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We present the phase diagram of a 2D isotropic triangular Heisenberg antiferromagnet in a mag-
netic field. We consider spin-S model with nearest-neighbor (J1) and next-nearest-neighbor (J2)
interactions. We focus on the range of 1/8 < J2/J1 < 1, where the ordered states are different from
those in the model with only nearest neighbor exchange. A classical ground state in this range is
infinitely degenerate in any field. The actual order is then determined by quantum fluctuations via
“order from disorder” phenomenon. We argue that the phase diagram is rich due to competition be-
tween competing quantum states which break either orientational or sublattice symmetry. At small
and high fields, the ground state is a canted stripe state, which breaks orientational symmetry, but
at intermediate fields the ordered states break sublattice symmetry. The most noticeable of such
states is “three up, one down” state in which spins in three sublattices are directed along the field
and in one sublattice opposite to the field. In such a state magnetization is quantized at exactly
one half of the saturation value. We identify gapless states, which border the “three up, one down”
state and discuss the transitions between these states and the canted stripe state.

Introduction Recent experimental and theoretical
advances renewed the interest in frustrated spin systems.
In many of these systems the classical ground state is in-
finitely degenerate, and the actual ground state spin con-
figuration is selected by quantum fluctuations (the “or-
der from disorder” phenomenon). The resulting ground
state is often rather unconventional and in several cases
displays a non-monotonic behavior of magnetization in
an applied field, with kinks, jumps, and plateaus [1–
7]. The most known example of such behavior is in the
case of a two-dimensional (2D) quantum antiferromagnet
on a triangular lattice with nearest-neighbor exchange
J1 [8, 9]. Classically, all spin configurations, which sat-
isfy Sr + Sr+δ1 + Sr+δ2 = hS/(3J1) for each triad of
neighboring spins, have the same ground state energy.
Quantum fluctuations lift the degeneracy and select a
set of three coplanar configurations, between which the
system transforms upon increasing field. The middle con-
figuration, which exists at h around 1/3 of the saturation
field hsat = 9J1, is a collinear state with two spins up (U)
and one spin down (D) in every elementary triangle (an
UUD state). In such a state only a discrete Z3 symmetry
is broken (one spin in a triad is selected to be antiparallel
to a field). As a result, all excitations are gapped and the
magnetization has a plateau at exactly one-third of the
saturation value [8–14]. This plateau has been observed
in Cs2CuBr4 [15–19] and in Ba3CoSb2O9 [20]. An UUD
state survives in a finite range of perturbations, like the
spatial anisotropy of the exchange interaction [10–12, 21–
24], multiple-spin ring exchange [25], and the next near-
est neighbor exchange [26]. What replaces the UUD state
at larger perturbations has been the subject of intensive
research over the last several years [10–14, 22–24, 27–32].

In this communication we study spin-S Heisenberg an-
tiferronmagnet on a triangular lattice with nearest (J1)
and second-nearest (J2) exchange interaction. Previous
studies have found that the UUD phase and other two
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FIG. 1. Schematic semiclassical phase diagram of a spin-
S J1 − J2 antiferromagnet on a triangular lattice at 1/8 <
J2/J1 < 1. Solid (dotted) lines are second-order (first-order)
phase transitions, which we identified and analyzed in this
work. Dashed line is a first-order transition, which we expect
to hold, but didn’t analyze. Arrows indicate magnetic order in
the four-sublattice representation, and symbols like U(1)×Z3

indicate the broken symmetry in each state. The physics in a
narrow range (at order 1/S) of J2/J1 near J2/J1 = 1/8 and
J2/J1 = 1 is not analyzed in this work.

three-sublattice coplanar ground states in a field are im-
mune to J2 up to J2/J1 < 1/8. At larger J2, how-
ever, the set of classical ground states changes discontin-
uously from three-sublattice configurations to four sub-
lattice ones, in which four spins on two neighboring triads
satisfy Sr + Sr+δ1 + Sr+δ2 + Sr+δ3 = hS/(2(J1 + J2))
(see Fig. 3(a)). This condition does not uniquely spec-
ify spin order, even at zero field. The selection of the
order by quantum fluctuations at h = 0 has been ana-
lyzed by various means [33–36], and the consensus is that
for 1/8 < J2/J1 < 1 the winner is the stripe order with
ferromagnetic alignment of spins along one of three prin-
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FIG. 2. (a), (b) – Two candidate quantum four-sublattice
ground states upon decreasing of the magnetic field h towards
a half of saturation value. (a) A Z3 breaking canted stripe
state. As field goes down, the angle between two pairs of
parallel spins increases. (b) V̄ and UUUD states. Both break
Z4 sublattice symmetry by selecting one sublattice with a
different spin orientation compared to the other three. (c)
Evolution from the UUUD state to the canted stripe state as
h decreases below hsat/2.

ciple axes on a triangular lattice and antiferromagnetic
along the other two. The same order (the canted stripe
state, see Fig. 2(a)) is selected by quantum fluctuations
near the saturation field, and semiclassical (large S) spin-
wave analysis shows [26] that this state remains stable at
all fields. It would seem natural to conjecture that this
state, with monotonic magnetization M(h), is the true
quantum ground state for 1/8 < J2/J1 < 1 in all fields.

We argue that the phase diagram of J1 − J2 model in
a field is actually rather complex, with multiple phases
(see Fig. 1), and the stripe order is the ground state con-
figuration only in some range of fields and of J2/J1. For
other values of h and J2/J1 the ground state configura-
tions are the co-planar states, similar to those at small
J2. In particular, around h = hsat/2, the ground state
is the UUUD state, in which spins in three sublattices
are aligned along the field and in the forth sublattice op-
posite to the field. This spin order breaks Z4 sublattice
symmetry, but doesn’t break any continuous symmetry.
As a result, spin-wave excitations are gapped, and the
magnetization has a plateau at exactly 1/2 of the satu-
ration value. We argue that the UUUD state exists for
all J2 in the interval 1/8 < J2/J1 < 1. We also ana-
lyze the proximate states to the UUUD state. Above the
upper critical field hu, the UUUD state becomes unsta-
ble towards a state in which three up-spins rotate in one
direction from the direction of h, and the down-spin ro-
tates in the opposite direction (see Fig. 2(b)). Below the
lower critical field hl, we found, at large S, a particular
coplanar state, in which down-spin does not move, while
three up-spins again rotate, but now one of these three
spins splits from the other two (see Fig. 2(c)). A non-
coplanar, chiral umbrella state [25, 37] is close in energy

and may be the ground state near hl at smaller S (see
Fig. 4).

A cascade of field-induced magnetic transitions at
fields below hsat/2 has been observed in 2H−AgNiO2 [38,
39]. It has been argued [40] that in this material Ni2+

ions are localized and form a S = 1 triangular lat-
tice antiferromagnet with J2 = 0.15J1, single-ion easy
axis anisotropy D, weak ferromagnetic exchange between
layers. And Classical Monte-Carlo calculations for this
model have found [41] the region of UUUD phase, whose
width at T = 0 scales with D. We show that in a quan-
tum model the UUUD phase is stable in a finite range of
h already at D = 0. We expect that future measurements
of the magnetization in 2H−AgNiO2 at higher fields will
be able to detect the UUUD phase and also the cascade
of phases above hsat/2. The analysis of the high-field
phases will allow one to distinguish whether UUUD or-
der is stabilized predominantly by quantum fluctuations
or by single-ion anisotropy [42]

Model and the high field phase diagram The
J1−J2 Heisenberg antiferromagnet on a triangular lattice
is described by

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj − Sh ·
∑
i

Si (1)

where 〈i, j〉 and 〈〈i, j〉〉 run over all the nearest and next
nearest neighbor bonds. Due to the global spin-rotational
symmetry, the direction of h does not matter. We choose
h = h êz, and consider the range of 1/8 < J2/J1 < 1.

l1

l2

l3

δ1

δ3

δ2

(a)



◼

◼

◼

M1

M2M3

Γ
kx

ky

(b)

FIG. 3. (a) The nearest-neighbor (δi) and next-nearest-
neighbor (li) bonds on a triangular lattice. (b) Solid (dashed)
line: Single-sublattice (four-sublattice) Brillouin zone. The
points labeled as Mi are relevant to our discussion of spin-
wave excitations near hsat. The spin-wave excitations of the
four-sublattice UUUD state soften at Γ point.

The first indication that the stripe phase is not the only
ground state in a field comes from the Ginzburg-Landau
analysis of the order immediately below the saturation
field at J2 ≈ J1/3. Spin-wave excitations soften at h =
hsat at three points in the Brillouin zone - M1, M2, M3,
see Fig. 3(b). To understand the order below hsat one
needs to introduce three condensates Φ1, Φ2, Φ3. The
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ground state energy in terms of Φ is:

EΦ/N = −µ
∑

i=1,2,3

|Φi|2 +
1

2
Γ1

∑
i=1,2,3

|Φi|4

+ Γ2(|Φ1|2|Φ2|2 + |Φ1|2|Φ3|2 + |Φ2|2|Φ3|2)

+ Γ3(Φ2
1Φ2

2 + Φ2
2Φ2

3 + Φ2
3Φ2

1 + h.c.) (2)

where µ ∼ S(hsat − h). The type of spin order that min-
imizes EΦ depends on the interplay between the quar-
tic coefficients Γi. In the classical limit, Γ1 = Γ2 =
8(J1 + J2), Γ3 = 0, i.e., any state from the manifold
|Φ|21 + |Φ|22 + |Φ|23 ≡ µ/Γ1 is the ground state. Quantum
fluctuations lift the degeneracy. To leading order in 1/S
we found [26], near J2 = J1/3,

Γ2 − Γ1 =
24
√

3J1

π

(J2

J1
− 1/3

)2 | log(hsat − h)|
S

− β1/S

Γ3 = −β2/S (3)

where β1,2 > 0 are numbers of order one. The logarithm
| log(hsat − h)| is present because of quadratic dispersion
near M -points. Because of the logarithm, Γ2 > Γ1, A
straightforward analysis then shows that only one Φi is
then non-zero because it costs extra energy to develop
simultaneously condensates from different valleys. One
can check [26] that the resulting order is the stripe state.
However, the prefactor for the logarithm in Γ2 − Γ1 in
Eq. 3 vanishes at J2 = J1/3, when ωk becomes isotropic
(α = 0). For this J2/J1, the sign of Γ2−Γ1 is determined
by regular 1/S terms, along with the sign of Γ3. We
computed these terms and found Γ2 − Γ1 < 0, Γ3 <
0. As a result, at J2/J1 = 1/3, all three condensates
emerge with equal amplitudes and relative phases 0 or
π (because Γ3 < 0). The four choices for (Φ1,Φ2,Φ3)
are (Φ,Φ,Φ), (Φ,−Φ,−Φ), (−Φ,Φ,−Φ), (−Φ,−Φ,Φ).
In each of these states spins in three sublattices tilt to
one direction from the field, and in one sublattice tilt
to the opposite (see Fig. 1). We label such a state V̄
by analogy with the corresponding V state [43] at J2 <
J1/8 [9–12]. The V̄ state breaks U(1) spin-rotational
symmetry in the plane perpendicular to the field, and also
breaks a Z4 sublattice symmetry by selecting a sublattice
in which spin direction is different from that in other
three sublattices.

Immediately below hsat, the V̄ state is stable in the in-
finitesimally small range around J2 = J1/3, at (J2/J1 −
1/3)2 < 1/| log(hsat − h)|. As h decreases, the width
grows and becomes O(1) at hsat − h = O(1). The V̄ and
the stripe state break different discrete symmetries (Z4

and Z3, respectively), hence the transition between the
two states is likely first order. The increase of the width
of the V̄ state with decreasing field can be understood
as a generic consequence of the fact that this state is fa-
vored by regular 1/S terms, i.e., by quantum fluctuations
at short length scales, while the stripe phase is favored

by | log(hsat − h)|, which comes from long-wavelength
fluctuations. As the magnitude of the transverse order
increases with decreasing field, long wavelength fluctua-
tions are suppressed, and V̄ state becomes more favor-
able.

Half-magnetization plateau As the field de-
creases towards hsat/2, the V̄ state evolves: the spin in
one sublattice continuously rotates away from the field di-
rection towards the direction antiparallel to h. The spins
in three other sublattices remain parallel to each other
and first rotate away from the field, and then rotate back.
Eventually, near h = hsat/2, spins in the three sublattices
become parallel to h and spins in the fourth sublattice be-
come antiparallel to h (see Fig. 2(b)). Once this happens,
the system enters into the new, UUUD phase. In this
phase, U(1) symmetry is restored (there is no sublattice
spin component transverse to the field), but Z4 symmetry
is still broken. To obtain the boundaries of the UUUD
phase, we compute its excitation spectrum. For this, we
introduce four sets of Holstein-Primakoff (H-P) bosons
and do spin-wave calculations to order 1/S. In the clas-
sical, S → ∞ limit, the spin-wave excitations are stable
only at h = hsat/2, where the spectrum consists of one
gapped spin wave branch (in-phase precession of all spins
around the field), and three gapless branches, with zero
modes at Γ point of the four-sublattice Brillouin zone (see
Fig. 3(b)). Quantum 1/S correction to spectrum, how-
ever, make it stable in a finite range of h around hsat/2.
Namely, all spin-wave branches become gapped (and pos-
itive) in a range hl < h < hu, where hl = hsat/2 − δ1
and hu = hsat/2 + δ2. We show the details of the calcu-
lations in the Supplementary Material (SM) and present
the results for δ1 and δ2 in Table I. We found, somewhat
unexpected, that the stability width of the UUUD phase
is finite for all J2 in the interval 1/8 < J2/J1 < 1. We
further computed the ground state energy of the UUUD
phase to order 1/S (classical energy plus 1/S corrections
from zero point fluctuations), and compared with that of
the stripe phase. We found that for all J2 the energy of
the UUUD state is lower. Because of this and because
the UUUD state naturally emerges from the V̄ state, we
argue that the UUUD state is the true ground state near
h = hsat/2 for all 1/8 < J2/J1 < 1. As all excitations in
the UUUD state are gapped, this state has magnetization
fixed at exactly 1/2 of the saturation value.

We also verified that at the upper critical field of
the UUUD state, it becomes unstable towards V̄ state.
Namely, at h = hu one of the spin-wave branches con-
denses, and the condensate leads to 〈Sx〉 = a for spins
on three up-spin sublattices, and −3a for the spins on
the down-spin sublattice. This result in turn implies
that the V̄ state, which started at a point J2 = J1/3
at h = hsat, extends over the whole range of J2 near
hsat/2 (see Fig. 1).

At the lower boundary of the UUUD phase, two other
spin-wave modes become unstable at the Γ point. To



4

J2/J1 1/8 1/4 1/3 1/2 1

δ1(1/S) 0.46 0.15 0.11 0.11 0.28

δ2(1/S) 1.2 0.80 0.75 0.75 1.09

TABLE I. Results for the boundaries of UUUD state for dif-
ferent J2/J1 (see SM for details of calculations). The UUUD
state is stable in the range hl < h < hu, where hl = hsat/2−δ1
and hu = hsat/2 + δ2 .

determine the the spin order below hl, we again per-
form Landau Free energy analysis in terms of the corre-
sponding two complex order parameters ∆1 and ∆2. We
present the details in the SM. The Free energy has the
form [44, 45]:

E∆/N =− µ(|∆1|2 + |∆2|2) +
1

2
Γ(|∆1|2 + |∆2|2)2

+
1

2
K|∆2

1 + ∆2
2|2 (4)

Classically, Γ = hsat/4, K = 0. Then |∆1|2 + |∆2|2 ≡
µ/Γ, i.e. different ordered states are degenerate. Quan-
tum fluctuations lift the degeneracy, and the result de-
pends on the sign of K. If K > 0, ∆1 = ± i∆2. It can be
checked that this gives rise to a non-coplanar umbrella
state, in which the down-spin remains intact, and three
up-spins split out and form a cone. Such a state breaks
U(1) × Z4 × Z2 symmetry. If K < 0, the relative phase
between ∆1 and ∆2 is either 0 or π, and the order is
coplanar (see Fig. 4).

1st orderh #
K > 0 :

h #
K < 0 : 1st order (?)

FIG. 4. Evolution of the magnetic order below the UUUD
state, depending on sign of the K term in Eq. 4.

We computed K to accuracy 1/S. The details of cal-
culations are presented in SM, and here we quote the
result: K is the sum of logarithmical, | log(hl − h)|/S,
logS/S, and non-logarithmical, O(1/S) terms, much like
Eq. 3. The logarithmical term yields K < 0, however the
prefactor for the logarithm vanishes at J2 = J1/3, and at
this value of J2 non-logarithmical terms become relevant.
Near J2 = J1/3, we have

K =− 2
√

3J1

π

(J2

J1
− 1/3

)2( | log(hl − h)|
S

+ βφ
logS

S

)
− βK

S
. (5)

Where the | log(hl − h)|/S term is a contribution from
spin wave modes which go as k2 at h = hl, and logS/S
term comes from another spin wave mode that softens at
h = hu = hl + O(1/S). In distinction to the situation
near hsat, here we found that K remains negative, even
for J2/J1 = 1/3. This implies that the state below hl
is a co-planar state. An umbrella state is not ruled out,
however, for smaller S as we computed βK in Eq. 5 at
S � 1.

To determine the structure of the coplanar state below
hl more work is actually required because for K < 0, the
Free energy to order ∆4 is E∆/N = −µ(|∆1|2 + |∆2|2) +
1
2 (Γ−|K|)(|∆1|2+|∆2|2)2, i.e., the degeneracy is not fully
lifted. To select the order, one has to compute O(∆6)
terms in the Free energy. We found (see SM for detail)
that sixth-order terms select the order in which of the
three up-spins two are tilting in one direction and another
in the opposite direction, while the down spin remains
intact (see Fig. 4). This state breaks U(1) × Z4 × Z3

symmetry. It can potentially transform gradually into
the stripe state, which breaks U(1)×Z3, if the down spin
begins rotating at higher deviations from hl and match
the spin from up-triad, which is separated from the other
two. Or, the transition can be first order. Either way, at
small fields, the order becomes a stripe. A more complex
phase diagram at low fields is expected in the presence
of a single-ion anisotropy [38, 46].

Conclusions In this work we analyzed the phase
diagram of a Heisenberg antiferromagnet on a triangular
lattice, with nearest and second nearest neighbor inter-
actions (J1 − J2 model), in a magnetic field. We focused
on the case 1/8 < J1/J2 < 1, when semiclassical descrip-
tion involves four sublattice representation. We argued
that the phase diagram is quite rich and contains several
phases. The most substantial result of our study is the
identification of the UUUD phase, in which spins in the
three sublattices are directed along the field, and spins
in the fourth sublattice are directed opposite to the field.
Such a state breaks a discrete Z4 sublattice symmetry,
but no orientational and continuous symmetry. As a re-
sult, all excitations in the UUUD phase are gapped, and
the magnetization is fixed at exactly 1/2 of the satura-
tion value. We demonstrated that this phase is stable
in a finite range of fields near hsat/2 at all J2 from the
interval 1/8 < J1/J2 < 1. We identified gapless pla-
nar states around the UUUD phase. The one at higher
fields breaks U(1)×Z4 symmetry. The one at lower fields
breaks U(1)×Z4×Z3 symmetry. We call for magnetiza-
tion measurements in quasi-2D triangular-lattice antifer-
romagnets with J2 > J1/8, best matetials with S = 1/2,
as they normally have no single-ion anisotropy, but also
S = 1 materials, like 2H−AgNiO2 [38, 39], to verify the
existence of the plateau at a half of the saturation value
of magnetization and quantum phases above this field.
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