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We analyze quantum criticality at finite temperature for a class of non-Fermi liq-

uids with massless bosons. Finite temperature gives rise to new infrared singularities

that invalidate standard perturbative treatments. We show how such divergences

are resolved at a nonperturbative level, and obtain the resulting fermion self-energy.

This leads to a new “thermal” non-Fermi liquid regime that extends over a wide

range of frequencies, and which violates finite temperature scaling laws near quan-

tum critical points. We analyze the resulting quantum critical region and properties

of the retarded Green’s function. More generally, such effects dominate in the nearly

static limit and are expected to have a nontrivial impact on superconductivity and

transport.
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I. INTRODUCTION

There are strong indications that quantum critical points (QCP) are one of the organiz-

ing principles behind the behavior of strongly correlated materials, e.g. for understanding

dynamics near superconducting domes1–5. Although the QCP at zero temperature may be

inaccessible experimentally, its influence extends into a whole quantum critical regime at

finite T ; this is illustrated in Fig. 1. In this region, quantum and thermal effects compete,

and can lead to dynamics strikingly different from that of weakly interacting quasiparticles.

This could explain the origin of the “strange metal” regime of metallic systems, character-
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ized by the destruction of the quasi-particle spectrum, and the resulting non-fermi-liquid-like

transport and thermodynamic properties6–9.

FIG. 1. Schematic phase diagram around a quantum critical point for coupling g = gc. The

quantum critical region (QCR) occurs for kT > ∆, with ∆ the typical mass scale for g 6= gc.

The quantum critical region (denoted in what follows as QCR) should admit a field

theoretic description, since the characteristic correlation length is much larger than the

inverse temperature. One of the central problems of condensed matter physics is then to

develop a field theory framework to explain the non-Fermi liquid dynamics in the QCR.

This has been hampered by the fact that, in most models, superconductivity dominates

over non-Fermi liquid effects; see10 for a recent discussion. When this happens, the physics

above the superconducting dome is that of weakly coupled quasiparticles, and this is not

useful for describing non-Fermi liquid properties of many metallic systems in their normal

state.

The goal of this work is to study non-Fermi liquids (NFLs) at finite temperature. We

consider systems near symmetry breaking transitions, where fluctuations of the order param-

eter give rise to relevant interactions on the Fermi surface. In order to address the issue of

superconducting instabilities raised above, we focus on the large N limit developed in11–14,

where the fermion ψi is promoted to a vector of N components and the scalar φij is an

N ×N matrix. We consider this large N limit because it gives rise to a QCP that is stable

3



to superconductivity at zero temperature15. Therefore, this parameter N will allow us to

access the QCR in a controlled way, and gives a new theoretical window into strange metallic

behavior. We will focus on the behavior of quantum critical metals at finite temperature in

their normal state. In a forthcoming work we consider 4-fermion interactions and the fate

of superconductivity.16

As it turns out, non-Fermi liquids at finite temperature suffer from new infrared singu-

larities that are not present at T = 0. Therefore, the dynamics in the QCR with T > 0

could in principle be quite different from that at the T = 0 critical point. A simple way to

understand this is to realize that the exchange of virtual light bosons, present near QCPs,

leads to a low-frequency singularity from the Bose-Einstein distribution,

nB(ω) =
1

eω/kT − 1
∼ T

ω
. (I.1)

This invalidates standard perturbative approaches; it leads to IR divergences in various

physical observables, such as the fermion decay rate. As has happened in other areas of

QFT17, we expect the theory to cure its own IR problems (e.g. by a proper resummation

of quantum effects) and lead to finite predictions. We will show how this comes about in

non-Fermi liquids.

This problem was recognized already in early works on QED and QCD at finite density

(see e.g.18 for a review); Ref.19 showed how to resolve them by resumming infinite series

of diagrams within the Bloch-Nordsiek approximation (see also20). This problem was also

addressed for antiferromagnetic models in21. The large N limit that we employ here will

be essential for resolving IR singularities, as it implies that only rainbow diagrams need to

be taken into account. While we take N → ∞ as a formal limit where we can provide a

rigorous proof, we expect similar results for more realistic values N ∼ O(1). We will dicuss

this point below in Sec. II.

The analysis and resolution of thermal divergences at finite density is important both

theoretically but also for its physical implications. In particular, we find a new contribution

to the fermionic self-energy that dominates at low frequencies, and whose temperature de-

pendence is not dictated by the T = 0 quantum critical scaling. T = 0 scalings have often

been assumed to be valid near quantum critical points; the violation we find here means

that aspects of transport and superconductivity in NFLs will have to be reconsidered (we

leave this to future work). Furthermore, while our analysis is carried out for a concrete class
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of models, our main conclusions should apply more broadly to NFLs. Indeed, the effective

field theory description of NFLs is expected to contain fermions interacting with soft bosonic

modes.22 From (I.1), the exchange of soft bosons quite generally will lead to IR divergences,

and their resultion will destroy the QC scaling as we show below.

This work is organized as follows. After reviewing in §II the relevant properties of NFLs

at zero temperature, in §III we will first consider quantum effects at finite T within a one

loop approximation. We will discuss in detail the structure of the thermal fermionic Green’s

function and identify the origin of the infrared singularities. The main part of the work

is presented in §IV. Using the large N limit, we obtain a closed set of finite temperature

Schwinger-Dyson equations for the bosonic and fermionic propagators in the normal state.

We first argue that bosonic self-energy is not modified beyond one loop, generalizing to finite

T the result of23; this gives an overdamped boson with z = 3 dynamical exponent. Next we

focus on the fermionic self-energy. The IR divergences are resolved by rainbow resummation,

giving rise to a new contribution to the self-energy that is independent of frequency. This

results into a new “thermal non-Fermi liquid” regime, which is absent from the T = 0 QCP.

It violates the scaling dictated by the QCP. The phase structure and crossover regimes of the

quantum critical region are presented in §V. We also address some of the implications of our

analysis, e.g. on real time dynamics and superconductivity, and discuss future directions.

The Appendix contains explicit calculations used in the main text.

II. NON-FERMI LIQUIDS NEAR SYMMETRY BREAKING TRANSITIONS

Let us review the class of NFLs that will be studied in the rest of the work. These arise

from metals near a symmetry breaking transition at zero momentum. Assuming for con-

creteness that the global symmetry group is SU(N), we take a Fermi surface of fermions ψi

transforming in the fundamental, coupled to a nearly massless N×N scalar φji in the adjoint

representation. We work at large N and in an ε expansion near three spatial dimensions (the

critical dimension)11–14. Note that this large N limit differs from the more studied theories

with a large number of fermionic flavors10,23–25; these models (as opposed to the matrix large

N ones) do not admit QCPs stable under superconductivity and hence are not suited for

our purpose.
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The euclidean finite temperature lagrangian takes the form

L =
1

2
tr

(
1

c2
(∂τφ)2 + (~∇φ)2

)
+ ψ†i

(
∂τ + ε(i~∇)− µF

)
ψi +

g√
N
φijψ

†
iψ

j . (II.1)

Since our focus here will be on the normal state, we ignore the 4-Fermi BCS interaction;

superconductivity within the QCR will be analyzed in a forthcoming work.

Let us discuss the different terms in this action. The boson speed c depends on the class of

models. For instance, quantum criticality in hadronic matter arises from relativistic bosons

(the gluons) and c = 1. For metallic systems near symmetry breaking transitions, the scalar

is emergent and starts off with only the gradient term; hence c → ∞. In any case, as we

review below, the boson inherits its dynamics from fermionic quantum effects (the Landau

damping function), and this dominates at low energies over a possible tree level term with

time derivatives. Furthermore, since we want to analyze the QCR, we will always tune the

physical boson mass to zero. A possible φ4 interaction is irrelevant, and is set to zero.26

Consider next the fermion terms. We assume a smooth Fermi surface, and approximate

it locally by a sphere of radius kF (the Fermi momentum). We focus on the low energy

dynamics near the Fermi surface, and expand the fermionic momentum as

~p = n̂(kF + p⊥) , p⊥ � kF (II.2)

with n̂ a unit vector that fixes the position on the Fermi surface, and ε(kF ) = µF . See e.g.27.

At linear order, ε(~p) − µF ≈ vp⊥, where the Fermi velocity v = ε′(kF ). Finally, the most

relevant boson-fermion interaction term compatible with the SU(N) global symmetry is the

Yukawa coupling in (II.1). The theory admits a consistent large N limit if g is held fixed.

Refs.14,15 obtained the dynamics at T = 0, taking into account both the cubic Yukawa

term as well as the BCS coupling and potential superconducting instabilites. For N �

Nc = 12
ε

, the system is in a weakly coupled SC phase. Increasing N towards Nc enhances

NFL effects, such as the fermionc anomalous dimension. Superconductivity is destroyed by

incoherent fluctuations at N = Nc through an infinite order transition, and for N > Nc the

system flows to a stable QCP. The large N exact fermion Green’s function at the fixed point

reads

GF (ω, p) = − 1

iΛ2γ
NFLω

1−2γ − εp
(II.3)

with anomalous dimension

γ =
ε

6
. (II.4)
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The scale ΛNFL determines the cross-over between the FL and NFL regimes. The Yukawa

coupling also flows to a nontrivial value

α =
g2

12π2v
→ ε

3
. (II.5)

The 4-Fermi coupling λBCS also flows to a fixed point –NFL effects are sufficiently strong to

stop its flow towards λBCS →∞ (which would correspond to a superconducting instability).

Large N plays an important role in this work so, before proceeding, let us discuss its

physical motivation and potential extensions to N ∼ O(1). The effects of N � 1 are twofold.

First, as we just reviewed, it acts as a control parameter that allows to enhance NFL effects

over superconductivity. The reason is that in the model with a matrix boson, the one loop

fermion self-energy is enhanced by a factor of N , while quantum effects associated to the

SC instability are not enhanced. Second, and importantly for our goal, we will show in §IV

that, at large N , corrections to the fermion self-energy are dominated by rainbow diagrams.

By resumming these diagrams we will show how IR singularities are resolved. However, it

is natural to ask whether the approximation of rainbow resummation holds for finite N ,

which would be relevant for real NFLs. For this, we note that all corrections to the fermion

Green’s functions that we neglect when N → ∞ arise from loop corrections to the cubic

vertex φψ̄ψ; see e.g. Fig. 2 b) below. This is in fact the same as Migdal’s approximation in

the electron-phonon problem, which is valid when bosons are much slower than fermions28.

Now, in our setup bosons are naturally much slower than fermions: Landau-damped bosons

have dynamical exponent zb = 3 while for the fermions zf ∼ 1. In this way, we expect that

the rainbow diagrams should still give the dominant contributions at finite N .

Our task in what follows will be to analyze the NFL behavior at finite temperature. We

will find that the T = 0 QCP controls the high frequency regime ω � πT . However, we will

also uncover a new “thermal” NFL regime that arises for euclidean frequencies ω ∼ πT , or

real frequencies p0 � T .

III. ONE LOOP ANALYSIS

We begin our analysis of the QCR by studying quantum effects at one loop. Later on we

will extend this to all orders.

The dominant effects at large N come from the boson and fermion self-energies, shown in

7



Fig. 3 (but with the exact propagators replaced by the tree-level ones). Corrections to the

cubic interaction are suppressed by 1/N , and will be neglected in what follows. Denoting

the self-energies by Π(ωn, p) and Σ(ωn, p), their effect is to correct the bosonic and fermionic

two-point functions as follows:

D(ωn, p) =
1

1
c2
ω2
n + p2 + Π(ωn, p)

G(ωn, p) = − 1

iωn − vp⊥ + iΣ(ωn, p)
. (III.1)

Bosonic and fermionic Matsubara frequencies are given by ωn = 2nπT and ωn = (2n+1)πT ;

we also work near the Fermi surface, linearizing the fermionic dispersion relation in terms

of (II.2).

A. Landau damping at finite temperature

Although the evaluation of the Landau damping function is well known, it is useful to

discuss it here to understand the energy scales involved, and for later use at higher loops.

The loop integral for d = 3 space dimensions, in the spherical decomposition (II.2) reads

Π(ωn, q) =
g2k2

F

(2π)2N
T
∑
m

∫ 1

−1

d(cos θ)

∫ Λ

−Λ

dp⊥
1

iωm − vp⊥
1

i(ωm + ωn)− v(p⊥ + q cos θ)
,

(III.2)

with Λ the momentum cutoff near the Fermi surface. Note that ωn is bosonic while ωm is

fermionic.

Due to the UV divergence, the integral depends on the order of integration. Let us

integrate first over p⊥ in the limit Λ → ∞, which gives a factor of Θ(ωm+ωn)−Θ(ωm)
iωn−vq cos θ

(with

Θ(x) the Heaviside function). The sum over m and angular integral can then be performed

explicitly, obtaining

Π(ωn, q) =
2

π
M2

D

ωn
q

tan−1

(
vq

ωn

)
, (III.3)

where we have introduced the Debye mass scale M2
D ≡

g2k2F
4πvN

. This agrees with the zero

temperature result13, so thermal effects do not affect Landau damping at one loop. If instead

the Matsubara sum is performed first (by rewriting it in terms of a complex integral), the

final result differs from (III.3) by a extra −M2
D term.29 However, the important point is

that this is again independent of temperature and can be set to zero by an appropriate
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choice of bare mass. Therefore, if we tune the boson to be close to the critical point at zero

temperature, no thermal mass is generated at one loop, and no further tuning is needed.

While (III.3) is formally a 1/N effect in our large N expansion, it cannot be neglected

because it is always relevant at low energies. In order to capture this, we take large N but

with MD fixed (more precisely, ω/MD fixed). From now on we remove the MD dependence

in equations, which can be restored by dimensional analysis. For ω < MD, the frequency de-

pendence is dominated by the Landau damping term, and we obtain a boson with dynamical

exponent z = 3:

D(ωn, q) ≈
1

q2 + |ωn|
vq

. (III.4)

In what follows we work with this resumed boson propagator. We refer the reader to13,14

for a more detailed discussion of this approach.

B. Fermion self-energy

We now move on to discuss the much more subtle fermionic self-energy, with loop integral

iΣ(ωn, p) = −g2T
∑
m

∫
ddq

(2π)d
D(ωn − ωm, q − p)

1

iωm − εq + µF
. (III.5)

This is a leading large N effect: the 1/N from the vertices cancels against an N enhancement

from the flavors running in the loop. For all processes of interest, the momentum dependence

in the self-energy can be neglected. The reason is that the fermionic momentum scales like

p⊥ ∼ ω while the bosonic momentum q ∼ ω1/3. Hence p � q in the integral above, and Σ

is approximately independent of p⊥.

Given this, let us parametrize ~p = n̂ kF , and ~q = n̂q⊥ + ~q‖, with ~q‖ orthogonal to n̂. The

self-energy reads

iΣ(ωn) = −g2T
∑
m

∫
dd−1q‖
(2π)d−1

dq⊥
2π

1

q2
‖ + q2

⊥ + |ωm−ωn|√
q2‖+q

2
⊥

1

iωm − vq⊥
. (III.6)

The usual way to evaluate this integral is to neglect the q⊥ dependence in the boson propa-

gator, since q⊥ ∼ ω while q‖ ∼ ω1/3. The two momentum integrals then factorize, obtaining

Σ(ωn) = Ad
g2

v
T
∑
m

sgn(ωm)

|ωm − ωn|
3−d
3

Ad =

(
2π

d−1
2

Γ(d−1
2

)

1

(2π)d−1

)
π

3 sin πd
3

. (III.7)
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The self-energy (III.7) is well known in various non-Fermi liquid models, with 2γ = 3−d
3

the quasiparticle anomalous dimension. However, it has a basic sickness: it is singular at

m = n. This is a thermal infrared divergence. This problem is usually ignored in treatments

of non-Fermi liquid superconductivity, e.g. appealing to Anderson’s theorem; and the sum

is restricted to m 6= n. However, this is not satisfactory; a consistent QFT should lead to

finite well-defined predictions.

The origin of the m = n singularity is in fact the factorization assumption: for ωm ∼ ωn,

q‖ ∼ |ωm − ωn|1/3 can be much smaller than q⊥. In this case, the momentum q⊥ carried

by the virtual fermion produces a large recoil on the virtual boson, and this effect cannot

be neglected. The singularity just reflects the fact that the factorization assumption gives

a sum over all q⊥, ignoring the backreaction on the boson. Therefore, factorization breaks

down at finite temperature. In contrast, this is a good approximation at zero temperature,

where the Matsubara sum is replaced by an integral, and the singularity is integrable.

In order to fix this, let us adopt spherical coordinates q2
⊥ + q2

‖ = q2, q⊥ = q cos θ. Inte-

grating over the angle, and working for simplicity at d = 3− ε with ε� 1, obtains

Σ(ωn) = 3αT
∑
m

∫
dq q1−εD(ωm − ωn, q) tan−1

(
vq

ωm

)
. (III.8)

We have introduced the dimensionless combination

α =
g2

12π2v
M−ε

D (III.9)

that sets the strength of non-Fermi liquid effects. In this form, the thermal singularity at

m = n, which came from virtual bosons with q ≈ 0 has been resolved because the new

arctan factor vanishes there. The calculation now proceeds by splitting the sum into m 6= n,

and m = n, and is done in the Appendix. The final result is

Σ(ωn) =
3α

ε
sgn(ωn)

(
vε

|ωn|ε
πT + (2πT )1−ε/3 [ζ(ε/3)− ζ(ε/3, |n|+ 1)]

)
. (III.10)

The first term comes from the resolution of the m = n singularity, while the Riemann zeta

functions arise from performing the sum over m 6= n. (This last contribution has appeared

before in studies of non-Fermi liquids21,30.)

Let us analyze the low and high temperature limits. To access low T we take large n, for

which ζ(ε/3)− ζ(ε/3, n+ 1) ∼ n1−ε/3. In this limit,

Σ(ωn) ≈ 3α

ε
|ωn|1−ε/3 sgn(ωn) . (III.11)
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This recovers the T = 0 result of13,14, reviewed above in (II.3). In this regime we have a

metallic QCP with fermion anomalous dimension 2γ = ε/3. The non-Fermi liquid scale (the

scale at which the self-energy dominates over the tree level term) is hence

ΛNFL ≈
(

3α

ε

)3/ε

. (III.12)

At weak coupling, α < ε/3, and ΛNFL � 1. On the other hand, for α = ε/3, ΛNFL ∼ 1, and

one starts from the QCP at the UV scale.

At high temperatures, but still well below the microscopic scale MD, the first term in

(III.10) dominates over the ζ functions. In particular, we obtain a new thermal contribution

at the first Matsubara frequency

Σ(πT ) ≈ 3αvε

ε
(πT )1−ε. (III.13)

This IR result is parametrically larger than the NFL answer by a factor T−2ε/3 � 1.

C. An infrared catastrophe

Although it seems we have solved the IR problems, unfortunately this is not the case

–another type of singularity is hiding in (III.10). The reason is that it is not sufficient to

obtain a finite self-energy over the Matsubara frequencies; one also needs a sensible result

on the upper half complex plane, which determines the dynamics in real time.

To see this, recall that the retarded Green’s function (which e.g. enters transport calcu-

lations) is related to the Euclidean result by

iωn → p0 + iδ , δ → 0+ (III.14)

and

iωn + iΣE(ωn)→ p0 + iΣE(−ip0 + δ) ≡ p0 + Σret(p0) . (III.15)

Let us then perform the analytic continuation of the new thermal term in (III.10). We

have ω2
n → (−ip0 + δ)2 = e−iπsgn(p0)p2

0, from which we deduce that |ωn| → −ip0, and

sgn(ωn) = ωn
|ωn| → +1. Thus, the high temperature euclidean result gives a retarded self-

energy

Σret(p0) ≈ i
3αvε

ε
|p0|−ε ei

π
2
ε sgn(p0)πT . (III.16)
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This gives a decay rate that diverges as p0 → 0! In particular, the perturbative expansion

always breaks down at sufficiently low energies.

The physical origin of this divergence was described in §I: at low frequencies, the Bose-

Einstein occupation factor leads to powers of T/ω, as in (I.1). To see this more explicitly,

let us go back to (III.5), introduce the spectral density

D(ωn, q) =

∫ ∞
−∞

dq0

2π

ρB(q0, q)

q0 − iωn
(III.17)

and perform the Matsubara sum to obtain

iΣ(ωn) = −g2

∫ ∞
−∞

dq0

2π

∫
ddq

(2π)d
ρB(q0, q)

nF (εq) + nB(−q0)

εq + q0 − iωn
. (III.18)

Here nF and nB are the Fermi-Dirac and Bose-Einstein distributions. (More details on this

and the following calculations are discussed in the Appendix.)

Now, at low frequencies nB(q0) ∼ T/q0, and in this case (for momenta well below MD)

nB(q0)ρB(q0, q) ≈ 2πT
δ(q0)

q2
. (III.19)

This means that the density of bosonic states is concentrated at zero frequency. This aspect

of overdamped bosons has been recognized in works on QED and QCD at finite density (see

e.g.19 and references therein). As we are now finding, it also plays a key role in quantum

criticality. Using these properties to calculate the imaginary part of the retarded self-energy

leads to the same result (III.16).

To summarize, the coupling of a Fermi surface to a Landau damped critical boson leads to

finite temperature divergences that come from exchanging virtual soft bosons whose density

of states is peaked at zero frequency. Moreover, each addition of a virtual boson makes

the result more infrared singular. The perturbative expansion breaks down, and in order to

determine the properties of the QCR it is essential to understand how to cure this problem.

IV. THE JUMP TO ALL ORDERS: RAINBOW RESUMMATION

The resolution of infrared singularities is an important open problem in finite temperature

QFT,18 and it generally requires nonperturbative methods. One logical possibility is that

the IR phase is gapped, and then this mass scale enters as an IR regulator that avoids

the singularities. For instance, one could imagine a thermal mass for the boson, or that
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superconductivity gaps the Fermi surface. However, this approach is not always correct.

For instance, in the analog problem of an emergent gauge field (instead of a scalar field),

gauge invariance forbids a mass term and hence a different mechanism is required. Moreover,

assuming that the divergences are cut off by the superconducting gap leads to a singular

dependence in the gap equation that is unphysical. Instead, our view here is that the theory

should cure its own singularities, without appealing to new physics

a) b)

c) d)

FIG. 2. Two-loop corrections to the fermion and boson self-energy. b) and d) are subleading at

large N .

To continue along this direction, we need to understand what happens at higher loops.

Fig. 2 shows a few two-loop diagrams, where the addition of virtual boson lines leads to

higher order IR singularities. The idea is that resumming quantum corrections should lead

to finite well-defined results, however, this is not tractable in general and some truncation is

needed. Along these lines, works on QED and QCD at finite density addressed this problem

in terms of the Bloch-Nordsiek resummation19; Ref.21 also employed methods similar to

ours in the context of antiferromagnetic models. The main point is that the large N limit

produces a dramatic simplification of quantum corrections: only rainbow diagrams (such

as those in a) and c) of Fig. 2) survive, while diagrams that contain vertex corrections

as subdiagrams (b) and d) of Fig. 2) are suppressed by powers of 1/N . Therefore, the

resolution of thermal divergences has to come from resumming the rainbow diagrams.
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This is encoded in the following coupled set of Schwinger-Dyson equations for the bosonic

and fermions self-energies:

Π(ωn, q) =
g2

N
T
∑
m

∫
ddp

(2π)d
G(ωm, p)G(ωm + ωn, p+ q)

iΣ(ωn, q) = g2T
∑
m

∫
ddp

(2π)d
D(ωm − ωn, p− q)G(ωm, q) . (IV.1)

Here D,G denote the full propagators defined in (III.1). The diagrammatic interpretation

is described in Fig. 3. In this section we will solve these equations and show how the IR

problems are cured.

Σ(p) =

Π(p) =

FIG. 3. Schwinger-Dyson equations for the fermion and boson self-energy in the large N theory.

A. Landau damping including quantum and thermal corrections

Let us analyze the quantum corrections to the boson propagator. At zero temperature,

Π(ω, q) is one loop exact in the z = 3 scaling regime for the boson23 (we also review below

how this comes about). Here we are interested in the result at finite temperature.
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Focusing for simplicity on d = 3, and linearizing εp ≈ vFp near the Fermi surface, we

have

Π(iωn, q) =
g2k2

F

(2π)2

∫ 1

−1

d cos θ

∫
dp⊥

1

β

∑
m

G(iωm, p⊥)G(iωm + iωn, p⊥ + q cos θ) . (IV.2)

Here ωn is a bosonic Matsubara frequency, while ωm is fermionic. Performing the momentum

integral by residues obtains

Π(ωn, q) = − g2k2
F

(2π)2v

∫ 1

−1

dx
2πi

β

∑
m

Θ(ωm + ωn)−Θ(ωm)

vqx− iωn − i (Σ(ωm + ωn)− Σ(ωm))
(IV.3)

Note that Π(0, q) = 0. Integrating over the angle and taking into account the restrictions

from the step functions,

Π(ωn, q) =

(
g2k2

F

2π2v

)
1

qv

2π

β

|n|−1∑
m=0

tan−1

(
qv

ω|n| + Σ(ω|n| − ωm) + Σ(ωm)

)
. (IV.4)

This is our main result for the Landau damping function that includes thermal and quantum

effects. The one loop answer (III.3) is recovered by setting Σ(ω) = 0.

The boson dynamics at one loop is governed by the z = 3 scaling q3 ∼ ω discussed

in §III A, and we want to see how this is modified by (IV.4). A more detailed analysis

is included in the appendix. Consider first the low temperature behavior T � ωn. Since

Σ(ω) = Λ2γ
NFLω

1−2γ, the inverse tan function is, for q ∼ ω1/3, of order

tan−1

(
vq

Σ(ω)

)
∼ tan−1

(
Λ−2γ
NFLω

2γ− 2
3

)
≈ π

2
(IV.5)

at low energies. We assumed here that γ < 1
6
, which is certainly the case for ε < 1.

Therefore, due to the z = 3 scaling, the Landau damping function is independent of the

fermion self-energy – it coincides with the one loop result to all orders in perturbation theory.

For low frequencies ωn ∼ πT we will argue shortly that there appears a new contribution

to the fermion self-energy of the form Σ(πT ) ∼ (πT )
1

1+ε . This could in principle modify the

behavior of (IV.4) for small bosonic Matsubara frequency, i.e. ωn ∼ 2πT . Making use of

the scaling q3 ∼ ω ∼ πT , in this regime one finds

tan−1

(
vq

Σ(πT )

)
∼ tan−1

[
(πT )

2ε−1
3(1+ε)

]
. (IV.6)

Since πT � 1 and we are working at small ε, this is again of order π/2 and hence Landau

damping is not changed. Curiously, this can modify appreciably the boson Landau damping

for ε > 1/2, which is of interest for d = 2 physics. Nevertheless, the large N approximation

is also expected to break down at strong coupling25, so at this stage the relevance of such

thermal corrections near d = 2 is not clear.
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B. Fermion self-energy to all orders

Having understood the absence of qualitative modifications to Π (ωm, q) from Σ(ωn), we

can now use the z = 3 representation for D (ωn, q) and focus on the self-consistent Schwinger-

Dyson equation for Σ (ωn):

iΣ(ωn) = −g2T

∫
ddp

(2π)d
D (0, p)

1

iωn + vp⊥ + iΣ (ωn)

− g2T
∑
m6=n

∫
ddp

(2π)d
D (ωn − ωm, p)

1

iωm + vp⊥ + iΣ (ωn)
, (IV.7)

where again we separate the Matsubara sum into a thermal term ωm = ωn and the remain-

ing dynamical contributions (ωm 6= ωn). The latter can be approximated using momentum

factorization due to z = 3 scaling and is independent of Σ (ωm); evaluating the thermal term

as before using spherical coordinates for p lands us on the following self-consistent equation:

Σ(ωn) =
3α

ε

(
c1πT [ωn + Σ(ωn)]−ε + c2(2πT )1− ε

3 [ζ(ε/3)− ζ(ε/3, n+ 1)]
)
, ωn > 0

c1 =
vε

π
Γ

(
1− ε

2

)
Γ

(
1 + ε

2

)
, c2 = Γ

(
1− ε

3

)
Γ
(

1 +
ε

3

)
(IV.8)

In what follows we simplify the presentation of equations by taking the ε→ 0 limit for the

constants, i.e. c1 = c2 = 1, etc.

The first term in (IV.8) encodes the resummation of rainbow diagrams, giving a self-

consistent equation for the self-energy. Note that this term is in fact the only contribution

at the first Matsubara frequency ω = ±πT , because the two Riemann zeta function terms

cancel out for n = 0,−1. This property of the first Matsubara frequency plays a special role

in the NFL dynamics discussed below.

It is easy to solve (IV.8) numerically, and one obtains a fully nonsingular fermion self-

energy. We show this below in Fig. 4. Nevertheless, it is useful to develop an approximate

solution where quantum and thermal effects can be seen more explicitly. For this, we note

that at high frequencies the dynamical terms dominate over the thermal term, and the self

energy is simply controlled by the NFL regime:

Σ(ωn) ∼ 3α

ε
|ωn|1−ε/3sgn(ωn) . (IV.9)

On the other hand, the thermal term dominates at low frequencies, and then the self-energy

is controlled by the constant solution of the algebraic equation

Σ(πT ) ≈ 3α

ε
πT |πT + Σ(πT )|−ε . (IV.10)
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We denote the solution by ΣT . The low and high temperature behaviors can be obtained

iteratively, finding

Σ(πT ) = ΣT ≈


(

3α
ε
πT
) 1

1+ε , πT � Λ
1/3
NFL

3α
ε

(πT )1−ε , πT � Λ
1/3
NFL

. (IV.11)

We will denote the low and high temperature branches by Σ
(1)
T and Σ

(2)
T , respectively. The

full self-energy is then approximated by

sgn(ωn)Σ(ωn) ≈ ΣT +
3α

ε
(2πT )1− ε

3 [ζ(ε/3)− ζ(ε/3, n+ 1)] . (IV.12)

This is our main result for the exact fermion self-energy in the large N theory.

In Fig. 4 we plot the approximate analytic solution against the numerical solution to

(IV.8) – the agreement is excellent. We also show the temperature dependence of Σ(πT )

for different values of ε. In particular, note that the low and high temperature limits are

quite different as ε is increased. Even though it is not clear whether the framework remains

under control at strong coupling, it is interesting to extrapolate these results to ε = 1,

corresponding to a model in d = 2. In this case, the low temperature result gives Σ(πT ) ∼

T 1/2, while at high temperatures Σ(πT ) becomes independent of T .31 It would be interesting

to understand the effects of this on e.g. transport properties, a point which we hope to study

in the future.
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FIG. 4. Left panel: exact solution to (IV.8) (red), approximate solution (IV.12) (blue), and NFL

answer ignoring the thermal piece (black). Parameters: ε = 0.3, α = ε/3, πT = 10−5. Right panel:

evolution of Σ(πT ) as a function of T for ε = 0.3 (black), ε = 0.5 (blue), ε = 1 (red).

We conclude that in the class of NFLs considered in this work, the exact thermal Green’s

functions can be calculated in the large N limit, and that this resummation resolves the
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IR singularities encountered within perturbation theory. This gives rise to a new thermal

piece in the self-energy, which is approximately independent of the external frequency and

dominates in the static limit. Note that even though this is a high temperature effect

(ω ∼ πT ), it is highly nonperturbative; it encodes the NFL nature of the Fermi surface

in the nontrivial power-law dependence on temperature. Furthermore, as discussed before,

we expect this result to still hold at finite N . Indeed, non-rainbow diagrams can also be

suppressed if bosons are much slower than fermions (recall Migdal’s theorem), which is true

here since the dynamical exponents zb ≈ 3 and zf ≈ 1.

V. IMPLICATIONS AND DISCUSSION

We are now ready to explain the NFL behavior in the quantum critical region. At T = 0

we have two scales: MD (the UV cutoff) which we have set to 1 and the NFL scale ΛNFL

introduced in (III.12). This is controlled by the ratio 3α/ε, with α� ε/3 the weak coupling

limit. On the other hand, for T 6= 0 a richer dynamics emerges in the QCR.

To begin, it is necessary to distinguish between two types of NFL behavior. In the

quantum NFL regime, the T = 0 self-energy dominates the dynamics, |ωn| � Λ
ε/3
NFL|ωn|1−ε/3.

On the other hand, we define the thermal NFL regime as the case when the thermal term

in the self-energy dominates the dynamics, ω � ΣT . In particular, for πT > ΛNFL, the

quantum NFL self energy Σ ∼ Λ
ε/3
NFL|ωn|1−ε/3 is negligible, however, the thermal term ΣT

can still dominate over a range of frequencies. Note also that the temperature dependence

in the thermal NFL case is given by a nontrivial power-law, and does not obey mean-field

scaling. Furthermore, scaling arguments that are used near QCPs at finite T are violated

in the thermal NFL regime.

Let us explore the QCR starting from the highest temperatures. By comparing the

different terms in the full fermionic Green’s function we obtain the following regimes (see

the Appendix):

• πT > Λ
1/3
NFL. All quantum and thermal corrections are subdominant, leading to Fermi

liquid (FL) behavior.

• Λ
1+2ε/3
NFL < πT < Λ

1/3
NFL. Quantum corrections are subdominant, but the thermal term in

Σ can be important. In this range, the high frequency limit is a FL, while at low frequencies
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a thermal NFL emerges, dominated by the low temperature branch of (IV.11),

ω + Σ(ω) ≈

 ω , ω � Σ
(1)
T

Σ
(1)
T =

(
Λ
ε/3
NFLπT

) 1
1+ε

, ω � Σ
(1)
T

. (V.1)

For α ∼ ε/3 or for sufficiently low temperatures, we thus find a new NFL thermal regime

over a range of frequencies ω < Σ
(1)
T .

• πT < Λ
1+2ε/3
NFL . In this range one finds all the possibilities for the fermion Green’s

function: FL, quantum NFL, and thermal NFL:

ω + Σ(ω) ≈


ω , ω � ΛNFL

Λ
ε/3
NFLω

1−ε/3 , ΛT � ω � ΛNFL

Σ
(1)
T , ω � ΛT

(V.2)

with cross-over scale

ΛT ∼

(
Σ

(1)
T

Λ
ε/3
NFL

) 1
1−ε/3

. (V.3)

We stress that the thermal NFL behavior cannot be obtained from the QCP at T = 0 –it is a

purely thermal effect. The thermal piece always dominates at the first Matsubara frequency

ω = πT .

We summarize the resulting phase structure, together with the cross-over scales, in Fig.

5. Each regime is labelled by the new behavior that appears there. As discussed before, in

each range one has to distinguish between static and dynamic properties of the fermionic

Green’s function.

To end, let us summarize our main conclusions and discuss future directions. We argued

that a class of NFLs with critical bosons are afflicted by IR divergences at finite T , and

showed how these singularities are resolved at a nonperturbative level. We accomplished

this by taking a formal N →∞ limit, where only rainbow diagrams need to be included. As

a result, we obtained a new contribution to the fermion self-energy, which dominates at small

frequency, and violates the QCP scaling. These findings will be relevant beyond the setup

considered in the paper. Indeed, the presence of IR divergences is generic for NFL models

with soft bosons, and so is the method for their resolution. Furthermore, as in Migdal’s

theorem, rainbow diagrams will dominate whenever the bosonic modes are much slower

than the fermions. Slow bosons emerge naturally due to Landau damping, and hence our

conclusions are expected to hold for more realistic NFLs at finite N . Finally, the conclusion
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FIG. 5. Phase structure of the quantum critical region near a NFL fixed point.

that the zero-temperature critical scalings are violated at finite T could modify transport

and SC properties in interesting ways.

As a first step for real-time physics, let us now calculate the real time self-energy. For

this, we analytically continue the full euclidean answer as discussed in §III C. The constant

thermal term gives rise to a purely imaginary contribution, while the quantum NFL piece

translates into both real and imaginary parts:

Σret(p0) = i

(
3α

ε
πT

) 1
1+ε

+ i
3α

ε
(2πT )1−ε/3

[
ζ(ε/3)− ζ

(
ε/3,−i p0

2πT
+ 1
)]

. (V.4)

The dependence at low and high temperatures is

Σret(p0) ≈

 i
(

3α
ε
πT
) 1

1+ε + 3α
ε
p0 |p0|−ε/3 , πT � |p0|

i
(

3α
ε
πT
) 1

1+ε + 3α
ε

(2πT )−ε/3p0 , πT � |p0|
. (V.5)

A direct calculation in terms of the spectral density and the Kramers-Kronig relation agrees

with these results.

While in the euclidean approach both quantum and thermal terms are on the same foot-

ing, in real time they have quite different effects. The quantum term contributes dominantly

to the real part of the self-energy. Though there are no quasi-particles, we can identify a
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natural time-scale related to the exponential decay of the NFL Green’s function by noticing

that:

GF (t) ∼
∫

dω e−iωt

ω1−ε/3 + iΣT

=
1

t

∫
dω̃e−iω̃

ω̃1−ε/3tε/3−1 + iΣT

= t−ε/3
∫

dω̃e−iω̃

ω̃1−ε/3 + iΣT t1−ε/3
= t−ε/3f

(
ΣT t

1−ε/3) (V.6)

Any exponential dependence of t in GF (t) must be in terms of ΣT t
1−ε/3, from which we can

identify a natural time scale τ :

1

τ
∼ (ΣT )

1
1−ε/3 ≈ T 1−2ε/3 . (V.7)

Note that 1/τ � T due to non-Fermi liquid effects. Since the finite T scaling of the QCP is

invalidated by ΣT , we expect important effects on transport properties. This is a topic that

we hope to study in the future.

More generally, it would be interesting to explore thermal NFL signatures in other models.

As we argued in this work, such effects should occur whenever IR singularities arise pertur-

batively. Potential candidates for this could be the vector large Nf limit with NfkF fixed

analyzed in32,33, and the Fermi surface with codimension regularization recently reviewed

in34.

Finally, the main future step will be to add 4-fermion interactions along the BCS channel,

and study the competition between NFL behavior and superconductivity. The analysis done

in Ref.15 at T = 0 showed that at small N the QCP is unstable to superconductivity, but

that as N is increased, superconducting fluctuations become more incoherent and dominated

by NFL effects. For N > 12/ε, the BCS coupling becomes critical and superconductivity

disappears. This is a naked QCP. Given the results in the present work, it is natural to ask

how this picture is modified at finite T . Here we just point out that the constant thermal

term in the self-energy amounts to an anomalous dimension that increases like γ ∼ 1/ω at

low frequencies. The BCS beta function constructed in15 then shows that the BCS coupling

becomes more irrelevant than at T = 0. Furthermore, the thermal term dominates at the

first Matsubara frequency, as noted above, so we do not expect the “first Matsubara law”

of35 to operate in this context. Overall, the thermal NFL contribution goes in the direction

of destroying superconductivity and increasing the strength of NFL effects in the QCR. This

analysis will appear in16.
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Appendix A: Some explicit calculations

This appendix contains explicit calculations for some of the results quoted in the main

text.

1. One loop self-energy

The one loop fermion self-energy is given by

Σ(ωn) = 6αT
∞∑
m=0

∫ ∞
0

q1−εdq (D(iωm − iωn, q)−D(iωm + iωn, q)) tan−1

(
vq

ωm

)
. (A.1)

In this form, it is clear that Σ(−ωn) = −Σ(ωn). So it is sufficient to consider positive

frequencies.

To proceed, we will propose some approximations in the momentum-dependence, so that

the momentum integral can be performed explicitly. Recall that

D(iωn, q) =
1

ω2
n + q2 +

2M2
D

π
ωn
q

tan−1 vq
ωn

. (A.2)

For a given Matsubara frequency ωm in (A.1), we split the momentum integral into vq < ωm

and vq > ωm. In each range, the inverse tan function and boson propagator simplify as

follows:∫ ∞
0

q1−εdq D(iωm − iωn, q) tan−1

(
vq

ωm

)
≈
∫ ωm/v

0

dq
1

|ωm − ωn|2 + q2 + 2
π
M2

Dv

vq2−ε

ωm

+
π

2

∫ ∞
ωm/v

q1−εdq
1

q2 +M2
D
|ωm−ωn|

q

(A.3)

for m 6= n. The first part is suppressed by the large Debye scale MD, and we may neglect it

in our low energy EFT. The second part is the usual z = 3 contribution; hence∫ ∞
0

q1−εdq D(iωm − iωn, q) tan−1

(
vq

ωm

)
≈ π

2ε

1

|ωm − ωn|ε/3
. (A.4)
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The only special case is m = n, which may be evaluated explicitly:∫ ∞
0

q1−εdq D(0, q) tan−1

(
vq

ωn

)
=

π

2ε

vε

ωεn
. (A.5)

Putting everything together,

Σ(ωn) ≈ 6αT

[
π

2ε

vε

ωεn
− π

2ε

1

(2ωn)ε/3

]
+

3α

ε
πT

∞∑
m=0

(
1− δmn
|ωm − ωn|ε/3

− 1− δmn
|ωn + ωm|ε/3

)
. (A.6)

The sums can be done in terms of Riemann zeta functions:

∞∑
m=0

1− δmn
|ωm − ωn|ε/3

=
1

(2πT )ε/3

[
n−1∑
m=0

1

(n−m)ε/3
+

∞∑
m=n+1

1

(m− n)ε/3

]

=
1

(2πT )ε/3

[
n−1∑
m=0

1

(n−m)ε/3
+ ζ(ε/3)

]
(A.7)

∞∑
m=0

1− δmn
|ωn + ωm|ε/3

=
1

(2πT )ε/3

∞∑
m=0

1

(m+ n+ 1)ε/3
− 1

|2ωn|ε/3

=
1

(2πT )ε/3
ζ(ε/3, n+ 1)− 1

|2ωn|ε/3
. (A.8)

Shifting variables in the sum, it is easy to check that

ζ(ε/3)− ζ(ε/3, n+ 1) =
n∑

m=1

1

mε/3
=

n−1∑
m=0

1

(n−m)ε/3
. (A.9)

We conclude that

Σ(ωn) ≈ 3α

ε
πT

vε

ωεn
+

3α

ε
(2πT )1−ε/3 [ζ(ε/3)− ζ(ε/3, n+ 1)] . (A.10)

2. Spectral density of Landau damped bosons

For a field with propagator G(ω, q), the spectral density ρ is defined as

G(iωn, q) =

∫ ∞
−∞

dq0

2π

ρ(q0, q)

q0 − iωn
(A.11)

or

ρ(p0, p) = 2Im[G(p0 + iδ, p)] (A.12)

as δ → 0+. This uses the property 1
x+iδ

= P 1
x
− iπδ(x), with P the principal value. In

this section only, we find it convenient to write the euclidean correlator as a function of iωn,

while in the main text we wrote G(ωn, q).

23



Let us calculate the spectral density for an overdamped boson. The steps are very

similar to the analog case in finite density gauge theory36. The one loop boson propagator

resumming fermion bubbles (and setting the speed c = 1) is

D(iωn, q) =
1

ω2
n + q2 − M2

D

π
iωn
q

log iωn−vq
iωn+vq

. (A.13)

In the complex plane, D(z, q) has two simple poles at

z = ±ωT (q) , ω2
T − q2 +

M2
D

π

ωT
q

log
ωT − vq
ωT + vq

= 0 (A.14)

and a branch cut in z ∈ (−vq, vq).

Given the previous singularity structure, the spectral density is of the form

ρB(q0, q) = ρres(q)δ(q0 − ωT ) + ρcut(q0, q) Θ(vq − |q0|) . (A.15)

The first term is determined by the residue of D(z, q) at z = ωT :

ρres(q) = −2π

[
∂D−1

∂q0

∣∣∣
q0=ωT

]−1

= 2π
ωT (ω2

T − v2q2)

(ω2
T + q2)(ω2

T − v2q2) + (2/π)M2
Dvω

2
T

. (A.16)

Note that when q → 0, ω2
T ∼ vM2

D and ρres ∼ 1
ωT

. In the opposite limit q → ∞, ωT ∼ q

and ρres ∼ 1/q. In both cases, the residues occur at very high scales and ρres is inversely

proportional to the high scale. So such poles contribute negligibly to the quantum effects at

low energies, and will be ignored.

Let us then focus on the contribution from the cut, which encodes the effects of Landau

damping. The discontinuity comes from the branch cut in the logarithm, which gives

ρcut(q0, q) = 2
M2

Dq0/q(
q2

0 − q2 +
M2
D

π
q0
q

log vq−q0
vq+q0

)2

+
(
M2

D
q0
q

)2 . (A.17)

In the z = 3 regime, this becomes

ρcut(q0, q) ≈ 2
M2

Dq0/q

q4 +
(
M2

D
q0
q

)2 . (A.18)

Note that ∫ vq

0

dq0

πq0

ρcut(q0, q) ≈
1

q2
, (A.19)

for q �MD, and hence (III.19) holds.
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3. Phase structure and self-consistent z = 3 scaling

In this appendix we include some details for deriving the phases in §V as well as for

verifying the validity of the scalar z = 3 scaling, with fermion self-energy back-reaction at

finite T.

To begin, the fermion self-energy can be approximated by the following ansatz:

Σ(ω) = ΣT + Λ2γ
NFLω

1−2γ, ΣT ≈


(

Λ
ε/3
NFLπT

) 1
1+ε

, πT � Λ
1/3
NFL

Λ
ε/3
NFL (πT )1−ε , πT � Λ

1/3
NFL

, (A.20)

where γ = ε/3. Next we investigate the regime structure of the fermionic kinetic function

ωZ(ω) = ω + Σ(ω) as a function of ω. Since ΛNFL � 1, one possibility is the following:

ωZ(ω) =


ω, ΛNFL � ω � 1

Λ2γ
NFLω

1−2γ, Λ2
T � ω � ΛNFL

ΣT , πT � ω � Λ2
T

, (A.21)

where the cross-over scale is given by: Λ2
T =

(
ΣTΛ−2γ

NFL

) 1
1−2γ . The phase structure (A.21) is

valid only if the intermediate regime exists: Λ2
T � ΛNFL → ΣT � ΛNFL. This picks the

first branch of ΣT ≈
(

Λ
ε/3
NFLπT

) 1
1+ε

in (A.20) and further constrains:

πT � Λ
1+2ε/3
NFL , (A.22)

which also guarantees the existence of the third regime. In the case of πT � Λ
1+2ε/3
NFL , the

intermediate regime disappear, the next possibility is the following:

ωZ (ω) =

ω ΣT � ω � 1

ΣT =
(

Λ
ε/3
NFLπT

) 1
1+ε

, πT � ω � ΣT

(A.23)

This is valid if πT � ΣT � 1, which is satisfied if

πT � Λ
1/3
NFL (A.24)

For πT � Λ
1/3
NFL, there is only a single regime spanning the whole πT � ω � 1, which

corresponds to the Fermi-liquid phase:

ωZ (ω) = ω (A.25)
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Next we examine the validity of z = 3 scaling. The scalar self-energy is given by:

Π(ωn, q) =

(
g2k2

F

2π2v

)
1

qv

2π

β

|n|−1∑
m=0

tan−1

(
qv

ω|n| + Σ
(
ω|n| − ωm

)
+ Σ (ωm)

)
(A.26)

As long as the inverse tangent function can be approximated by its limiting value π/2 for all

0 ≤ m ≤ |n| − 1, the Matsubara sum simply produces a factor of ωn, and the z = 3 scaling

is consistent. To proceed, we assume q ∼ ω1/3 and take ω|n| + Σ
(
ω|n| − ωm

)
+ Σ (ωm) ∼

ω|n|Z
(
ω|n|
)

for all 0 ≤ m ≤ |n|−1, since in all cases Σ (ω) is a non-decreasing function of ω.

Self-consistent z = 3 scaling is then satisfied if ω1/3 � ωZ (ω), assuming that v ∼ O(1). We

then check for each temperature regime (A.21), (A.23) and (A.25), whether z = 3 scaling is

self-consistent for the entire range πT � ω � 1.

• Λ
1/3
NFL � πT � 1: in this case ωZ (ω) ∼ ω for the entire range πT � ω � 1.

Self-consistent z = 3 scaling requires that ω � 1, which always obeyed.

• Λ
1+2ε/3
NFL � πT � Λ

1/3
NFL: in this case ωZ(ω) ∼ ω for

(
Λ
ε/3
NFLπT

) 1
1+ε � ω � 1, in

which self-consistent z = 3 scaling requires that ω � 1; going further down ωZ(ω) ∼(
Λ
ε/3
NFLπT

) 1
1+ε

for πT � ω �
(

Λ
ε/3
NFLπT

) 1
1+ε

, in which self-consistent z = 3 scaling

requires that ω � Λ
ε

1+ε

NFL(πT )
3

1+ε . Both regions are contained by the respective self-

consistent z = 3 constraints in this temperature regime.

• πT � Λ
1+2ε/3
NFL : in this case ωZ(ω) ∼ ω for ΛNFL � ω � 1, with self-consistent

z = 3 scaling requires that ω � 1; going down ωZ(ω) ∼ Λ2γ
NFLω

1−2γ for Λ2
T � ω �

ΛNFL, self-consistent z = 3 scaling requires that ω � (ΛNFL)
−ε
1−ε ; going down further

ωZ(ω) ∼
(

Λ
ε/3
NFLπT

) 1
1+ε

for πT � ω � Λ2
T , self-consistent z = 3 scaling requires

that ω � Λ
ε

1+ε

NFL(πT )
3

1+ε . Again all three regions are contained by their respective

self-consistent z = 3 constraints in this temperature regime.

In summary, we have checked that for πT � 1, the fermion self-energy ansatz (A.20) is

consistent with z = 3 scaling over the entire range πT � ω � 1.
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