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We develop an approach to apply Wang-Landau algorithm to multicomponent alloys in a semi-
grand-canonical ensemble. Although the Wang-Landau algorithm has great advantages over con-
ventional sampling methods, there are few applications to alloys. This is because calculating com-
positions in a semi-grand-canonical ensemble via the Wang-Landau algorithm requires a multi-
dimensional density of states in terms of total energy and compositions, and constructing it is
difficult from the viewpoints of both implementation and computational cost. In this study, we
develop a simple approach to calculate the alloy phase diagram based on the Wang-Landau algo-
rithm, and show that a number of one-dimensional densities of states could lead compositions in
a semi-grand-canonical ensemble as a multi-dimensional density of states could. Finally, we apply
the present method to Cu–Au and Pd–Rh alloys and confirm that the present method successfully
describes the phase diagram with high efficiency, validity and accuracy.

I. INTRODUCTION

In alloy studies with first-principle calculations, esti-
mating thermodynamic properties such as free energy is
a major goal. Thermodynamic integration (TI), which is
based on the Metropolis algorithm1, is one of the most
widely-used methods to calculate thermodynamic prop-
erties and temperature-composition phase diagrams2–5.
In simulations on a given lattice, cluster expansion6 (CE)
formalism, which reconstructs the coarse-grained Hamil-
tonian from the outputs of density functional theory
(DFT), plays an important role for alloys7–9 because CE
describes the multibody interactions caused by the metal-
lic bonds. Hence, the combination of DFT, CE and TI
has been widely used for estimating alloy phase diagrams.

Although TI is a powerful method to calculate free
energy, TI has a significant problem in that it suffers
from phase transitions. At 1st-order phase transitions,
the tunneling barrier between coexisting phases increases
exponentially by the Boltzmann factor. This causes in-
accurate estimation of phase transition points and also
of the free energies near the transition points. In ad-
dition, at 2nd-order phase transitions, critical slowing
down also leads to inaccurate results near the transi-
tion points. In alloy studies, these problems have been
avoided by looking for intersections of free energies be-
tween two metastable phases2–5.

The Wang-Landau (WL) algorithm10,11 is one of the
most efficient and accurate methods to obtain the density
of states, characterizing the thermodynamic properties
of a considered system at equilibrium. Let us explain
the characteristics of the WL algorithm. The partition
function, Z, is given as:

Z =
∑
E

W (E) exp

(
− E

kBT

)
. (1)

Here, W (E) is the density of states (DOS), kB is the
Boltzmann constant and T is temperature. Compared
with the Metropolis algorithm1, we emphasize that the

disadvantage of the WL algorithm is that the simulation
time exhibits power-law scaling for system size39–41 (see
Appendix for further details). Although this poor scaling
strongly limits using the WL algorithm for a huge system,
there are some important advantages: (i) it overcomes
the problems caused by 1st- and 2nd-order phase tran-
sitions, (ii) it calculates Helmholtz free energy directly,
and (iii) once W (E) is estimated, one can calculate the
free energy using Eq. (1) and F = −kBT lnZ at any tem-
peratures. These advantages are achieved by a random
walker that covers the whole energy space and constructs
the W (E) efficiently.

Although the WL algorithm has these great advantages
over the conventional method, there are few applications
to alloys. This is because canonical WL methods12,13

where compositions in a given simulation cell are fixed
have difficulty describing the phase-separated states.
Therefore, for constructing alloy phase diagrams, a semi-
grand-canonical ensemble has been used instead of the
canonical one, but a multi-dimensional DOS is typically
required in the WL scheme. WL studies on a multi-
dimensional density of states14–19 indicated difficulties
connecting20 or interpolating21 the pieces of W (E). Al-
though the above difficulties have been overcome by tools
such as the multi-parallel framework16–19, constructing a
multi-dimensional density of states remains quite a dif-
ficult problem because of the associated computational
costs. Since all of the bins must satisfy the flatness
criterion simultaneously, wasteful accumulations of DOS
occur22 and the simulation time becomes large if the di-
mension of DOS increase.

In this study, we suggest a new method to construct
the phase diagram for multicomponent alloys based on
the WL algorithm, avoiding explicit construction of the
multi-dimensional DOS but using a number of one-
dimensional DOSs in a semi-grand-canonical ensemble.
Although many grand-canonical WL methods have been
proposed, the semi-grand-canonical one has not been
proposed because describing phase-separated states cor-
rectly with the CE scheme is a unique problem for alloy
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phase diagrams. We applied the present method to two
binary alloys, Cu–Au and Pd–Rh, which show ordering
and phase-separation tendencies respectively. Through
these two alloys, we confirmed that our method success-
fully calculates their phase diagrams and captures the
characteristics of Cu–Au and Pd–Rh. Moreover, even
though our method suffers from poor scaling originating
from the WL algorithm, we found that this semi-grand-
canonical WL method shows weaker scaling than the
canonical WL method (see Appendix). Note that there is
a great advantage in that our method could be combined
with the multi-parallel framework16–19. As above, the
combination of DFT, CE and WL offers be a promising
method to obtain alloy phase diagrams.

II. METHODOLOGY

First, in Sec. II A, we give a brief explanation of CE
which describes the total energy of an alloy by the coarse-
grained Hamiltonian. Second, in Sec. II B, the conven-
tional WL algorithm in the canonical ensemble for alloys
is presented. Finally, in Sec. II C, we show how to apply
the conventional WL algorithm to multicomponent al-
loys, and why the conventional one is not suitable for mul-
ticomponent alloys. As above, we present a new method
based on the WL algorithm to handle multicomponent
alloys.

A. Cluster expansion

In CE, atomic configuration on a given lattice, σ, is de-
scribed by a complete and orthogonal set of discrete basis
functions. Suppose that the occupation of an element on
lattice site i is specified by an Ising-like spin variable Si.
CE introduces the cluster on the lattice, k, e.g., points,
pairs and triplets. Especially in a binary alloy, if the ba-
sis functions on a lattice point, i, are {1, Si} where Si
has +1 or 1, the so-called “correlation function”, ξk, is
defined as the average of products of spin variables on k
over all symmetrically equivalent k in σ. Thus, the con-
figurational property, e.g., E, is completely represented
via correlation functions and their coefficients:

ECE(σ) =
∑
k

Vkξk(σ), (2)

where Vk is called the effective cluster interaction (ECI)
and can be practically obtained by fitting the DFT for-
mation energy. Since in Eq. (2) Vks are constant and only
ξks are variable, the formation energy for any configura-
tion is easily obtained compared with DFT. Thus, this
coarse-grained Hamiltonian ECE enables us to calculate
the large number of energies that is required for the MC
simulations.

B. Wang-Landau algorithm in canonical ensemble

Suppose a random walker exists in a configuration
space. If we consider an Ising spin model, the moves of
the walker is often defined as single-spin flip, which may
change its orientation. However, if we consider an alloy
system in a canonical ensemble, single-spin flip method
could not be used because the chemical potentials for
each element should be considered (unlike in the Ising
spin model without a field) and therefore compositions
should remain constant. Thus, in order to keep com-
positions fixed, a pair of spin exchanges, where a pair of
spins attempt to exchange their positions, is often used in
alloy studies. Through repeated updates of the configu-
ration, one obtains the time series of the random walker
corresponding to the samples of configuration. In the
Metropolis algorithm, since the acceptance ratio is pro-

portional to exp
(
− E
kBT

)
, the time series corresponds to

the samplings from the canonical distribution.

In the WL algorithm, the acceptance ratio is propor-
tional to 1/W (E), enabling the random walker to attain
all states uniformly in the energy space. After the ac-
ceptance or rejection trial, W (E) is updated as W (E)→
W (E) × f where f is a modification factor that is ini-
tially greater than f0 = e1. At the same time, the his-
togram H(E) is also incremented as H(E)→ H(E) + 1.
When H(E) becomes sufficiently “flat”, f is reduced
such that fi+1 =

√
fi and all histogram bins are reset

to zero. Although there are many definitions of flatness
of H(E)10,11,23,24, in this study we regard H(E) as “flat”
when all possible H(E) are larger than 80% of the av-
erage of H(E)10,11. Finally, f becomes sufficiently small
(e.g., f ' 10−8) to stop the simulation because f is rele-
vant to the error of estimated DOS22.

In order to obtain temperature-composition phase di-
agrams for alloys, both the free energy and compositions
are required at a specific temperature. Under specific
compositions in a canonical ensemble, we need only the
Helmholtz free energy, which is easily obtained by the
estimated DOS. Although the above discussion is theo-
retically correct, the above canonical method may cause
a significant error of the free energy due to practical rea-
sons, using the finite simulation cell. The finite simula-
tion cell under fixed compositions makes the configura-
tion attained a phase-separated mixture, which causes in-
terfacial contributions to total energy. This contribution
due to the finite simulation cell produces an inaccurate
DOS different from the true DOS in the infinite system,
and makes it difficult to describe phase separation. This
problem is avoided using a semi-grand-canonical ensem-
ble.
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C. Present extension of Wang-Landau algorithm
for a semi-grand-canonical ensemble

The semi-grand-canonical (SGC) ensemble has been
widely used for estimating phase diagrams of alloys. In
an SGC ensemble, concentrations are allowed to vary un-
der externally imposed chemical potentials with a fixed
total number of atoms. This is different from a grand-
canonical ensemble in which both the concentrations and
the total number of atoms vary. One of the advan-
tages of SGC is that the configuration never becomes
a phase-separated mixture2 and always shows a pure
phase. Therefore, interfacial contributions from a phase-
separated mixture do not contribute to the calculated
thermodynamic properties in the SGC ensemble and the
DOS is estimated within acceptable error in a finite sim-
ulation cell.

Hereinafter, for simplicity, we consider an A-B binary
alloy without lack of generality. We can thus simply re-
gard the concentration x as x = xB and the chemical
potential µ as µ = µB − µA.

In the SGC ensemble, the corresponding partition
function is defined as:

Y (T, µ) =
∑
E,x

W (E, x) exp

(
−E − µNx

kBT

)
. (3)

Unlike in the canonical ensemble where the composi-
tions are obtained trivially, in the SGC ensemble, since
we handle chemical potentials instead of compositions,
we should calculate ensemble-averaged compositions. A
straightforward solution to obtain the compositions in
the SGC ensemble is

〈x〉 =

∑
E,x xW (E, x) exp

(
−E−µNx

kBT

)
Y (T, µ)

. (4)

Here 〈〉 denotes the ensemble average and N denotes
the system size. Eq. (4) means that calculating phase
diagrams for a multicomponent alloy requires a multi-
dimensional DOS in terms of total energy and composi-
tions. Here again, the difficulties for calculating a multi-
dimensional DOS are too time-consuming to construct
the DOS22 compared to a one-dimensional DOS and er-
rors arise in connecting20 or interpolating21 the pieces of
DOS. In order to avoid these difficulties, we suggest using
the thermodynamic relation.

If we consider µ as constant, the total energy in Eq. (2)
is rewritten as:

Ê = E − µNx. (5)

Then Eq. (3) is rewritten as:

Y (T, µ) =
∑
Ê

Wµ(Ê) exp

(
− Ê

kBT

)
. (6)

The thermodynamic potential in the SGC ensemble, φ,
is derived from φ(T, µ) = −kB lnY , like the Helmholtz
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FIG. 1. Schematic illustration of the the DOS for binary
phase-separation alloy under three types of chemical poten-
tial.

free energy in the canonical ensemble. Otherwise, the
ensemble averaged composition could not be calculated
through Eq. (6) because Wµ(Ê) is not a function of x.
Here, φ has a relationship to F through the Legendre
transformation:

φ = F − µNx. (7)

We can obtain x using partial differentiation through in-
terpolating φ for each chemical potential:

x = − ∂φ

∂(µN)
. (8)

Here we offer a qualitative discussion as to why this
sampling method gives a desirable result, although our
method samples all phase-separated mixtures including
interfacial energy like the canonical method samples. In
Fig. 1, we show a schematic illustration of the DOS for a
binary phase-separation alloy under three types of chem-
ical potential. Under any condition µA � µB, µA � µB

or µA ' µB, the A-rich or B-rich phase shows low en-
ergy compared to phase-separated mixtures including
high interfacial energy. Since the contribution of high
energy DOS to free energy will vanish at low temper-
ature where the phases are separated, phase-separated
mixtures do not affect free energy in the semi-grand-
canonical method. Obtaining a desirable result, which
means the free energy free from undesirable interfacial
energy, mainly depends on whether the low energy DOS
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is correctly described or not. This restriction, which orig-
inates from using the finite simulation cell, affects the
free energy and leads to undesirable results. (This unde-
sirable result is demonstrated in Sec. III B.) From this
simple discussion, the semi-grand-canonical WL method,
which completely samples each low-energy states and
phase-separated mixtures, could appropriately describe
the free energy and equilibrium state.

Here we summarize two advantages of our method
over the canonical method. The primary advantage over
the multi-dimensional one that not all the information
of DOS is needed. Even if one would like to obtain a
partial phase diagram, the conventional WL algorithm
should be constructed for whole of the multi-dimensional
DOS to calculate Eq. (4). In contrast, our method needs
a number of one-dimensional DOSs only near the tar-
get region. Even though many Wµ(Ê) are required for
Eq. (8), the total simulation time is much shorter than
that of W (E, x) because again our method explicitly
avoid wasteful accumulations in matching the pieces of
DOS. The Secondary advantage is that our method uses
a single-spin-flip method instead of a pair of spin ex-
changes because our method does not fix the composi-
tions. Comparing the two types of updated methods, we
discuss the simulation time requirements and limitations
of our method in Appendix V.

III. RESULTS AND DISCUSSION

In order to confirm validity and applicability of our
method, we applied it to Cu–Au (Sec. III A) and Pd–
Rh (Sec. III B) alloys. Cu–Au alloy shows a 1st
order-disorder phase transition, and has been quite well
studied25–28 in terms of experiments and first-principles
calculations. Through its application to Cu–Au, we con-
firmed that our method could describe the ordering ten-
dency of alloys. Pd–Rh alloy, on the other hand, shows a
phase-separation tendency where two phases coexist. We
also applied our method to Pd–Rh alloy in order to con-
firm that it can describe the phase coexistence, Pd–Rh
is also quite a well-studied system29–31.

Note that in this study, for simplicity, we only consider
the configurational free energy, and do not include non-
configurational free energies, e.g., vibrational and elec-
tronic free energy. Although, in general, the vibrational
effect is significant for phase diagrams especially in or-
dering alloys, it just lowers the transition temperatures
and does not change the low-temperature phases in Cu–
Au28. Therefore, even by considering only the configura-
tional free energy, we can capture the characteristics for
ordering tendency and the phase diagrams of Cu–Au and
phase-separation tendency and phase diagram of Pd–Rh
without lack of validity.
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FIG. 2. ECI for (a) Cu–Au and (b) Pd–Rh alloys except for
empty cluster ECI. Broken line indicates zero.

A. Cu–Au

For the calculation conditions, total energies are
obtained by first-principles calculation via the VASP
code32,33, based on the projector-augmented wave
method (PAW)34 within the generalized-gradient ap-
proximation of Perdew-Burke-Ernzerhof (GGA-PBE)35

to the exchange-correlation functional. The plane wave
cutoff of 500 eV is used, and atomic positions are fully re-
laxed on the underlying fcc lattice. Total energies of 183
structures consisting of up 32 atoms are calculated. We
obtained 16 optimized ECI (see Fig. 2(a)) with a predic-
tion accuracy, a cross-validation score, of 1.1 meV/atom,
which gives sufficient accuracy to capture the thermody-
namic characteristics for Cu–Au alloy. In Fig. 2(a), since
the nearest neighbor pair ECI has largest positive value,
we can see a strong tendency to order. The triplet and
quadruplet ECIs, which mainly mean a contribution of
atomic local relaxation, are large because there are large
differences in lattice constant between Cu and Au. In
Fig. 3, through using derivative structures36 up to 12
atoms, we checked whether our ECIs are valid for de-
scribing L10 at Cu0.5Au0.5 and L12 at Cu0.75Au0.25 and
Cu0.25Au0.75, and confirmed that our ECI completely de-
scribes the low temperature phases in Cu–Au.

The simulations were done for a 4 × 4 × 4 super-
cell on fcc until the factor reached ffinal ≤ exp(10−7).
For each simulation, we set the chemical potential µ =
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FIG. 3. Formation energies obtained via all derivative struc-
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FIG. 4. Cu–Au T -µ phase diagram. Points denote highest
heat capacities for each chemical potential. Note that two
metastable states coexist at any phase transition point in the
T -µ phase diagram, unlike in the T -x one.

µAu−µCu = 0.313-0.703 eV/atom, and calculated φ(T, µ)

using Wµ(Ê) and Eq. (6). In Fig. 4, we plot the T -
µ phase diagram where a phase transition point is re-
garded as one that shows the highest heat capacity,
Cmax(T, µ). We confirmed three order phases in Cu–Au,
L10 for Cu0.5Au0.5 and L12 for both Cu0.75Au0.25 and
Cu0.25Au0.75 through the whole of simulation.

The temperature-composition phase diagram for Cu–
Au by our method is shown in Fig. 5. This phase diagram
is obtained by converting the T -µ phase diagram (Fig. 4)
into a T -x one (Fig. 5) through Eq. (8) with the interpo-
lation of φ(T, µ) for each chemical potential via a cubic
spline function. Note that two phases are in equilibrium
at a specific phase transition point in the T -µ phase dia-
gram. Therefore, we consider one phase as one just before
phase transition and another as just after that. Compar-
ing our results and the experimental data37, we confirmed
that our method successfully describes the Cu–Au phase
diagram capturing the thermodynamic characteristics of
Cu–Au alloy. However, we could see that some simula-
tions under a specific µ would fail to describe F (T, x)
correctly. This is due to the differential error in Eq. (8)
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tained by our method over the range from 200K to 800K. Solid
line denotes the order-disorder phase transition temperatures
obtained by the T -µ phase diagram in Fig. 4 and Eq. (8).
Broken line indicates experimental results37.

and the small size of our simulation cell. As above, our
method is found to be applicable to an alloy which shows
an ordering tendency.

B. Pd–Rh

The calculation conditions for Pd–Rh are almost same
as that for Cu–Au in Sec. III A. The differences are as
follows; the plane wave cutoff of 600 eV is used and to-
tal energies of 71 structures consisting of up 32 atoms are
calculated. We obtained 12 optimized ECI (see Fig. 2(b))
with a cross-validation score of 0.8 meV/atom, which
gives sufficient accuracy to describe the phase-separation
tendency for Pd–Rh alloy. In Fig. 2(b), since the near-
est neighbor pair ECI has the largest negative value, we
can see a strong tendency to separate. The triplet and
quadruplet ECIs are small because there are only small
differences in lattice constant between Pd and Rh.

The simulations were performed for 6×6×6 supercells
on fcc until the factor reached ffinal ≤ exp(10−7). For
each simulation, we set the chemical potential µ = µRh−
µPd = (-2.079)-(-2.043) eV/atom.

The temperature-composition phase diagram for Pd–
Rh is shown in Fig. 6 with the same procedure as for Cu–
Au. Unlike Cu–Au, which shows a 1st-order phase tran-
sition, the phase-separation system does not always show
a clear peak of heat capacity under a specific µ. However,
by comparing the Helmholtz free energy for each phase at
a given temperature, we could detect the phase bound-
ary. In Fig. 7, the Helmholtz free energy at T = 900K is
shown with a linear transformation for the sake of clarity.
With least-squares fitting to a quadratic curve for each
phase, we can clearly see a common tangent line between
the two curves indicating phase coexistence at a specific
T and µ. Regarding the phase boundary as the points of
contact between the quadratic curves and the cotangent



6

 900

 1100

 1300

 0  50  100

Te
m

pe
ra

tu
re

 [K
]

at. %

-8

-7

-6

-5

H
elm

holtz Free energy [eV
/atom

]

Pd	 Rh	

Pd, Rh	

FIG. 6. Pd–Rh Helmholtz free energies and compositions
obtained by our method over the range from 900K to 1300K.
Solid line denotes the phase-separation line obtained by our
method. Broken line indicates experimental results38.

-6

-4

-2

0

0 50 100

H
el

m
ho

ltz
 fr

ee
 e

ne
rg

y 
[m

eV
/a

to
m

]

at. %

at. %

Pd Rh

Pd Rhat. %

(a)

(b)

-0.02

-0.01

0.00

0.01

0 50 100

H
el

m
ho

ltz
 fr

ee
 e

ne
rg

y 
[e

V
/a

to
m

]

-6

-4

-2

0

0 50 100

H
el

m
ho

ltz
 fr

ee
 e

ne
rg

y 
[m

eV
/a

to
m

]

at. %

at. %

Pd Rh

Pd Rhat. %

(a)  semi-grand-canonical ensemble

(b) canonical ensemble

-0.02

-0.01

0.00

0.01

0 50 100

H
el

m
ho

ltz
 fr

ee
 e

ne
rg

y 
[e

V
/a

to
m

]

FIG. 7. (a) Closed circle points denote the Pd–Rh Helmholtz
free energy at 900K in Fig. 6. Quadratic curves denote the
fitted value of points for each phase. The straight line denotes
a common tangent line between the two quadratic curves.
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the curves and the line. (b) Pd–Rh Helmholtz free energy at
900 [K].

line, we could explicitly detect the phase boundary for
Pd–Rh shown as a solid line in Fig. 6.

IV. SUMMARY

We suggest a new approach to obtain temperature-
composition phase diagrams for multicomponent alloys
using the Wand-Landau algorithm. Since our method
is not affected by 1st- and 2nd-order phase transitions,
we can calculate the phases and free energies with high
accuracy even near phase transition points where the
Metropolis algorithm and thermodynamic integration
lose accuracy. Through the application of our method to
Cu–Au and Pd–Rh, we successfully obtained the phase
diagrams and free energies. This new approach can re-
place the multi-dimensional DOS as a number of one-
dimensional DOSs also improves the computational effi-
ciency for estimating alloy phase diagrams.
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V. APPENDIX

In this section, two types of update scheme are com-
pared, i.e., single-spin-flip (SSF) in the semi-grand-
canonical ensemble and pair-atoms-exchange (PAE) in
the canonical ensemble. The performance of simulation
methods has been measured by the average tunneling
time39–41, τ , defined as the number of MC steps that
a random walker takes from a ground state to an anti-
ground state (or vice versa). It has been reported39 that
τ for a two-dimensional square lattice L×L Ising model
exhibits power-law scaling, τ ∝ L2d+z, by the perfect flat-
histogram method based on the exact density of states.
Here z is a scaling parameter that depends on the system.
The exact DOS for the L× L Ising model with SSF has
been clarified42, while that with PAE under equiatomic
compositions has been not. In order to compare with
two update types on the same scheme, we use the es-
timated DOS by f ' 10−8 and 90% flatness criterion.
Note that even if the ground states are the same be-
tween ensembles, the ensembles are naturally different in
the simulation. However, both of them become equiva-
lent theoretically when the system size is infinite. Thus,
this comparison would be rationalized if the two types of
the update scheme exhibit the same time-scaling through
several finite simulation cells for L = 4, 8, 16, 32. Besides,
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(a) two-dimensional square lattice Ising model

(b) Cu-Au

(c) Pd-Rh

FIG. 8. Scaling of average tunneling times τ using single-
spin-flip (SSF) and pair-atoms-exchange (PAE) method for
(a) two-dimensional square lattice Ising model, (b) Cu–Au
and (c) Pd–Rh. Closed circles and squares denote τPAE and
τSSF respectively. Broken lines are fitted to each result, and
their slope corresponds to z.

it is interesting to show tunneling times for L × L × L

Cu–Au and Pd–Rh (L = 2, 3, 4, 5).

In Fig. 8, the results of τSSF and τPAE are plotted and
fitted as linear functions in terms of L. Fig. 8 shows
that τPAE also exhibits the power-law scaling with high
z, like τSSF. In Table I, we show the scaling parame-
ters z obtained by fitting the tunneling times. The large

TABLE I. Scaling parameter z for two-dimensional square
lattice Ising model (2D Ising), Cu–Au and Pd–Rh by single-
spin-flip (SSF) and pair-atoms-exchange (PAE).

zSSF zPAE

2D Ising 0.788 ± 0.029 3.073 ± 0.165

Cu–Au 2.529 ± 0.838 6.423 ± 1.713

Pd–Rh 0.728 ± 0.049 3.899 ± 0.670

difference between zSSF and zPAE is due to the ratio of
ρ(E1)/ρ(E0) where ρ(E0) is the number of ground states
and ρ(E1) is the number of first exited states. Although
ESSF

0 = EPAE
0 and ρSSF(E0) = ρPAE(E0), there is a large

difference in the ratio:

ρSSF(ESSF
1 )

ρ(E0)
∝ N,

ρPAE(EPAE
1 )

ρ(E0)
∝ N2.

The difference of z between PAE and SSF for the Ising
model, ∆zIsing '= τPAE−τSSF = 2.285, is in good agree-
ment with this ratio differenceN = L2 due to the simplic-
ity of the model. Likewise, although the results for CuAu
and PdRh include errors in L = 4, 5 due to the complex-
ity of their models, ∆zCuAu ' 3.894 and ∆zPdRh ' 3.171
also show the tendency with the ratio difference N = L3.

Here we summarize the disadvantages and advantages
of our method (semi-grand-canonical WL method) com-
pared with the canonical WL method. Except for the
condition that a system shows an ordering tendency un-
der specific dilute compositions (i.e., the ground state is
not described as a phase-separated mixture state and the
number of possible states the simulation attains under
specific compositions is considerably smaller than that
under not composition restriction), the above discussion
indicates that in alloy studies our method based on a
semi-grand-canonical ensemble is generally useful for not
only estimating accurate thermodynamic properties but
also for searching for the ground state structure, which
is difficult for the canonical WL method.
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17 Y. Li, T. Vogel, T. Wüst, and D. Landau, J. Phys.: Conf.
Ser. 510, 012012 (2014).
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