) =
Na

N

∑

~k‖,~k
′

‖

δ~k‖−~k
′

‖
,~q(

1

ω + iǫ
)2

× 〈ΨM
~k‖
|Hν

imp,z|ΨM
~k
′

‖

〉Tr
[

(1 + τ3)Σ
µΨM

~k‖
(z)ΨM†

~k
′

‖

(z)
]

, (41)

in which ΨM
~k‖
(z) represents the wavefunction of the Ma-

jorana state with the in-plane momentum ~k‖.
The surface Majorana modes exhibit flat-band struc-

ture at zero energy. In the case of the dilute limit, in
which the single impurity scattering can be justified, the
scattering matrix element scales as V0/L

2, thus the scat-
tering occurs nearly at zero energy. Below, we set ω at
the order of ǫ, which can be viewed as the inverse lifetime
of the Majorana states.
Before presenting the detailed QPI patterns, there is

a general property of ∆ρµν(ω, ~q). Since both the density
and spin-density distributions are real fields, their Fourier
transforms satisfy

∆ρµν(ω, ~q) = ∆ρµν,∗(ω,−~q). (42)

FIG. 6: a) Re∆ρ00sf (ǫ, ~q) and b) Im∆ρ00sf (ǫ, ~q) in the (1 1 1)-
surface for ∆s/∆p = 0.3 under the Born approximation. The
background contribution in the absence of impurity is sub-
tracted. The numerical computations are carried out for a
60 × 60 lattice in momentum space. The tip resolution b0
in Eq. (31) is set to be b0 = 1/(

√
2kf ), and the impurity

range a0 in Eq. (26) is taken as a0 = 1/(
√
2kf ), both of

which are at the order of Fermi wavelength. The impurity
potential strength is taken as V0 = g∆0 where g is a scaling
factor satisfying g ≪ 1 to justify the Born approximation.
Other parameters are λ1 = 0, λ2 = |µ|/(2k2

f ), and λ3 = 0.

∆0 = 0.02|µ|, Na = 1

2k2
f

, Nb =
√
2kf . ǫ = 2× 10−5|µ|, which

is the inverse of the Majorana life time. The color bar is in

the unit of g
√

2kf

800π2 |µ| .

FIG. 7: a)Re∆ρ00sf (ǫ, ~q) and b) Im∆ρ00sf (ǫ, ~q) in the (1 1 1)-
surface with the parameter ∆s/∆p = 0.7. The other param-
eters are as the same as in Fig. 6.

In other words, Re∆ρµν(ω, ~q) and Im∆ρµν(ω, ~q) are even
and odd with respect to ~q. This symmetry has been
clearly shown in all of Fig. 6, Fig. 7, Fig. 8, and Fig.
9, which present the Fourier transforms of ∆ρµνsf (ω, ~q) at

ω = ǫ in (1 1 1)-surface.

C. The QPI pattern for a non-magnetic impurity

In this section, the QPI patterns for non-magnetic
impurities are presented. ∆ρµ0sf (ω, ~q) vanishes when
µ 6= 0 due to TR symmetry, hence, only the results of
∆ρ00sf (ω, ~q) are displayed.

Fig. 6 and Fig. 7 present ∆ρ00sf (ω, ~q) at two repre-

sentative pairing ratios ∆s/∆p. Both figures exhibit the
C3v symmetry with three vertical reflection planes. For
a non-magnetic impurity, the Hamiltonian remains odd
under the chiral operation defined in Eq. (25), which im-
poses strong restrictions on the QPI patterns. It can only
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couple the Majorana zero modes with opposite chiral in-
dices as shown in Fig. 4 (a) and (b). In Fig. 4 (a), four
representative scattering wavevectors between Majorana
islands are drawn in red arrowed lines, among which “0”
represents the intra-island scattering, and “1”, “2”, and
“3” represent inter-island scatterings. The scatterings
“1” and “3” are between islands with opposite chiral in-
dices, hence are allowed in the Born approximation, as
shown in Fig. 6. In contrast, the scatterings of “0” and
“2” connect islands with the same chiral index, and hence
are forbidden. For example, the QPI spectra vanish near
q = 0, which is the consequence of the absence of intra-
island scatterings.

While both scatterings “1” and “3” appear in the QPI
patterns, the QPI spectral magnitudes of “3” are much
weaker than that of “1”, which is a consequence of TR
symmetry. The impurity matrix element vanishes be-

tween two Majorana states with in-plane momenta ~k2d
and ~k′2d with ~k′2d = −~k2d, forming a Kramers pair with
T 2 = −1. Nevertheless, the TR symmetry does not

completely forbid the scattering from ~k2d to ~k′2d in the

neighbourhood of −~k2d, although this kind of scatterings
are weakened. Hence, unlike the case of chiral symme-
try which completely forbids scatterings between islands
with the same chiral index, the TR symmetry only re-
duces while not strictly forbids the scatterings between
TR related Majorana islands. For the case of a large
pairing ratio ∆s/∆p as shown in Fig. 7, the phase space
for non-TR related Majorana states scatterings for inter-
island scattering “3” is much larger than the case shown
in Fig. 6.

D. The QPI for a magnetic impurity

In this part, the QPI patterns for the magnetic im-
purity are presented, corresponding to ∆ρµνsf (ω, ~q) with
ν 6= 0. The magnetic impurity may also trap the Yu-
Shiba bound states. The number of such states are finite,
and their spatial distributions are only localized around
the magnetic impurities. They exhibit sharp resonance
peaks in the LDOS in the STM spectra around the impu-
rity. However, the QPI spectra are the Fourier transform
of LDOS over a large area, which are mostly related to the
scattering states. Hence, the Yu-Shiba states can be ne-
glected in calculating the QPI spectra without affecting
any characteristic features. Nevertheless, their possible
existence is certainly an interesting question worthwhile
for a future investigation.

The magnetic impurity is assumed to be in the classical
limit without fluctuations. Although in principle, a mag-
netic impurity could also induce the density response, it
is a high order effect not showing up at the level of the
second order Born approximation. Only µ, ν 6= 0 are dis-
played here. For simplicity, we will use Latin indices to
refer spin directions 1, 2, 3.

Fig. 8 and 9 show the real and imaginary parts of

FIG. 8: Re∆ρijsf (ǫ, ~q) with ij equal to a)11, b)12, c)13, d)21,

e)22, f)23, g)31, h)32, i)33, for ∆s/∆p = 0.3 in the (1 1 1)-
surface. The background contribution in the absence of im-
purity is subtracted. The numerical computations are carried
out for a 60×60 lattice in momentum space. The parameters
are taken the same as Fig. 6.

FIG. 9: Im∆ρijsf (ǫ, ~q) with ij equal to a) 11, b) 12, c) 13, d)

21, e) 22, f) 23, g) 31, h) 32, i) 33. The parameters are the
same as those in Fig. 6.

∆ρijsf (ǫ, ~q), respectively. The magnetic impurity Hamil-

tonian Hj
imp (j = 1, 2, 3) is even under the chiral opera-

tion, hence, it only induces scatterings between Majorana
islands with the same chiral index denoted as scatterings
“0” and “2” in Fig. 4. For example, these two classes of
scatterings are marked in the QPI patterns of ∆ρ11sf (ω, ~q)

shown in Fig. 8 (a) and Fig.9 (a).

The consequences of the point group symmetry are
more complicated. Let us first consider the magnetic
impurity with spin oriented along the z-direction, the
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impurity Hamiltonian still preserves the C3 symmetry.
Hence, the QPI patterns of ∆ρ33(ǫ, ~q) explicitly exhibit
the C3 symmetry as shown in Fig. 8 i) and Fig. 9 i). As
for ∆ρ13(ǫ, ~q) and ∆ρ23(ǫ, ~q), their symmetry properties
under the C3 rotation

∆ρi3(ǫ, R~q) = Rij∆ρ
j3(ǫ, ~q), (43)

where Rij refers to the 2 × 2 rotation matrix of a C3

rotation. For example, for the rotation R(ẑ, 2π3 ), ∆ρij

satisfies
(

∆ρ13(ǫ, ~q)
∆ρ23(ǫ, ~q)

)

=
1

2

(

−1
√
3

−
√
3 −1

)(

∆ρ13(ǫ, ~q′)
∆ρ23(ǫ, ~q′)

)

, (44)

where q′ = R(ẑ, 2π3 )~q, and this property has been checked
for Fig. 8 (c, f) and Fig. 9 (c, f). On the other hand,
the vertical reflection symmetry with respect to xz-plane
is broken, nevertheless, it can be restored by combining
with TR operation. Sz and Sx are odd for this operation,
while Sy is even, hence,

∆ρi3(ǫ, ~q) = ±∆ρi3(ǫ, ~q′), (45)

where + applies for i = x, z and − applies for i = y; ~q′

is the image of ~q after the reflection. Similar transfor-
mations can be derived for other planes equivalent to the
xz-plane by the C3 rotations. It is easy to check that all
of Fig. 8 (c, f, i) and 9 (c, f, i) satisfy these properties.
Now we consider the case of the impurity spin orien-

tation along the x-direction. Then the C3 rotation sym-
metry is no long kept. The symmetry of the combined
reflection followed by TR operation is still valid, never-
theless, the reflection plane can only be the xz-plane.
Hence, we have

∆ρi1(ǫ, ~q) = ±∆ρi1(ǫ, ~q′), (46)

where + applies for i = x, z, and − applies for i = y.
Again this can be checked by examining Fig. 8 (a, d, g)
and Fig. 9 (a, d, g). At last, we examine the case of the
impurity spin orientation along the y-direction. Again
the C3 rotation symmetry is lost, while the refection sym-
metry with respect to the xz-plane is maintained.

∆ρi2(ǫ, ~q) = ∓∆ρi2(ǫ, ~q′), (47)

where − applies for i = x, z, and + applies for i = y.
Clearly this symmetry is respected in Fig. 8 (b, e, h) and
Fig. 9 (b, e, h).

VI. SUMMARY

In summary, the non-centrosymmetric effective spin- 32
systems with cubic group symmetries are discussed. The
emphasis is put on the Td group, which is relevant to
the YPtBi material. The double degeneracy along [0 0 1]
and equivalent directions for systems with Td symme-
try is shown to be protected by the little group SD16.

Majorana surface states are calculated for the proposed
mixed s-wave singlet and p-wave septet pairing of the
Td case in (1 1 1)-surface. Two representative values of
the ratio between s- and p-wave pairing components are
taken as examples for calculations. The Majorana states
form flat bands within the regions enclosed by the pro-
jections of the nodal loops in gap functions on the surface
Brillouin zone, but disappear in the overlapping regions.
The results are consistent with the bulk-edge correspon-
dence principle. The QPI patterns are computed for the
surface states with a single impurity in Born approx-
imation. Chiral symmetry forbids scatterings between
Majorana islands of same (opposite) chiral index for the
non-magnetic (magnetic) impurities. There are richer
structures in the QPI patterns under the transformation
of C3v group for the case of magnetic impurity than the
case of non-magnetic impurity. Experimental signatures
on the QPI patterns can test the possible mixed s, p pair-
ing for the half-Heusler compound YPtBi.
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Appendix A: Invariants of the cubic groups

In this appendix, we briefly describe the five cubic
point groups Oh, O, Td, Th, T , then classify the spher-
ical harmonics of momentum and spin tensors up to the
third rank according to their irreducible representations.
All cubic-group-symmetry invariants up to the third rank
of momentum and spin tensors are presented.
Let us recall some group theory knowledge. The Oh

group is the symmetry group of the cube, containing 48
elements, hence, is the largest one among the five cu-
bic groups. The other four are its subgroups, which
are the symmetry groups of decorated cubes in differ-
ent ways. Fig. 2 shows the case of the Td group.
In the designated coordinate system, O is at the ori-
gin. Among the eight vertices, A,B,C,D are located at
(−1,−1,−1), (1,−1, 1), (1, 1,−1) and (−1, 1, 1), respec-
tively, and A′, B′, C′, D′ are their inversion symmetric
partners, respectively. We use I to denote the inver-
sion operation, and R(n̂, θ) the rotation around the di-
rection n̂ by the angle θ. The group Oh has 24 proper
elements, which corresponds to rotations, and their con-
jugation classes E, 3C2, 6C4, 6C

′

2 and 8C3 are listed in
Table I. The other 24 elements are improper operations
corresponding to combinations of rotation and inversion.
Their conjugation classes are i, 3σh, 6S4, 6σd, and 8S6 by
applying the inversion operation to E, 3C2, 6C4, 6C

′

2 and
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E 1 (x, y, z) identity

3C2

2 (x,−y,−z) R(OX,π)
3 (−x, y,−z) R(OY, π)
4 (−x,−y, z) R(OZ, π)

6C4

5 (x, z,−y) R(OX, π
2
)

6 (x,−z, y) R(OX ′, π
2
)

7 (−z, y, x) R(OY, π
2
)

8 (z, y,−x) R(OY ′, π
2
)

9 (y,−x, z) R(OZ, π
2
)

10 (−y, x, z) R(OZ′, π
2
)

6C
′

2

11 (y, x,−z) R([AC], π)
12 (−y,−x,−z) R([BD], π)
13 (z,−y, x) R([AB], π)
14 (−z, y,−x) R([CD], π)
15 (−x, z, y) R([AD], π)
16 (−x,−z,−y) R([BC], π)

8C3

17 (y, z, x) R(OA, 2π
3
)

18 (z, x, y) R(OA′, 2π
3
)

19 (−y,−z, x) R(OB, 2π
3
)

20 (z,−x,−y) R(OB′, 2π
3
)

21 (y,−z,−x) R(OC, 2π
3
)

22 (−z, x,−y) R(OC′, 2π
3
)

23 (−y, z,−x) R(OD, 2π
3
)

24 (−z,−x, y) R(OD′, 2π
3
)

TABLE I: List of 24 group elements of point group O. In
accordance with the notations in Fig. 2, OM represents the
vector pointing from the center of the cube (i.e. the point
O) to the vertex or the direction M , where M is one of
A, A′, B, B′, C, C′, D, D′ when it is a vertex of the cube,
and is one of X, Y, Z, X ′, Y ′, Z′ when it represents a direc-
tion. X, Y, Z represent the positive directions of the three
axes x, y, z, and X ′, Y ′ Z′ represent the negative directions
of the three axes. The symbol [MN ] represents the line pass-
ing through the point that bisects the edge MN ′ and the
point that bisects M ′N , where M, N, M ′, N ′ are all vertices
of the cube.

Oh O Td Th T
{ki}1≤i≤3 T1u T1 T2 Tu T

k2
x + k2

y + k2
z A1g A1 A1 Ag A

{(k2
x + k2

y − 2k2
z)/

√
2, k2

x − k2
y} Eg E E Eg E

{kiki+1}1≤i≤3 T2g T2 T2 Tg T
kxkykz A2u A2 A1 Au A

{k3
i }1≤i≤3 T1u T1 T2 Tu T

{ki(k2
i+1 + k2

i+2)}1≤i≤3 T1u T1 T2 Tu T

{ki(k2
i+1 − k2

i+2)}1≤i≤3 T2u T2 T1 Tu T

TABLE II: Classifications of the momentum spherical har-
monics up to the cubic order according to irreducible rep-
resentations of the five cubic point groups. The subscripts
i, i+ 1, i+ 2 are defined cyclically in x, y, z.

8C3, respectively. For simplicity, they are not listed. The
other four cubic groups are subgroups of Oh represented

Oh O Td Th T
{Si}1≤i≤3 T1g T1 T1 Tg T

{(S2
x + S2

y − 2S2
z )/

√
2, S2

x − S2
y} Eg E E Eg E

{SiSi+1 + Si+1Si}1≤i≤3 T2g T2 T2 Tg T
Sym(SxSySz) A2g A2 A2 Ag A

{S3
i }1≤i≤3 T1g T1 T1 Tg T

{Si+1SiSi+1 − Si+2SiSi+2}1≤i≤3 T2g T2 T2 Tg T

TABLE III: Classifications of spin tensors up to the third rank
according to the irreducible representations of the five cubic
groups. The symbol ”Sym” represents symmetrization as a
sum of all permutations of the objects inside the symbol. The
subscripts i, i+ 1, i+ 2 are defined cyclically in x, y, z.

Oh O Td Th T
kxkykz · Sym(SxSySz) A1u A1 A2 Au A

ki · Si A1u A1 A2 Au A
ki · S3

i A1u A1 A2 Au A
ki · (Si+1SiSi+1 − Si+2SiSi+2) A2g A2 A1 Au A

k3
i · Si A1u A1 A2 Au A

k3
i · S3

i A1u A1 A2 Au A
k3
i · (Si+1SiSi+1 − Si+2SiSi+2) A2g A2 A1 Au A

ki(k
2
i+1 + k2

i+2) · Si A1u A1 A2 Au A

ki(k
2
i+1 + k2

i+2) · S3
i A1u A1 A2 Au A

ki(k
2
i+1 + k2

i+2) · (Si+1SiSi+1 − Si+2SiSi+2) A2g A2 A1 Au A
ki(k

2
i+1 − k2

i+2) · Si A2u A2 A1 Au A

ki(k
2
i+1 − k2

i+2) · S3
i A2u A2 A1 Au A

ki(k
2
i+1 − k2

i+2) · (Si+1SiSi+1 − Si+2SiSi+2) A1u A1 A2 Au A

TABLE IV: The TR and rotation-invariant combinations of
momentum and spin tensors up to the third rank. The second
rank combinations preserving the inversion symmetry are not
shown since they have been already included in the Luttinger-
Kohn Hamiltonian. ”·” represents the inner product as a
summation of i from 1 to 3.

by the conjugation classes as

O = {E, 3C2, 6C4, 6C
′
2, 8C3},

Td = {E, 3C2, 8C3, 6S4, 6σd},
Th = {E, 3C2, 8C3, i, 3σh, 8S6},
T = {E, 3C2, 8C3}. (A1)

In Table II, we list all the momentum harmonics up to
the third rank. There are three, six, and ten harmonics
for rank-1, 2 and 3, respectively. The decompositions to
cubic groups are rank-1 = T , rank-2 = A ⊕ E ⊕ T , and
rank-3 = A ⊕ T ⊕ T ⊕ T . For different groups, A and T
can be further classified to A1,2, and T1,2, respectively.
For groups containing inversion operation, the sub-index
g and u mean representations of even and odd parities,
respectively. The spherical spin tensors are presented in
Tab. III. Since

∑

i S
2
i = S(S + 1), there are only 5 and

7 independent spin tensors at rank-2 and 3, respectively.
Since spin operators are parity even, all the correspond-
ing representations are of the g-type.
Here we list all spin-orbit coupled invariants up to the

third order in momentum for three inversion-breaking cu-
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bic groupsO, Td, T . For the point groupO, the invariants
are

ki · Si, ki · S3
i ,

kxkykzSym(SxSySz),

k3i · Si, k3i · S3
i ,

ki(k
2
i+1 + k2i+2) · Si, ki(k

2
i+1 + k2i+2) · S3

i ,

ki(k
2
i+1 − k2i+2) · (Si+1SiSi+1 − Si+2SiSi+2). (A2)

The Td invariants are

ki · (Si+1SiSi+1 − Si+2SiSi+2),

k3i · (Si+1SiSi+1 − Si+2SiSi+2),

ki(k
2
i+1 − k2i+2) · Si, ki(k

2
i+1 − k2i+2) · S3

i ,

ki(k
2
i+1 + k2i+2) · (Si+1SiSi+1 − Si+2SiSi+2). (A3)

For T , all the invariants of O and Td are allowed. In
these expressions, the dot ”·” represents an inner product
between the two 3-vectors, in which ”i” runs over x, y, z
and a summation

∑

i=x,y,x is taken. Inversion symmetry
is explicitly broken by all the terms, hence the double
degeneracy in the heavy hole and light hole bands is in
general absent.
The TR symmetry requires that the homogeneity of

the combinations be even. The inversion-preserving com-
binations have already been included in the Luttinger-
Kohn Hamiltonian Eq. (5). There are 17 inversion break-
ing combinations which are listed in Table IV. All of
these combinations belong to A-representations of the
cubic groups. Whether they are A1, A2, or Ag, Au of
a particular cubic group can be obtained from the infor-
mation in Tab. II and III and the multiplication rules of
the representations.

Appendix B: The semi-dihedral group SD16

In this appendix, we discuss the little group structure
along the [0 0 1] and its equivalent directions of the lat-
tice system with the Td symmetry augmented by spinor
representations and TR symmetry. This little group is
isomorphic to the semi-dihedral group (also called the
quasi-dihedral group) SD16, where the subscript “16”
represents the order of the group.
With the Td group, its little group L0 along the [0 0 1]

direction is

L0 = {1,Mx′ ,My′ , R(~z, π)}, (B1)

in which 1 is the identity element, and the directions of
x′ and y′ are given in Fig. 2. The reflection Mx′ can be
decomposed asMx′ = IR(x̂′, π). L0 is isomorphic to D2,
the dihedral group of order 4, which is Abelian and only
has 1D irreducible representations.
For half-spin fermions, L0 needs to be doubled to L1

by adding 1̄ = R(~n, 2π), then L1 is represented by

L1 = {1,Mx′,My′ , R(~z, π),

1̄, 1̄Mx′, 1̄My′ , 1̄R(~z, π)}. (B2)

1̄ commutes with every element in the group, which takes
−1 for half-integer spin representations. Since the inver-
sion operator I commutes with all O(3) elements and
acts as identity operator in spin space, we can explicitly
check that

M2
x′ = R(x̂′, 2π) = 1̄,

Mx′My′ = R(~z, π) = −My′Mx′ , (B3)

hence L1 is non-Abelian. We can explicitly work out the
multiplication rules of L1, which shows that it is isomor-
phic to the quaternion group,

Q8 = {±1,±i,±j,±k}, (B4)

through the identifications 1 = 1, 1̄ = −1, Mx′ = i,
My′ = j, and R(~z, π) = k. The multiplication rules of
Q8 are given by

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j. (B5)

Q8 and hence L1 has one 2D irreducible representations
up to isomorphism in which 1 and 1̄ take the value of 1
and −1, respectively. and four 1D irreducible represen-
tations in which 1 and 1̄ are identical.
Now we extend Td to its magnetic group, and iden-

tify its little group along the [0 0 1]-direction. The anti-
unitary operator S defined in Eq. 11 as S = R(ẑ, π2 )T ′ is
an element of this little group, where T ′ = IT . T ′ leaves
the momentum direction [0 0 1]-direction unchanged, and
T ′2 = 1 or −1 depending on whether the spin is integer
or half-odd integer. In the case of T ′2 = 1, the magnetic
little group is denoted as L2

L2 = {1,Mx′,My′ , R(~z, π),

S,Mx′S,My′S, R(~z, π)S}. (B6)

Defining r = R(ẑ, π2 )T ′, s =Mx′, L2 can be rewritten as

L2 = {1, r, r2, r3, s, sr, sr2, sr3}, (B7)

which is isomorphic to D4, the dihedral group of order 4,
with the relations of r4 = s2 = 1, srs−1 = r−1.
Finally we consider the case of T ′2 = −1. We define

r′ as the spinor version of r and s′ = r′Mx′ . Then the
magnetic little group L3 for the [0 0 1]-direction can be
represented in terms of r′ and s′ as

L3 = {1, r′, r′2, r′3,
r′4, r′5, r′6, r′7,

s′, s′r′, s′r′2, s′r′3,

s′r′4, s′r′5, s′r′6, s′r′7}. (B8)

This is in fact isomorphic to the semi-dihedral group
SD16 of order 16 defined in terms of generators and re-
lations as

SD16 = 〈r′, s′|r′8 = s′2 = 1, s′r′s′−1 = r′3〉. (B9)



15

Here we show that s′r′s′−1 = r3 as follows,

s′r′s′−1 = Mx′r′M−1
x′ T ′

= R(x̂′, π)R(ẑ,
π

2
)R(x̂′, π)−1T ′

= R(ẑ,
7

2
π)T ′ = 1̄R(ẑ,

π

2
π)T ′

= R(ẑ,
3

2
π)T ′3 = r′3, (B10)

in which in the second last line R(ẑ, 2π) = 1̄ is used. We
further note that SD16 has both Q8 andD4 as subgroups.
The Q8 subgroup is generated by {r′2, r′s′}, while the D4

subgroup is generated by {r′2, s′}.

Appendix C: The anti-unitary operator S with

S4 = −1

In this appendix, we will give the explicit form of the
operator S, and its action on the two doubly degenerate
subspaces along [0 0 1] directions.
Since I acts as identity operator in the spin space, the

anti-unitary operation S is given by

S = e−iSz(−π/2)R ·K, (C1)

in which K is the complex conjugate operation. Then S
is computed as S =MK, where

M =









0 0 0 ei
3π
4

0 0 −eiπ4 0
0 e−iπ4 0 0

−e−i 3π4 0 0 0









. (C2)

It is straightforward to verify that S2 = diag{i,−i, i,−i},
and S4 = −1.
Up to an overall factor, the Hamiltonian Eq. (6) along

the [0 0 1]-direction is

Hz = S2
z + δ(SxSzSx − SySzSy), (C3)

in which |δ| << 1 for the case of small inversion breaking
strength. Since the Hamiltonian Eq. (C3) changes the
Sz-eigenvalue by 0 or 2, the helicity 3

2 component will

mix with the helicity − 1
2 component, and similarly, the

helicity 1
2 -component mixes with the helicity − 3

2 compo-
nent.
As proved in Sect. II C, the spectra of Eq. C3 are dou-

bly degenerate. The two eigenvectors v1,2 corresponding

to Ev = 1
4 (5 + 2

√
4 + 3δ2) are

v1 =
1

N
(

1, 0,
2√
3δ

(

√

1 +
3

4
δ2 − 1), 0

)T

,

v2 =
1

N
(

0,− 2√
3δ

(

√

1 +
3

4
δ2 − 1), 0, 1

)T

, (C4)

in which N is the normalization factor. The two eigen-
vectors w1,2 of Ew = 1

4 (5 − 2
√
4 + 3δ2) are

w1 =
1

N
(

0, 1, 0,
2√
3δ

(

√

1 +
3

4
δ2 − 1)

)T

,

w2 =
1

N
(

− 2√
3δ

(

√

1 +
3

4
δ2 − 1), 0, 1, 0

)T

. (C5)

The anti-unitary operation S is diagonal-blocked. Its
off-diagonal elements between the two subspaces spanned
by v1,2 and w1,2 are zero. In the subspace spanned by
v1,2 and that by w1,2, it has matrix structure as

S =

(

0 ei±
π
4

−e−i∓π
4 0

)

K, (C6)

in which the upper sign is for subspace v1,2 and lower
sign for w1,2.

Appendix D: Topological index for nodal-line

superconductors

In this appendix, we first review the definition of the
path-dependent topological number for the TR invari-
ant nodal topological superconductors24, then apply it
to the spin-3/2 case of the current interest. The pairing
strengths of s- and p-wave components are parametrized
as ∆s = Cs∆0 and ∆p = Cp∆0.
In the presence of TR symmetry, the combined opera-

tion C = PhT , dubbed as chiral operator, anti-commutes
with the B-deG Hamiltonian. As a result, H~k can be
transformed into a block-off-diagonal form as

WH~kW
† =

(

0 D†
~k

D~k 0

)

. (D1)

The matrix D~k can be decomposed into D~k = U~kΛ~kV~k
via singular-value decomposition, in which Λ~k is a diago-
nal matrix with non-negative eigenvalues, and U~k, V~k are
unitary matrices. Consider a closed path L in momen-
tum space. If the gap does not vanish along the path L,
then Λ~k on L can be deformed into the identity matrix,
and then D~k becomes a unitary matrix denoted as Q~k.
The topological number of the path L is defined by the
formula24,

NL =
1

2πi

∫

L

dkl Tr[Q
†
~k
∂kl
Q~k]. (D2)

Next we carry out the calculation of the topological
number in Eq. (D2) for the Hamiltonian Eq. (14) with
the Td symmetry. The chiral operator C = τ1 ⊗ R is
diagonalized by the following matrix W ,

W =
1√
2

(

I4 iR
−iR I4

)

, (D3)
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in which I4 is the 4×4 identity matrix. The Hamiltonian
H~k can be brought into a block off-diagonal form as

WH~kW
† =

(

0 D~k

D†
~k

0

)

, (D4)

in which

D~k = HL(~k) + δA(~k)− µ+ i∆0(Cs + CpA(~k)). (D5)

Treating the inversion breaking term δ
kf
A(~k) at the level

of the first order degenerate perturbation theory, the

band energies ǫ
(1/2)
± (~k) and ǫ

(3/2)
± (~k) of the spin-split light

hole and heavy hole bands are given, respectively, by

ǫ
1/2
± (~k) = (2λ2 + λ1)k

2 ± δ|Λ(1/2)(~k)| − µ,

ǫ
3/2
± (~k) = (2λ2 − λ1)k

2 ± δ|Λ(3/2)(~k)| − µ. (D6)

Up to the first order in δ/|µ| and ∆0/|µ|, the matrix D~k
is diagonalized via a unitary transformation U~k as

D~k = U~kdiag(ǫ
(α)
ν (~k) + i∆(α)

ν (~k))U †
~k
, (D7)

in which α = 3
2 ,

1
2 , ν = ±, and ∆

(α)
ν (~k) = ∆0(Cs +

νCp|~Λ(α)(~k)|). Then Q~k is derived as

Q~k = U~kdiag(e
iθ(α)

ν (~k))U †
~k
, (D8)

in which tan θ
(α)
ν (~k) = ∆

(α)
ν (~k)/ǫ

(α)
ν (~k). Plugging Q~k in

Eq. (D2), we arrive at the topological index NL as

NL =
1

2π

∑

α,ν

∫

L
dkl ∂kl

θ(α)ν (~kl). (D9)

The bands of helicity ± 1
2 lie above the Fermi energy at

the energy of the order of |µ|, hence, they will not give
rise to non-trivial contribution to NL. For the bands of
helicity ±3/2, the formula for NL can be simplified to24

NL = −1

2

∑

ν

∑

~kF

sgn(∂~kl
ǫ(3/2)ν (~kF )) · sgn(∆(3/2)

ν (~kF )),

(D10)

where ~kF ’s are the wavevectors at which the path L
crosses the Fermi surfaces. The equations ǫ

(3/2)
± (~k) = 0

determines the smaller (larger) Fermi surface. These two
Fermi surfaces touch along [0 0 1] directions protected by
the little group SD16 as analyzed in Sect. II C. Assum-

ing ∆s,∆p > 0, then the gap function ∆
(3/2)
+ (~kF ) on

the smaller Fermi surface are positive definite. A closed
path L always crosses the Fermi surface even times, and

the sign of (∂~kl
ǫ
(3/2)
ν ( ~kF )) for crossing the Fermi surface

from the inner to outer direction is opposite to that from
the opposite directions, hence, the smaller Fermi surface

does not contribute the NL as well. Then the formula is
simplified to

NL = −1

2

∑

~kF

sgn(∂~kl
ǫ
(3/2)
− ( ~kF )) · sgn(∆(3/2)

− (~kF )),

(D11)

in which only the larger Fermi surface contributes.
For the Hamiltonian Eq. (14) with Td symmetry, the

sign of the pairing ∆
(3/2)
− (~kF ) inside the nodal loop is

opposite to that outside the loop. Hence from Eq. (D11)
the topological number for a closed path that encloses
the nodal loop once is ±1, where the sign of NL depends
on the direction that the path is traversed.
The physical meaning of Eq. (D11) can be related to

the sign structure of the gap functions along the inci-

dent and reflected wavevectors24. Let ~k‖ be an in-plane
wavevector within the surface of interest. The infinite
vertical line passing through ~k‖ crosses the larger Fermi
surface at two wavevectors with vertical components k⊥1

and k⊥2. Now we can enclose the infinite line with a semi-
infinite circle and consider the topological number of the
combined path L0. From Eq. (D11), NL0 is related to

the sign difference between ∆
(3/2)
− (k⊥1) and ∆

(3/2)
− (k⊥2).

On the other hand, NL0 does not change by continuously
deforming the path as long as the nodal circles are not
touched. If after such a deformation no nodal loop is en-
closed, the pairings of the incident and reflected wavevec-
tors are of the same sign, corresponding to a topologically
trivial situation. If two nodal loops are enclosed and the
topological numbers from the two loops cancel, which
is a topologically trivial situation again. In contrast, if
only one nodal loop is enclosed, the topological number
NL0 = ±1, for which the Majorana zero modes appear.

Appendix E: The method for solving surface states

In this appendix, the equation determining surface
state is derived in the limit ∆0 ≪ δ ≪ |µ|. We first

obtain the eight pairs of {~kl,Φl} from Eq. (22) as func-
tions of Es, then plug them in det({Φl}1≤l≤8) = 0 to
solve for Es. The pairing strengths and the surface en-
ergy are parametrized as ∆s = Cs∆0, ∆p = Cp∆0 and
Es = ǫ∆0.
Due to the translation symmetry in xy-plane, (kx, ky)

remain good quantum numbers. The momentum kz solv-
ing Eq. (22) can be expanded as kz = ±k0z + ζδ− iξ∆0,
in which k0z is the magnitude of the z’th component of
the Fermi wavevector determined by the Luttinger-Kohn
Hamiltonian, ζδ originates from the splitting of Fermi
surfaces due to the inversion breaking term in the band
structure, and −iξ∆0 is from the superconducting pair-

ing. Denote k
(3/2)
0z and k

(1/2)
0z to be the above mentioned

k0z for the heavy and light hole bands, respectively. Since

the Fermi energy crosses the heavy hole bands, k
(3/2)
0z is
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real, while k
(1/2)
0z is purely imaginary. The expressions of

k
(3/2)
0z and k

(1/2)
0z are

k
(3/2)
0z =

√

|µ|/(2λ2 − λ1)− k2x − k2y ,

k
(1/2)
0z = −i

√

|µ|/(2λ2 + λ1) + k2x + k2y. (E1)

We also denote k
(3/2)
0 and k

(1/2)
0 as

k
(3/2)
0 =

√

|µ|/(2λ2 − λ1),

k
(1/2)
0 = −i

√

|µ|/(2λ2 + λ1). (E2)

We will discuss the heavy and light hole bands sepa-
rately, and first consider the heavy hole bands. The su-
perscript “3/2” on momentum will be dropped for sim-
plicity. Denote â to be the unit vector normal to the

surface. Let ~k0η = (kx, ky, ηk0z) (η = ±1), and define

U (3/2)(~k0η) as

U (3/2)(~k0η) =
(

U(â) 0
0 U(â)T,−1

)(

U(k̂0η) 0

0 U(k̂0η)
T,−1

)

, (E3)

in which U(â) = e−iSzφae−iSyθa and U(~k0η) =
e−iSzφηe−iSyθη , where θa and φa are the polar and az-
imuthal angles of â, and θη and φη are those of the vector
~k0η. U (3/2)(~k0η) corresponds to the helicity basis at mo-

mentum ~k0η. Plug kz = ηk0z + ζδ − iξ∆0 (η = ±1) into
the Hamiltonian in Eq. (14), perform the transforma-

tion U (3/2)(~k0η)
−1H(~k)U (3/2)(~k0η), and project into the

heavy hole bands. Then by keeping the leading order
terms in the expansion over δ and ∆0, the HL and HA

terms in Eq. (14) become

H ′
L − µ = (ζδ − iξ∆0)

(

2(λ1 +
5

2
λ2)ηk0z

−2λ2k0P3/2{Sz, U(~k0η)
−1SzU(~k0η)}P3/2

)

,

H ′
A =

δ

kf
P3/2U(~k0η)

−1U(â)−1A(Ra
~k0η)

·U(â)U(~k0η)P3/2,

(E4)

in which P3/2 is the projection operator to the heavy hole
bands; the superscript of prime denotes the terms after
the transformation and the projection; {, } represents the
anti-commutator of two matrices; and k0 is k

(3/2)
0 with

the superscript “3/2” omitted. H ′
L and H ′

A are 2 × 2
matrices after the projection to the heavy hole bands.
H ′

A is traceless, hence can be expanded in terms of Pauli
matrices as

H ′
A = δ ~Λ(~k0η) · ~σ, (E5)

in which ~Λ(~k0η) is a three-component vector. Let D(~k0η)
be the transformation that diagonalizes H ′

A. The eigen-

values ofH ′
A are ±δ|~Λ(~k0η)|, which leads to Fermi surface

splitting. The correction of the Fermi wave vector due
to the splitting is given by ζδ, and there are two values
of ζ corresponding to the two eigenvalues of H ′

A. In the
following, for simplicity, we will term the basis after the

transformation of D(~k0η) as band structure basis.
Next we consider the effect of the superconducting

pairing. Since ∆0 ≪ δ, as long as H ′
A does not van-

ish, we can project the superconducting pairing onto the
eigen-bases of the band Hamiltonian, and the corrections
from the mixing between different spin-split bands are of
higher orders in ∆0/δ. Let Pν (ν = ±1) be the projec-
tion operator to one of the two band structure basis with

eigenvalue νδ

√

~Λ(~k0η)2 ofH
′
A. Plug kz = ηk0z+ζδ−iξ∆0

into Eq. (22), and set kz to be ηk0z in the pairing Hamil-
tonian with corrections of high orders. Then Eq. (22)
becomes a two-component eigen-equation, as

(

iξγ(~k0η)− ǫ (−)
1−ν
2 χν(~k0η)

(−)
1−ν
2 χν(~k0η)

∗ −iξγ(~k0)− ǫ

)

Φ′ = 0, (E6)

in which

γ(~k0η) = −2(λ1 +
5

2
λ2)ηk0z +

2λ2k0PνP3/2{Sz, U(~k0η)
−1SzU(~k0η)}P3/2Pν ,

χν(~k0η) = PνD(~k0η)
−1P3/2U(~k0η)

−1U(â)−1K(Ra
~k0η)

·U(â)U(~k0η)P3/2D(~k0η)Pν . (E7)

The γ(~k0η) term corresponds to the O(∆0) correction
to the diagonal block in Eq. (22) from −iξ∆0 in kz =

ηk0z + ζδ− iξ∆0, and the χν(~k0η) term is the projection
to band structure basis of the superconducting pairing.
The solutions of ξ and Φ′ are given by

ξ(3/2)(~k0η ; ν) =

√

|χν(k0η)|2 − ǫ2

γ(~k0η)2
,

Φ′(3/2)(~k0η ; ν) =

(

−(−)
1−ν
2 χν(~k0η)

iξ(~k0η, ν)γ(~k0η)− ǫ

)

, (E8)

in which ξ is chosen to be positive to match the bound-
ary condition at z → −∞. The eigenvector Φ can
be obtained from Φ′ by performing the transformations

D(~k0η), U(~k0η) and U(â) back in sequence.
Now we turn to the light hole bands. Again the

superscript “1/2” will be dropped in the following ex-
pressions for simplicity. The momentum in z-direction
is in general kz = k0z + ζδ − iξ∆0, where k0z =

−i
√

|µ|/(2λ2 + λ1) + k2x + k2y. Im(k0z) is chosen to be

negative so as to match the boundary condition at z →
−∞. Let ~k0 = (kx, ky, k0z), and define

U (1/2)( ~k0) =

(

U(â) 0
0 U(â)T,−1

)(

U(k̂0) 0

0 U(k̂0)
T,−1

)

,

(E9)
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in which U(~k0) = e−iSzφe−iSyθ, where φ = arctan(ky/kx)
and θ = arccos(k0z/k0). Unlike the heavy hole bands,
here θ is purely imaginary since |k0z | > |k0|. Plug
kz = k0z + ζδ − iξ∆0 into the Hamiltonian in Eq. (14),

perform the transformation U (1/2)(~k0)
−1H(~k)U (1/2)(~k0),

and project into the light hole bands. Then by keeping
the leading order terms in the expansion over δ and ∆0,
the HL and HA terms become

H ′
L − µ = (ζδ − iξ∆0)

(

2(λ1 +
5

2
λ2)k0z

−2λ2k0P1/2{Sz, U(~k0)
−1SzU(~k0)}P1/2

)

,

H ′
A =

δ

kf
P1/2U(~k0)

−1U(â)−1A(Ra
~k0)

·U(â)U(~k0)P1/2,

(E10)

in which P1/2 is the projection operator to the helicity
±1/2 bands, and the supercript of prime denotes the
terms after the transformation and the projection. The

eigenvalues ofH ′
A are ±

√

~Λ2(~k0). H
′
A introduces the cor-

rection of ζδ into the Fermi wave vectors. Let D(~k0) be
the transformation that diagonalizes H ′

A. It defines the
band structure basis for the case of the light hole bands.
Let Pν (ν = ±1) be the projection operator to one of

two band structure basis with eigenvalue ν

√

~Λ2(~k0) of

H ′
A. For the treatment of the superconducting pairing,

again by assuming ∆0 ≪ δ, the projection to the band
structure basis can be performed, and the eigen-equation
determining ξ and Φ is

(

iξγ(~k0)− ǫ −(−)
1−ν
2 χν(~k0)

−(−)
1−ν
2 χ̃ν(~k0) −iξγ(~k0)− ǫ

)

Φ′ = 0, (E11)

in which

γ(~k0) = −2(λ1 +
5

2
λ2)k0z

+2λ2k0PνP1/2{Sz, U(~k0)
−1SzU(~k0)}P1/2Pν ,

χν(~k0) = PνD
−1(~k0)P1/2U(~k0)

−1U(â)−1K(Ra
~k0)

·U(â)U(~k0)P1/2D(~k0)Pν ,

χ̃ν(~k0) = PνD
†(~k0)P1/2U(~k0)

†U(â)−1K(Ra
~k∗0)

·U(â)U(~k0)
†,−1P1/2D(~k0)

†,−1Pν .

(E12)

Then ξ and Φ′ are solved as

ξ(1/2)(~k0; ν, ι) = ι

√

χν(~k0)χ̃∗
ν(
~k0)− ǫ2

γ(~k0)2
,

Φ
′(1/2)(~k0; ν, ι) =

(

(−)(1−ν)/2χν(~k0)

iξ(~k0; ν, ι)γ(~k0)− ǫ

)

, (E13)

in which ι = ±1. The eigenvector Φ can be obtained

from Φ′ by performing the transformations D(~k0), U(~k0)
and U(â) back in sequence.

Plugging these expressions into the boundary condition
at z = 0, we obtain the equation determining the energy
of the surface states,

det
(

{Φ(1/2)(~k
(1/2)
0 ; ν, ι)}ν,ι=±, {Φ(3/2)(~k

(1/2)
0η ; ν)}η,ν=±

)

= 0,

(E14)

in which

Φ(1/2)(~k
(1/2)
0 ; ν, ι) = U (1/2)(~k0)D̄

(1/2)(~k0)Φ
′(1/2)(~k0; ν, ι),

Φ(3/2)(~k
(3/2)
0η ; ν) = U (3/2)(~k0η)D̄

(3/2)(~k0η)Φ
′(3/2)(~k0η; ν),

(E15)

where D̄ = diag(D,DT,−1) is the extension of the matrix
D to the particle-hole space. In Eq. (E15), all of the
terms are in the 8-dimensional space. For those originally
defined not to be 8-dimensional, we need to appropriately
embed them into the 8-dimensional space. Eq. (E15)
is the general equation for solving surface state energy,
without restriction on the form of the inversion breaking
term, nor on the form of the pairing Hamiltonian.

We further note that for the present case in which
the Fermi energy only crosses the heavy hole bands, the
8× 8 matrix in Eq. (E15) can be reduced to a 4× 4 one
when solving Majorana zero modes. The boundary con-

dition requires that the eight vectors Φ
(α)
i (α = 3/2, 1/2,

1 ≤ i ≤ 4) are linearly dependent. At zero energy, the

four vectors Φ
(1/2)′
i in the light hole space in Eq. (E13)

are linearly independent. Hence they must also be so at

least in a neighborhood of ǫ = 0. The vectors Φ
(1/2)
i are

obtained from Φ
(1/2)′
i by the same transformationD(1/2).

This means that Φ
(1/2)
i are also linearly independent in a

neighborhood of ǫ = 0. Thus the boundary condition can

be simplified to det{PΦ
(3/2)
i }1≤i≤4 = 0, where P is the

projection operator into the linear subspace orthogonal

to the space spanned by {Φ(1/2)
i }1≤i≤4.

Although the original boundary condition matrix in
Eq. (E14) can be reduced to the heavy hole space, the
light hole space cannot be neglected since they touch with
the heavy hole bands at the Γ point. If the two sets
of bands are separated by a band gap Eg much greater
than the value of the chemical potential, then the light
hole bands are inert up to leading order of |µ|/Eg. In
the current situation, they enter into the reduced 4 × 4
boundary condition matrix, which is a reflection of the
spin-3/2 nature of the system.

Appendix F: Symmetry properties in QPI patterns

We discuss in this section the implications of particle-
hole, TR, chiral and C3v symmetries on the QPI patterns
for (1 1 1)-surface.
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1. Particle-hole symmetry

In this part, we discuss the consequence of particle-hole
symmetry in QPI patterns.

First consider the non-magnetic impurity. Let Psf

be the projection operator to the subspace of the sur-
face states. In Born approximation and only taking
into account the contribution from Majorana zero modes,
∆ρ(00)(ω,~r) can be expressed as

∆ρ(00)(ω,~r) = − 1

2π
ImTr

[

(1 + τ3)〈~r|Psf
1

ω −H + iǫ

PsfHimpPsf
1

ω −H + iǫ
Psf |~r〉

]

,

= − 1

2π
Im
[

(
1

ω + iǫ
)2Tr

(

(1 + τ3)

〈~r|PsfVimpPsf |~r〉
)]

, (F1)

in which Vimp is a scalar potential. Particle-hole symme-
try leads to

〈~r|PsfHimpPsf |~r〉 = −τ1〈~r|PsfVimpPsf |~r〉∗τ1. (F2)

Since 〈~r|PsfHimpPsf |~r〉 is hermitian, Tr〈~r|PsfHimpPsf |~r〉
vanishes due to Eq. (F2). Thus

∆ρ(00)(ω,~r) = − 1

2π
Im(

1

ω + iǫ
)2Tr

[

τ3〈~r|PsfHimpPsf |~r〉
]

.

(F3)

Next consider the magnetic impurity. In the same ap-
proximations, we have

∆ρij(ω,~r) = − 1

2π
ImTr

[

(
1

ω + iǫ
)2(1 + τ3)

Σi〈~r|PsfΣ
jVimpPsf |~r〉

]

. (F4)

Particle-hole symmetry implies that

〈~r|PsfΣ
jHimpPsf |~r〉 = −τ1〈~r|PsfΣ

jHimpPsf |~r〉∗τ1.(F5)

Combining with τ1Σ
iτ1 = −Σi∗, we obtain

Tr(τ3Σ
i〈~r|PsfΣ

jVimpPsf |~r〉) = 0, and

∆ρij(ω,~r) = − 1

2π
Im
[

(
1

ω + iǫ
)2

Tr
(

Σi〈~r|PsfΣ
jVimpPsf |~r〉

)]

. (F6)

2. Time reversal symmetry

In addition to the suppression of scatterings between
TR related Majorana islands, TR symmetry also requires
that ∆ρµ0 = 0, and ∆ρ0ν = 0 in Born approximation,
where µ, ν 6= 0. We show these properties in this part.

It can be proved that in Born approximation, TR sym-
metry leads to

∆ρµν(ω,~r)

= − 1

2π
ImTr〈~r|(1 + τ3)(T

−1ΣµT )
1

ω −H + iǫ

· Vimp(T
−1ΣνT )

1

ω −H + iǫ
|~r〉.

(F7)

Since Σ0 is invariant under TR operation and Σi (i =
1, 2, 3) changes sign under TR operation, it is clear that
∆ρµν vanishes when µ = 0, ν 6= 0 or µ 6= 0, ν = 0.

3. Chiral symmetry

TR operation reverses the sign of Σν when ν = 1, 2, 3,
and keeps it invariant when ν = 0. Particle-hole opera-
tion reverses the sign of Σν for all ν = 0, 1, 2, 3. Chiral
operation is the composition of TR and particle-hole op-
erations. Hence the selection rule of chiral symmetry is
that Hν

imp couples Majorana islands with opposite chiral
indices when ν = 0, and those with the same chiral index
when ν = 1, 2, 3.

4. C3v symmetry

The little group of the (1 1 1)-surface within the Td
group is C3v. In this part, we analyze the consequence
of C3v symmetry on the QPI patterns in Born approx-
imation. Since ∆ρ00sf (ω, ~q) is invariant under C3v, and

∆ρµνsf (ω, ~q) = 0 if one of {µ, ν} is zero, here we consider
µ, ν 6= 0.
In Born approximation

∆ρµν(ω,~r) = − 1

2π
ImTr[(1 + τ3)Σ

µ〈~r| 1

ω −H + iǫ

Vimp(~r)Σ
ν 1

ω −H + iǫ
|r〉]. (F8)

Since C3v is the symmetry group of the system, for C ∈
C3v, ∆ρ

µν(ω,~r) can also be written as

∆ρµν(ω,~r)

= − 1

2π
ImTr[(1 + τ3)CΣµC−1〈C~r| 1

ω −H + iǫ

· Vimp(~r)CΣνC−1 1

ω −H + iǫ
|C~r〉],

(F9)

in which C is the corresponding 3 × 3 rotation matrix.
Using CΣµC−1 = ΣαCαµ, ∆ρ

µν(ω,~r) satisfies

∆ρµν(ω,~r) = ∆ραβ(ω,C~r)CαµCβν
, (F10)

for any C ∈ C3v.
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For fixed ω, ~q, define ∆ρsf (ω, ~q) as the 3 × 3 matrix
whose µν element is ∆ρµνsf (ω, ~q). The above analysis
shows that

∆ρsf (ω,C~q) = C∆ρsf (ω, ~q)C
T , (F11)

for any C ∈ C3v. This is the relation that ∆ρsf (ω, ~q)
must satisfy due to the C3v symmetry.
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