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Abstract  

Guided elastic waves in homogeneous isotropic plates exhibit conical dispersion at zero wavenumber for 

discrete values of Poisson’s ratio where accidental degeneracy between longitudinal and transverse 

thickness resonances occur. Waves excited at the coincidence frequency have the infinite phase velocity 

associated with thickness mode resonances, but the group velocity remains finite. This leads to 

propagating waves that oscillate in time but are spatially uniform over the plate surface. Here, accidental 

degeneracy is induced in an aluminum plate by cooling the plate to tune the Poisson’s ratio through the 

degenerate point. We measure linear dispersion in the transition from forward to backward propagating 

waves near zero wavenumber. In addition, we demonstrate that waves generated near the coincidence 

frequency exhibit spatially uniform phase over the plate surface, and show angle independent mode 

conversion upon encountering the free edge of the plate. We propose that elastic plates offer a simple 

system to explore the physics of conical dispersion at zero wavenumber, and that this phenomena may 

find application in acoustic devices and nondestructive testing.   



2 
  

I. INTRODUCTION 

Guided elastic waves that propagate in plates, or Lamb waves, have been studied extensively and used for 

a variety of applications in materials characterization and nondestructive testing [1,2]. Recently, there has 

been an interest in utilizing some of the peculiar properties of Lamb waves for enhanced nondestructive 

testing of materials and for the manipulation of wave fields in novel ways. Lamb waves are dispersive and 

the propagating modes within a given plate are dictated by the mechanical properties of the plate and are 

represented by a dispersion curve giving the frequency (ω) as a function of wave vector (k).  For some 

Lamb wave modes, the curvature of the dispersion near k = 0 is negative, leading to a region of backward 

wave propagation over which the phase velocity and group velocity are anti-parallel [3,4].  These modes 

also exhibit a point where the group velocity goes through zero, while the phase velocity remains finite, in 

the transition from backward to forward wave propagating modes. Such zero group velocity (ZGV) points 

exhibit a strong resonance that can be efficiently generated with a laser excitation source, and they have 

been used for a variety of applications in the nondestructive evaluation of materials [5-9].  In addition, it 

has been demonstrated that the mode conversion between backward and forward propagating Lamb 

waves at a thickness step in a plate or at a plate edge gives rise to non-intuitive effects such as negative 

refraction and negative reflection [10-14]. 

The origin of backward wave propagation in both elastic and optical waveguides lies in the repulsion of 

the dispersion curves between modes of the same symmetry [8,15]. This repulsion is the strongest when 

an accidental degeneracy, dictated by the material properties rather than symmetry, occurs between 

closely spaced modes. For isotropic plates, the Poisson’s ratio (or alternatively ratio of the bulk wave 

velocities) determines the character of dispersion. The dispersion curves intersect the k = 0 axis at the 

thickness mode resonances, where the phase velocity becomes infinite while the group velocity vanishes. 

The dispersion curve is generally parabolic in the long wavelength limit as is dictated by the requirement 

that ω(k) = ω(-k). If, however, the Poisson’s ratio is selected such that an accidental degeneracy occurs 

between a longitudinal thickness mode resonance and a shear thickness mode resonance, of the same 
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symmetry, then the dispersion curve becomes linear in the vicinity of k = 0 and, in a three dimensional 

representation, assumes the shape of a cone [16]. This conical dispersion of Lamb waves for special 

values of Poisson’s ratio was originally described mathematically by Mindlin more than a half of a 

century ago [17].   

More recently, there has been considerable interest in both the photonics and acoustics communities in the 

development of metamaterials that exhibit conical dispersion at k = 0 [15-19]. This is typically referred to 

as Dirac cone or Dirac-like cone dispersion depending on the characteristics of the degeneracy that 

occurs. Maznev recently highlighted the similarities (and differences) between conical dispersion in 

isotropic plates and metamaterials [20]. A salient feature of conical dispersion at k = 0 is that the phase 

velocity is infinite while the group velocity remains finite. As the wavelength is infinite, conical 

dispersion at k = 0 essentially decouples the spatial and temporal behavior of the wave field and produces 

a field that is static in space yet oscillating in time. In terms of metamaterials, it has been shown that 

conical dispersion at k = 0 can be used to manipulate wave fields in novel ways to produce effects 

including tunneling, beam steering, total reflection, cloaking, and lensing [18,19,21-27].  

While there has been intensive development in designer materials that have conical dispersion at k = 0, 

the study of this phenomena in isotropic plates has been limited. In fact, there have been no experimental 

investigations of conical or near-conical dispersion of Lamb waves in isotropic plates near k = 0, or the 

unusual physical phenomena associated with such waves, reported in the literature. In part, this may be 

due to the fact that accidental degeneracy only occurs at distinct values of Poisson’s ratio. In this paper, 

we report the experimental measurement of linear dispersion through k = 0 in a homogeneous isotropic 

plate. Starting with an aluminum alloy plate with a near-degeneracy, we slightly modify the elastic 

properties through temperature change to achieve degeneracy at k = 0. Furthermore, we demonstrate the 

spatial and temporal decoupling of Lamb waves with near-conical dispersion through experiments 

showing angle invariant mode conversion from the free edge of a plate.  
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II. CONICAL DISPERSION OF LAMB WAVES 

For freestanding plates, longitudinal and transverse thickness mode resonances occur at k = 0. These 

result in symmetric or antisymmetric wave fields with respect to the mid-plane of the plate.  The 

resonance frequencies and symmetries of the oscillations are [17]: 
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Here c1 and c2 are the longitudinal (L) and transverse (T) wave velocities, respectively, and h is the plate 

thickness. The cutoff frequencies for longitudinal resonances give rise to symmetric modes if m is odd 

and antisymmetric modes if m is even, while the opposite is true for the transverse resonances. In the 

vicinity of k = 0, the dispersion branches can generally be found by expanding ω(k) in even powers of k 

giving [28]: 
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where α corresponds to either a longitudinal or transverse resonance and the curvatures in the long 

wavelength limit are given by: 
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The first term in the curvature equations is always positive, while the second term can take on positive or 

negative values for a given mode depending on the Poisson’s ratio. This term is associated with the 
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interaction between mode curves in the plate. The tangent term becomes infinite, and the interaction 

strongest, only in cases where the ratio of the wave velocities is equal to the irreducible ratio of two 

positive integers of different parity (one odd and one even) [28]. This is precisely the condition for the 

occurrence of degeneracy between longitudinal and transverse thickness resonances of the same 

symmetry. For example, if the ratio between longitudinal and shear wave velocities is equal to two, the 

first longitudinal resonance (m = 1) and the second transverse resonance (n = 2) occur at the same 

frequency. In fact, this case results in degeneracies between odd m-order longitudinal resonances and 2m 

order transverse resonances of the same symmetry. We note that degeneracy between modes of opposite 

symmetry does not lead to a divergence in the interaction term or conical dispersion.   

In the case where the interaction term in Eqn. 3 goes to infinity, the quadratic dispersion indicated by 

Eqn. (2) is no longer valid. As shown by Mindlin, the slope is nonzero at k = 0 and the local dispersion 

assumes the linear of the form [17]: 
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where the group velocity is given by: 
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In such a case, the dispersion curves consist of two lines intersecting at the coincidence frequency at k = 

0, with the line segments above 0
,αωm  exhibiting forward wave propagation, and the line segments below 

showing backward wave propagation. An example of conical dispersion of Lamb waves with c1 = 2c2 (h = 

1.532 mm, c2 = 3.138 mm/μs) is given in Fig. 1(a). Here, the S2/S2B modes and S5/S5B modes are 

degenerate at k = 0, leading to linear dispersion in the long wavelength limit.  A zoomed in view of the 

S2/S2B modes for the degenerate case, along with a near-degenerate case, is shown in Fig 1(b). Generally, 
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the forward propagating branch is referred to as the S2 mode while the backward propagating branch is 

referred to as the S2B mode. Note that the forward and backward propagating branches are actually both 

part of the same continuous S2 mode and are connected to each other (in the absence of degeneracy) 

through a loop in the imaginary (ω, k) plane. In Fig 1(b), the solid line indicates the dispersion curve 

associated with waves propagating in the (arbitrarily defined) positive direction, while the dotted lines 

indicate the curve associated with waves propagating in the opposite direction. In the case of degeneracy, 

the imaginary loop between the S2 and S2B branches is closed, resulting in a smooth transition of the S2 

mode through k = 0. Equation 4 indicates two lines in the degenerate case, ensuring that ω(k) = ω(-k) is 

satisfied. In general, conical dispersion of Lamb waves is associated with closing the imaginary loop of 

individual modes that exhibit both longitudinal and shear thickness resonances. 

In order to demonstrate the excitation of Lamb waves near the conical point, the integral transform 

technique [29] was used to calculate the response of a 1.0 mm thick plate to a normal force with a 

Gaussian spatial distribution with a full width at half maximum (FWHM) of 12.5 mm. The temporal 

profile of the source was also Gaussian with a FWHM of 10 ns, and the wave speeds were selected as c1 = 

6.0 and c2 = 3.0 mm/μs (ν = 1/3). The calculated time domain displacement fields were bandpass filtered 

between 2.0 and 4.0 MHz to isolate the S2/S2B mode near the degeneracy at 3.0 MHz. The resulting 

waveforms, giving the normal displacement as a function of time at several source-to-receiver distances, 

are shown in Fig. 2(a). The time domain responses show the arrival of an initial wave packet that 

propagates with little distortion, followed by a sustained surface oscillation. The magnitude of the Fourier 

transform of the waveform calculated for a source to receiver distance of 30 mm is shown in Fig. 2(b). 

This spectrum has strong peaks both above (forward propagating waves) and below (backward 

propagating waves) the conical point with a dip occurring at the coincidence frequency. The initial wave 

packets in the time domain are composed of forward and backward propagating waves in the nearly linear 

dispersion region close to k = 0. After these wave packets pass the observation point, the surface 

continues to oscillate. Fig. 2(c) shows a zoomed in view of the surface displacements at all source to 
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receiver distances time windowed between 55 and 60 μs. Here, we find that the phase of the surface 

oscillation is nearly identical for all source-to-receiver distances. The magnitude of the Fourier transform 

of the 30 mm source to receiver distance waveform in Fig. 2(c) is shown Fig. 2(d) and confirms that this 

oscillation occurs at the coincidence frequency. Unlike conventional resonances, which have zero group 

velocity at k = 0 and slowly decay (depending on the local curvature) as energy in the vicinity of k = 0 

propagates to the far field, waves excited at the conical point at k = 0 propagate from the source with a 

finite group velocity producing a uniform oscillation over the sample surface. Analogous behavior has 

been observed in zero index metamaterials [30]. 

III. EXPERIMENT SETUP 

The experimental approach includes (a) measurements of the Poisson’s ratio of plates as a function of 

temperature to determine the temperature at which the degeneracy (ν = 1/3) occurs and (b) measurements 

of the dispersion curves and wave fields associated with conical point dispersion. Poisson’s ratio was 

measured using the approach developed by Clorennec et al [6]. This technique allows for very accurate 

determination of Poisson’s ratio independent of the plate thickness. In brief, the sample was excited with 

a pulsed Nd:YAG laser operating at 532 nm. The resulting transient displacement field was measured on 

epicenter on the opposite side of the plate using a Michelson interferometer. The displacement field was 

processed using a fast Fourier transform (FFT) and frequencies corresponding to the S1/S2B and S4/S5B zero 

group velocity resonances were identified. The ratio of these two frequencies is uniquely determined by 

the Poisson’s ratio of the plate, and we used a numerical solution of the dispersion equation to determine 

ν based on the measured ZGV frequencies. Note that for the aluminum alloy tested in this work (ν ~ 1/3) 

we found that the S1/S2B and S4/S5B frequency ratio yielded more consistent results for ν than the S1/S2B 

and A2 resonance frequency ratio used in previous reports. The temperature dependence of Poisson’s ratio 

was found by cooling the sample to approximately -15°C and taking continuous measurements as the 

sample warmed to room temperature. The temperature near the excitation and detection laser positions on 

the sample surface was monitored using a thermocouple. Several aluminum alloys of different 
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compositions and heat treatments were tested at room temperature to determine the material with ν closest 

to 1/3. 

Conical dispersion was evaluated using the experimental setup outlined in Fig. 3. Lamb waves were 

generated by a contact longitudinal wave transducer (Olympus v109) with an aperture of 12.7 mm 

coupled to the sample with a thin oil layer. The transducer was driven by a function generator coupled to 

a power amplifier. The displacement normal to the surface was detected using an adaptive, 

photorefractive crystal based interferometer based on a bismuth silicon oxide crystal. A 3.0 kHz, 3.0 kV 

field was applied to the crystal to enhance two-wave mixing gain, and the laser source for the 

interferometer was a single longitudinal mode frequency doubled Nd:YAG laser with an output of 150 

mW. Further details of the interferometer configuration are available in the literature [31]. The turning 

mirrors on the signal leg of the interferometer were mounted on a 2-axis translation stage in order to 

measure the displacement field over the plate surface. The output of the interferometer was sent through a 

1.9 MHz analog high pass filter and recorded on an oscilloscope. For measurements taken below room 

temperature, the plate was placed in a cooling chamber with transparent walls allowing for detection laser 

access to the surface. The chamber was cooled using dry ice and the measurements were taken when a 

thermocouple attached to the sample surface near the measurement point indicated the desired 

temperature. All of the conical point measurements were performed on a large 610 x 305 mm 6061-O 

aluminum plate with a thickness of 003.0533.1 ± mm. At one end of the plate, a semicircular extrusion 

was machined into the plate edge for experiments demonstrating the spatial invariance of conical point 

Lamb waves.   

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Conical dispersion exists in isotropic plates for discrete values of the material parameters. In this paper, 

we focus on the lowest order degeneracy that occurs if c1 = 2c2 or, equivalently, ν = 1/3. This precise 

condition is not easy to achieve with naturally occurring materials, but many aluminum alloys do, in fact, 
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have a Poisson’s ratio very close to 1/3. We performed systematic measurements on commercially 

available aluminum alloys and found that the alloy 6061-O had a room temperature Poisson’s ratio of

0006.03349.0 ±=ν , where standard deviation was found through multiple measurements at different 

locations on the plate. In order to tune the Poisson’s ratio, we take advantage of the temperature 

dependent elastic properties and cool the plate. Figure 4 shows the Poisson’s ratio measured as a function 

of temperature at a single location on the plate. A linear fit of this data indicates Poisson’s ratio changes 

by Co/106.5 5−⋅=Δν  (close to the reported value for pure aluminum of Co/104.5 5−⋅=Δν  [32]).   

Given that the room temperature values of Poisson’s ratio were taken at a temperature of 23°C, and the 

average Poisson’s ratio measured across the sample is 3349.0=v , we expect a Poisson’s ratio of close to 

1/3 at a measurement temperature of -5°C.  We can thus tune the plate properties over a reasonable range 

to achieve the desired degeneracy. Note that there is some spatial variation in Poisson’s ratio and we have 

used the average value measured at room temperature to determine the temperature at which degeneracy 

occurs. Figure 4, for example, indicates that at this particular point on the plate a Poisson’s ratio of 1/3 

occurs at a temperature closer to 00C.   

In order to deduce the behavior of conical dispersion, the plate was cooled to -5°C, and time domain 

signals were collected as the source to receiver distance was increased in 250 μm steps for a total distance 

of 150 mm, starting 30 mm away from the center of the transducer excitation source. The transducer was 

driven by a 5 cycle sine wave at 2.04 MHz, near the expected coincidence frequency. The measured 

waveforms, providing the temporal response as a function of distance, were processed with a two-

dimensional FFT giving the temporal frequency as a function of spatial frequency. The dispersion curve 

shown in Fig. 5(a) was found by extracting the peak values from the magnitude of the 2D FFT. A smooth 

transition between the S2 and S2B modes is observed at k = 0. While the large aperture transducer does not 

excite high spatial frequency modes very efficiently, we are still able to detect the A1 and S0 modes in the 

plate while the S1 and A0 modes are below the noise level.  The solid lines show the dispersion curves 

calculated from the Rayleigh-Lamb dispersion relation, where Poisson’s ratio is taken as 1/3, the cooled 
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plate thickness is 1.532 mm, and the shear wave velocity was found to be 3.138 mm/μs through a best fit 

with the experimental results. The agreement between the experimental and calculated dispersion curves 

for all of the measured modes is excellent. Fig. 5(b) shows the magnitude of the 2D FFT in the vicinity of 

k = 0.  The magnitude of the response decreases sharply through k = 0 in general agreement with the 

results of Fig. 2(b). Nevertheless, near-linear dispersion is confirmed for this case of accidental 

degeneracy and exceptionally long wavelength propagating waves are detected.  

The dispersion curves near k = 0 measured on the cooled sample and the same sample at room 

temperature are given in Figs. 5(c) and 5(d), respectively. The room temperature sample is very close to 

degeneracy, but the response falls below the noise level at very small k values. This gap in k is due to the 

fact that parabolic dispersion in this case leads to very small group velocity for small k and thus these 

waves are not detected over the measurement time. In addition, the lower branch is associated with a 

shear thickness mode resonance that has little out of plane displacement in the vicinity of k = 0. The 

curve measured on the cooled sample shows a continuous transition from forward to backward wave 

propagation. However, there is a small distortion, or break from linear behavior, observed for very small k 

values. In order to better understand this, we also simulated the experiments using the finite difference 

time domain software PZFlex. In the simulation, we used a circular normal forcing function with a 

diameter matching the transducer diameter, and all other parameters matching those used in the 

experiment. In addition, the data was processed using the same approach used for the experimental 

measurements. The dispersion curves from the simulations are also shown in Figs. 5(c) and 5(d) and agree 

well with the experimental measurements. Both simulation and experiment show similar behavior for 

small k values. Additional simulations in PZFlex show this distortion is reduced as the distance from the 

source to the detection points is increased, indicating that it is associated with operation in the near field 

of the source.  

One of the peculiar features of conical point Lamb waves is that they propagate with an infinite 

wavelength. This essentially decouples the spatial and temporal behavior and leads to a surface 
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displacement that oscillates in time but is fixed in space. A direct consequence of this is that the concept 

of propagation direction loses significance. In order to demonstrate this behavior experimentally, we 

machined a 30 mm diameter semicircle on the edge of the aluminum plate. The transducer is positioned at 

a randomly selected position far from the semicircle, at the location indicated in Fig. 3.  The experiments 

were performed at room temperature where near-degeneracy occurs. The transducer was driven with a 50 

cycle tone burst at a frequency of 2.051 MHz, where the spatial frequency is quite close to zero. This 

gives a wavelength of 220 mm and an associated phase velocity of 4.5x105 m/s (see Fig. 1(b)). The 

detection laser was scanned over a 35 x 35 mm2 region of the plate, encompassing the semicircular 

feature, with a step size of 0.2 mm along each axis, and the out of plane surface displacement was 

measured at each spatial position.   

The time domain waveforms were windowed between 60 μs and 100 μs and processed using a Fourier 

transform. The magnitude and phase angle of the surface displacement at a frequency of 2.051 MHz was 

determined at each spatial position, and the displacement amplitude is plotted in Fig. 6(a). Note that the 

near-degenerate S2 mode has a wavelength much larger than the image size, resulting in a DC offset to the 

image but contributing little spatial structure. The main feature in Fig. 6(a) is the S0 mode, with a 

wavelength of 1.57 mm, which is produced by mode conversion of the S2 mode at the plate edge. Figure 

6(b) shows the same data as in Fig. 6(a), but spatially filtered between k = 3.0 mm-1 and 5.0 mm-1 to better 

observe the S0 wave field. The mode converted wave has an angle of reflection of (very close to) zero 

degrees irrespective of the angle of incidence, leading to focusing of the mode converted wave field by 

the semicircular extrusion. Furthermore, this type of lens will focus the mode converted field regardless 

of the position of the S2 mode excitation source on the plate surface.  Figure 6(c) shows the 2D FFT of the 

complex data at 2.051 MHz. The bright spot near k = 0 corresponds to the S2 mode while the semicircular 

ring corresponds to the S0 mode produced at the plate edge through the mode conversion. The magnitude 

of the S0 field is quite uniform over the full 180° defined by the semicircular edge. The magnitude of the 
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displacement field at 2.051 MHz is shown in Fig. 6(d), where clear focusing at the center of curvature of 

the lens is observed. 

The experimental measurement was taken at room temperature where a near degeneracy occurs. In order 

to investigate potential differences in the wave field behavior that could occur at a true accidental 

degeneracy, we simulated the experimental measurement using PZFlex and taking a Poisson’s ratio of 

1/3. The source was again taken as a circular normal force with a diameter matching that of the 

transducer, and the mechanical properties were selected to match the cooled specimen discussed earlier in 

the manuscript. The temporal excitation profile and data processing approach match those in the 

experiment. In this case, the degeneracy occurs at a frequency of 2.048 MHz. Figures 6(e) and 6(f) give 

the calculated displacement field and bandpass filtered displacement field, respectively. Figures 6(g) and 

6(h) show the calculated spatial FFT and displacement magnitude plot, respectively. A qualitative 

comparison between all experimental and simulated plots shows reasonable agreement between the two. 

In particular, both show angle independent mode conversion and normal reflection for the S0 mode at the 

free edge over the full 180° surface of the semicircular extrusion. 

We further investigate the wave field for near conical dispersion by examining the time domain responses 

at the positions in the lens indicated in Fig. 7(a). The data was low pass filtered at a spatial frequency of 

1.0 mm-1 in order to isolate the S2 mode and the resulting waveforms are shown in Fig. 7(b). The traces 

show an initial transient tone burst, similar to that seen in Fig. 2(a), followed by a prolonged ringing. 

Figure 7(c) shows zoomed in waveforms between 90 and 95 μs. The surface displacement at all four of 

these points oscillates with a nearly identical phase, as expected due to the unusually large wavelength of 

the S2 mode. The wavelength of the S2 mode at 2.051 MHz was estimated by inspecting the phase delay of 

the displacement response and was found to be 190 mm, with an associated phase velocity of 3.9∙105 m/s.  

Fig. 7(d) shows the phase angle of the displacement response at 2.051 MHz. The data was spatially low 

pass filtered (k = 1.0 mm-1) and the phase angle found by using a temporal FFT of the waveforms in the 
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60 μs to 100 μs time window. Waves excited in this near degenerate case produce a field that is 

remarkably uniform in phase over the surface of the lens. 

V. CONCLUSIONS 

Conical dispersion at finite frequencies and zero wavenumber produces propagating waves that have an 

infinite wavelength. In practice, this leads to elastic waves that travel away from a particular source with a 

finite group velocity while maintaining a uniform phase at each point in space, producing a field that can 

be considered in some sense static in space, yet still oscillating in time. While there has been a substantial 

amount of interest in the development of optical and acoustic media that support conical dispersion at k = 

0, generally referred to as zero index media [24,30], conical dispersion in homogeneous isotropic 

waveguides has received limited attention. Here we demonstrate that conical dispersion can be achieved 

by tuning the Poisson’s ratio of an elastic plate such that accidental degeneracy between a longitudinal 

and transverse thickness mode resonance of the same symmetry occurs. We confirm through both 

computation and experiment that Lamb waves generated at the conical point frequency show a uniform 

phase over the plate surface. Furthermore, we show that these waves exhibit angle independent mode 

conversion upon encountering the free edge of the plate. Future studies will explore the scattering of 

conical point Lamb waves at plate defects and look towards applications for these waves in the 

nondestructive evaluation of materials and the development acoustic devices. 
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Figure captions 

FIG. 1. (a) Dispersion curve for a plate with ν = 1/3, h = 1.532 mm, c2 = 3.138 mm/μs. The S2/S2B and 

S5/S5B modes are each degenerate at k = 0 and show linear dispersion in the long wavelength limit. (b) 

Zoomed in portion of the dispersion curve shown in (a) near the lowest frequency degenerate point where 

longitudinal and transverse resonance frequencies associated with the S2/S2B modes are coincident (blue). 

Also shown is a near-degenerate case (corresponding to aluminum alloy 6061-0 at room temperature) 

with ν = 0.3349, h = 1.533 mm, and c2 = 3.125 mm/μs (red). Here cg is the group velocity. 

FIG. 2. (a) Calculated surface normal displacement of a plate in response to a surface normal force. The 

plate has a thickness of 1 mm and the wave velocities are taken as c1 = 6.0 mm/μs and c2 = 3.0 mm/μs. 

Waveforms are shown for several source to receiver distances. (b) Magnitude of the Fourier transform of 

the waveform calculated at a source to receiver distance of 30 mm. (c) Zoomed in portion of the 

waveforms shown in (a) showing the uniform phase of the surface oscillations. (d) Magnitude of the 

Fourier transform of the waveform calculated at a source to receiver distance of 30 mm and time 

windowed between 55 and 60 μs.  

FIG. 3. Schematic of experimental setup for generating and detecting Lamb waves with conical and near-

conical dispersion at k = 0 (units in mm). 

FIG. 4. Measurements of Poisson’s ratio as a function of temperature for a 6061-O aluminum plate. The 

solid line shows a linear fit of the data. 

FIG. 5. (a) Measured and calculated dispersion curves for a 6061-O aluminum plate cooled to achieve 

accidental degeneracy. (b) Magnitude plot of the 2D Fourier transform of the experimentally measured 

waveforms showing the temporal frequency as a function of spatial frequency in the vicinity of k = 0. (c) 

Comparison of dispersion curve found using the experimental data on the cooled plate with that found 
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using a finite difference time domain simulation of the experiment for the degenerate case (ν = 1/3). (d) 

The same as (c) but using room temperature measurements and plate properties (ν = 0.3349).   

FIG. 6. (a) Out of plane displacement at a frequency of f = 2.051 MHz found from the experimental 

measurements. (b) The displacement field in (a) after a bandpass filter (k = 3.0 mm-1 to 5.0 mm-1) in order 

to isolate the S0 mode arising from mode conversion at the plate edge. (c) Fourier domain representation 

of the measured wave field. The dominate modes are the incident S2 mode near k = 0 and mode converted 

S0 mode. (d) Magnitude of the out of plane displacement field at 2.051 MHz showing focusing of the S0 

wave field at the center of the lens. (e)-(h) Show finite difference simulations of the experiments (with ν = 

1/3) and correspond to (a)-(d) above.   

FIG. 7. (a) Four locations on the plate surface near the semicircle where temporal responses are 

inspected.  (b) Time domain responses after a low pass spatial filter (k = 1.0 mm-1), in order to isolate the 

S2 mode, at the four locations shown in (a). (c) Zoomed in view of the time domain responses in (b) 

showing the uniform phase of the oscillations at the different spatial positions. (d) Phase of the oscillation 

of the S2 mode over the surface of the lens at 2.051 MHz. A low pass spatial filter (k = 1.0 mm-1) was 

used to isolate the S2 mode. 
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23 
  

FIGURE 5 
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FIGURE 7 

 

 

 

 


