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We develop high temperature series expansions for the thermodynamic properties of the
honeycomb-lattice Kitaev-Heisenberg model. Numerical results for uniform susceptibility, heat ca-
pacity and entropy as a function of temperature for different values of the Kitaev coupling K and
Heisenberg exachange coupling J (with |J | ≤ |K|) are presented. These expansions show good
convergence down to a temperature of a fraction of K and in some cases down to T = K/10. In the
Kitaev exchange dominated regime, the inverse susceptibility has a nearly linear temperature de-
pendence over a wide temperature range. However, we show that already at temperatures 10-times
the Curie-Weiss temperature, the effective Curie-Weiss constant estimated from the data can be off
by a factor of 2. We find that the magnitude of the heat capacity maximum at the short-range order
peak, is substantially smaller for small J/K than for J of order or larger than K. We suggest that
this itself represents a simple marker for the relative importance of the Kitaev terms in these sys-
tems. Somewhat surprisingly, both heat capacity and susceptibility data on Na2IrO3 are consistent
with a dominant antiferromagnetic Kitaev exchange constant of about 300− 400 K.

PACS numbers: 74.70.-b,75.10.Jm,75.40.Gb,75.30.Ds

INTRODUCTION

Kitaev’s discovery of a class of honeycomb-lattice,
anisotropic, spin-half models with gapped and gapless
spin-liquid phases and Majorana fermion excitations [1],
represents a major advance in the field of quantum mag-
netism. Furthermore, Jackeli and Khaliullin’s demon-
stration that such special Kitaev-couplings can indeed
be realized in real materials [2] has led to intense the-
oretical and experimental activity in the field. Several
classes of materials dubbed ‘Kitaev-materials’[3–5] have
been synthesized and these now represent some of the
most promising candidates for the much sought after
quantum spin-liquid phase of matter [6]. Several neutron
scattering and other experimental studies have been in-
terpreted as evidence for proximate spin-liquid behavior,
even though the true ground-state may often be long-
range ordered [7–11].
Heisenberg exchange couplings are the most generic

terms in modeling quantum magnetism. Even in Kitaev-
materials, there is always varying degree of Heisen-
berg exchange couplings present, which can affect key
properties including driving the system away from the
spin-liquid phases and into various magnetically ordered
phases [12–23]. The real materials may have additional
exchange couplings other than Heisenberg and Kitaev
couplings and possibly further neighbor interactions [3–
5]. However, to keep things simple, in this paper, we con-
fine ourselves to the nearest-neighbor Kitaev-Heisenberg
model. One can regard this as a phenomenological ap-
proach to the Kitaev materials, where deviations from
the pure Kitaev model are small. The high tempera-

ture properties are not so sensitive to details of the addi-
tional couplings and the Heisenberg-Kitaev model allows
us to systematically explore the consequences of devia-
tions from the pure Kitaev limit. Any Heisenberg cou-
pling destroys the solubility of the model and necessitates
numerical studies. Previously these models have been
studied numerically by Monte Carlo simulations, Exact
Diagonalization and other techniques based on finite-size
clusters [12–23].

Here we present a study of the nearest-neighbor
Kitaev-Heisenberg model using the high temperature se-
ries expansion (HTSE) method [27, 28]. These series ex-
pansions are formally defined in the thermodynamic limit
and give accurate properties of the infinite system when
the expansions are convergent typically at temperatures
above the exchange energy scales. At lower tempera-
tures, one can use Pade extrapolation methods to obtain
the desired thermodynamic properties. We typically find
good convergence up to and a little below the temper-
ature of the peak in the heat capacity associated with
short-range magnetic order in the system.

The uniform susceptibility is often used to obtain the
first estimates of the exchange constants for magnetic
materials. In the Kitaev coupling dominated regime, the
inverse susceptibility appears to be nearly linear over a
wide temperature range. Plots of inverse susceptibility
versus temperature[24–26] can be extrapolated to obtain
the Curie-Weiss constant. However, one needs to be care-
ful in relating these to the microscopic exchange con-
stants for these systems as already at temperatures 10
times the Curie-Weiss temperature the effective Curie-
Weiss constant obtained from such an extrapolation can
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FIG. 1: A plot of the uniform susceptibility of the model as
a function of temperature T for different values of exchange
constants K and J . The upper plot corresponds to an anti-
ferromagnetic Kitaev coupling and the lower plot to a ferro-
magnetic Kitaev coupling.

be off by a factor of 2.

The behavior of entropy and heat capacity in the Ki-
taev coupling dominated regime is qualitatively different
from that in the Heisenberg coupling dominated regime
and can serve as a simple marker for the importance of
Kitaev couplings in a real material. In this regime, the
entropy is realeased only partially at the onset of short-
range order marking the beginning of a proximate Ki-
taev spin-liquid intermediate temperature regime. This
is because the intermediate temperature regime has very
short-range spin-correlations and still contains substan-
tial entropy. In their Monte Carlo studies, Nasu et al [21]
found a plateau in the entropy over a range of temper-
atures at a value of 1

2R ln 2. We are studying a model
in which the Kitaev couplings are same along the three
bond-directions of the Honeycomb lattice, where there
may not be such a strict plateau. Our studies show only
hints of a possible plateau formation not different from
what is seen in some experiments [26].

Quite remarkably, the magnitude of the short-ranged
peak in the heat capacity is itself a marker of whether

the Kitaev terms are important or whether the system is
dominated by Heisenberg exchange terms. In the Kitaev
regime this peak is of significantly smaller magnitude.
We suggest that this may itself provide a good exper-
imental means to quickly characterize which materials
are likely to be near the quantum spin-liquid phase.

MODELS

We study the honeycomb-lattice Kitaev-Heisenberg
model with Hamiltonian

H = J
∑

<i,j>

~Si · ~Sj +K
∑

<i,j>α

Sα
i S

α
j , (1)

where the sums run over all nearest neighbor pairs of
the Honeycomb lattice. The second sum represents the
Kitaev couplings. The bonds of the honeycomb lattice
can be divided into 3 different types labelled by α = x, y,
or z. The Kitaev coupling along the bond type α involves
bilinear spin-couplings involving only the spin operator
Sα
i . We note that, in the literature, the opposite sign of

the couplings as well as a factor of 2 in the definition of
the Kitaev terms has sometimes been used. And, in fact,
theory points towards a ferromagnetic Kitaev exchange,
which in our notation corresponds to negative K. Also,
in our study the strength of the Kitaev couplings are the
same in all directions.
We develop high temperature series expansion for the

logarithm of the partition function using the linked-
cluster method. To illustrate the basic method [27], we
expand the canonical partition function as,

Z = Tr exp (−βH) (2)

=
∑

∞

n=0
(−β)n

n! Tr Hn,

where the trace represents a sum over all states in the
Hilbert space. Since H couples only pairs of sites, Hn

can be expressed as a sum over terms each of which con-
tains only a finite number of spin operators. Hence, the
trace can be evaluated by considering finite sets of spins.
When an extensive quantity such as the logarithm of the
partition function is considered, the calculation can be
reduced to one requiring only traces over connected clus-
ters of spins. The linked cluster method [27] is a power-
ful computational technique that allows one to carry out
such calculations to some order in β by an automated
computer program resulting in the correct series coeffi-
cients for the system in the thermodynamic limit.
For our Hamiltonian, we have done these series expan-

sions for the logarithm of the partition function to order
β14. Series coefficients for selected values of J and K are
given in supplementary materials. From the logarithm of
the partition function, the internal energy, heat capac-
ity and entropy follows. In addition, we also apply an
external-field along the x-axis, and calculate the uniform
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FIG. 2: A plot of the inverse susceptibility of the model as
a function of temperature T for different values of exchange
constantsK and J . The linear temperature dependence of the
inverse susceptibility seemingly extends well below T = K.
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FIG. 3: The effective Curie-Weiss T eff
cw constant obtained

by a straight-line extrapolation of the inverse susceptibility
locally from some temperature T as a function of temperature
T . Note that in the Kitaev regime the effective Curie-Weiss
constant can differ from the true Curie-Weiss Tcw constant by
a factor of two already at a temperature 10 times the Curie-
Weiss temperature.

susceptibility, in powers of β, as the second derivative of
the free-energy with respect to this external field. These
expansions are carried out for Tχ to order β12. The se-
ries coefficients for the susceptibilities are also given in
the supplementary materials. We will present results for
ferromagnetic and antiferromagnetic Kitaev coupling K
as well as for J/K ratios of 0, ±0.1 and ±1 to cover
a wide range of behaviors. Larger J values are closer
to the J/K = 1 behavior so that the system is well
in the Heisenberg dominated regime already when the
two couplings are equal. We call the parameter range
|J/K| ≤ 0.1 as the Kitaev regime. At high tempera-
tures the thermodynamic properties are not so sensitive
to much smaller variations in parameters.

RESULTS

We analyze the series by using Pade approximants.
As long as different approximants agree with each other,
those usually imply convergence in the thermodynamic
limit. At least two approximants are plotted in each
case. Some times Pade approximants have nearby pole-
zero pairs around some temperature. That spoils the
convergence around that temperature and shows up as
a sharp glitch in our plots. Such a glitch need not af-
fect the convergence of the approximants away from the
neighborhood of that temperature. However, at low tem-
peratures different approximants clearly start diverging
from each other. This shows up as a fork in the plots
of various properties, with some growing and others di-
minishing in magnitude. Then, the series analysis can no
longer be relied upon.
We begin in Fig. 1 with a plot of the uniform suscepti-

bility as a function of temperature on a log-log scale. We
see that in the Kitaev regime the plots remain close to
each other. Note that for J = 0, even though the entropy
and heat capacity do not depend on the sign of K, the
susceptibility very much does.
The asymptotic Curie-Weiss constant for the model

can be obtained from the very first order of the high
temperature expansion as:

Tcw = 0.75J + 0.25K. (3)

In Fig. 2, we show the Curie-Weiss plot of inverse sus-
ceptibility versus temperature. In the Kitaev regime, the
plot looks linear over a wide temperature range. Follow-
ing Kouvel and Fisher [29, 30] one can define an effective
Curie-Weiss temperature as

T eff
cw = −T −

χ

dχ/dT
(4)

If we draw a straight-line to the inverse susceptibility
plot at some temperature T , T eff

cw would be the inter-
cept. In other words, if one obtains Curie-Weiss con-
stant from experimental data up to some temperature
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FIG. 4: A plot of the entropy per mole of the model as a func-
tion of temperature T for different values of the Heisenberg
coupling J and the Kitaev coupling K. The upper plot corre-
sponds to an antiferromagnetic Kitaev coupling and the lower
plot to a ferromagnetic Kitaev coupling. Some of the Pade
approximants have nearby pole-zero pair around some tem-
perature, that shows as a sharp glitch in the plots. These
approximants do not converge near that temperature, but
should be fine away from that temperature.

only an effective Curie-Weiss constant will result. In
Fig 3, we show the effective Curie-Weiss constant as a
function of temperature. The temperature scale itself
is normalized by the magnitude of the Curie-Weiss con-
stant for the given exchange values. Note that when the
Curie-Weiss constant is antiferromagnetic, the effective
Curie-Weiss constant increases in magnitude as temper-
ature goes down whereas when the Curie-Weiss constant
is ferromagnetic it decreases in magnitude as the tem-
perature is lowered. The Kitaev regime shows very sub-
stantial deviations from the high temperature behavior
already at a temperature 10 times Tcw. This needs to be
taken into account in obtaining exchange constants from
such measurements.

Plots of the molar entropy as a function of temperature
is shown in Fig. 4 and the heat capacity in Fig. 5, with the
temperature on a logarithmic scale. The main message
in these plots is very simple. The Kitaev regime corre-
sponding to small J/K has very different temperature
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FIG. 5: A plot of the heat capacity per mole of the model in
units of the gas constant R as a function of temperature T for
different values of the Heisenberg coupling J and the Kitaev
coupling K. The upper plot corresponds to an antiferromag-
netic Kitaev coupling and the lower plot to a ferromagnetic
Kitaev coupling. Note that a fork-like split of approximants
shows that the convergence is breaking down at lower tem-
peratures. For small Heisenberg couplings, the convergence
is better for ferromagnetic Kitaev coupling than for antifer-
romagnetic Kitaev coupling.

dependence of heat capacity and entropy than Heisen-
berg systems where most of the entropy is released in
the development of short-range order. That is not the
case in the Kitaev regime. Nasu et al have emphasized a
plateau in the entropy at a value of ln2/2 in the gapped
spin-liquid models and a plateau-like feature in the gap-
less spin-liquid models [21]. This is consistent with the
idea of a two step release of entropy and the development
of an intermedaite proximate spin-liquid regime.

We are studying here the gapless spin-liquid model
only as the Kitaev couplings are taken to be equal along
all three bond-directions of the honeycomb lattice. We
do not see a plateau in the entropy plots. But, for the
pure Kitaev model and a range of Heisenberg couplings
the development of a plateau-like feature at still lower
temperature is plausible. Note that the entropy at the
lowest temperatures we show is still above 1/2 ln 2. This
feature seems more robust when the Kitaev exchange is
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ferromagnetic than when it is antiferromagnetic. Hence,
we would conclude that if a plateau actually develops
that would be at temperatures below T/|K| = 0.1.

Pade extrapolations for the heat capacity are shown
in Fig. 5. Some of the Pade approximants have nearby
pole-zero pair [31] around some temperature, that shows
as a sharp glitch in the plots. These approximants do not
converge near that temperature, but should be fine away
from that temperature. A striking thing about the plots
is that the magnitude of the heat capacity peak at high-
temperatures where the short-range order develops is sig-
nificantly smaller in the Kitaev regime than that when
the system is dominated by the Heisenberg coupling and
is likely to be deep in the long-range ordered phase at
T = 0. Although our results are not always well con-
verged below the short-range order peak, we can clearly
say that the magnitude of this peak remains roughly un-
changed in the Kitaev regime.

In the absence of a finite temperature phase transition,
it should be possible, in principle, to extrapolate thermo-
dynamic properties all the way down to T = 0. However,
that usually does not work well [27, 32]. Bernu and Mis-
guich have suggested a very different extrapolation pro-
cedure for the heat capacity [33] that takes advantage of
known zero-temperature properties. While this may be
helpful for the pure Kitaev model, low temperature prop-
erties of the infinite system are not known well enough for
the Kitaev-Heisenberg model. And, the extrapolations
can be highly sensitive to the exact T = 0 properties as
well as to the full details of the model parameters. We
leave such extrapolations for a later study.

We turn now to experimental systems. Various re-
searchers have discussed the possibility of exchange con-
stants other than Kitaev and Heisenberg terms as well
as various anisotropies and further neighbor terms in the
Hamiltonian. The high temperature thermodynamics are
not very sensitive to the full details of the model. Looking
at the data of Mehlawat et al [26], for Na2IrO3 the peak
in the heat capacity occurs at a temperature of about 110
K. In the Kitaev regime, the peak occurs at a tempera-
ture of 0.3 to 0.4 in units of the Kitaev coupling. That
translates into a Kitaev coupling of about 275− 370 K.
So far, the Kitaev couplings can have either sign. The
Curie-Weiss fit gives an antiferromagnetic Curie-Weiss
temperature of about 125 K. This value of the Curie-
Weiss constant would imply an antiferromagnetic Kitaev
exchange of approximately 500K. However, once we take
into account that the measured Curie-Weiss constant is
roughly 1.2-1.8 times too large, once again the Kitaev
exchange constant is in the range of 280− 400 K. Thus,
the high temperature thermodynamics of this material is
in good agreement with the Kitaev regime, with a single
antiferromagnetic Kitaev coupling. The data is similar
but more erratic for Li2IrO3, where both quantities are
about 20 percent smaller. These results are surprising as
theory points to a ferromagnetic Kitaev exchange. And,

in that case, explaining the susceptibility data requires
invoking strong second and third neighbor interactions.

CONCLUSIONS

In conclusion, in this paper we have studied the
honeycomb-lattice Kitaev-Heisenberg model using the
high temperature series expansion method. We have
presented results for thermodynamic properties including
the entropy, the heat capacity and the uniform suscep-
tibility for a range of Kitaev and Heisenberg exchange
couplings. We showed that the usual Curie-Weiss plot
of inverse susceptibility looks linear in temperature over
a wide temperature range in the Kitaev regime. But
it shows significant deviations from the asymptotic high
temperature behavior, which means one needs to be care-
ful in obtaining exchange constants from such a Curie-
Weiss plot. Comparison of our results with experiments
on Na2IrO3 gives a dominant antiferromagnetic Kitaev
exchange constant of 280− 400 K.

The heat capacity and entropy show very distinct be-
havior in the Kitaev-exchange dominated regime. The
heat capacity peak has a much smaller value in this
regime and is effectively constant as J/K is varied. This
itself may be used as a marker in experimental studies for
an early determination of the importance of Kitaev cou-
plings in the materials. Furthermore, the entropy is re-
leased more gradually as the temperature is lowered cre-
ating a very distinct and characteristic experimental sig-
nature. While we do not see clear evidence of an entropy
plateau, our results are consistent with the development
of such a plateau-like feature at still lower temperature.
Clearly, the entropy release in these systems is like a two
step process, where the higher temperature heat capacity
peak only gives rise to an intermediate proximate spin-
liquid phase at intermediate temperatures. Somewhat
surprisingly, a single antiferromagnetic Kitaev exchange
in the range of 275 − 400 K gives a reasonable account
of both heat capacity and susceptibility data in sodium
and lithium iridates.
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