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Chiral magnets give rise to the anti-symmetric Dzyaloshinskii-Moriya (DM) interaction, which
induces topological nontrivial textures such as magnetic skyrmions. The topology is characterized
by integer values of the topological charge. In this work, we performed the Monte-Carlo calculation
of a two-dimensional model of the chiral magnet. A surprising upturn of the topological charge is
identified at high fields and high temperatures. This upturn is closely related to thermal fluctuations
at the atomic scale, and is explained by a simple physical picture based on triangulation of the lattice.
This emergent topology is also explained by a field-theoretic analysis using CP 1 formalism.
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The marriage of topology and condensed matter
physics has given birth to numerous excitements in the
past decades. In particular, magnetism, the zoo of topo-
logical spin textures, such as domain walls, vortices and
Bloch points, not only gives rise to rich physics, but also
leads to transformative spintronics applications. The re-
cently discovered magnetic skyrmion is a new member
of such topological textures1–4. It is a two dimensional
(2D) whirlpool-like structure with spins therein pointing
to all directions. It has one-to-one correspondence to the
three dimensional monopole defect by the stereographic
mapping. Topology of the skyrmion can be captured by
the topological charge (TC)5,6

Q =
1

4π

ˆ
d2rn · (∂xn× ∂yn), (1)

where n is a unit vector describing the local spin direc-
tion. It is valued ±1 for each skyrmion, and cannot be
altered by slight deformation of the texture configuration.
As a result of this nontrivial topology, the skyrmion ac-
quires novel properties, such as the topological Hall effect
and the skyrmion Hall effect7–11, which have potential in
future topological devices12.

The magnetic skyrmion was originally proposed theo-
retically in noncentrosymmetric magnets1,13–15 and its
crystal form was recently discovered in bulk sample
of MnSi, a typical family of noncentrosymmetric mag-
nets, by small angle neutron scattering2. It was later
confirmed in (FeCo)Si thin film by real space imaging
with Lorentz transmission electron microscopy3. The
skyrmion crystal phase in the thin film is greatly ex-
tended in the B-T diagram (where B is magnetic field
and T is temperature) compared to the bulk sam-
ple, which has been further addressed by follow-up
experiments4. This is because of the suppression of the
conical phase in thin films. But nevertheless, skyrmions
still exist only below the Curie temperature.

In the skyrmion crystal phase, the TC is significant
and essentially counts the number of skyrmions therein.
But TC in Eq.[1] respects the rotational symmetry, so
that it cannot serve as an order parameter, and does not
have correspondence to the crystal phase. It is interesting

FIG. 1: Schematic diagram of the TC obtained by the solid
angle Ω for each three nearby spins S1,S2 and S3. This solid
angle flips sign when the three spins are reversed to S′1, S′2
and S′3.

to study the distribution of TC in the same B-T phase
diagram. To this end, we used the Monte Carlo method
in this work and studied the distribution of the TC. It is
significantly extended compared to the skyrmion crystal
phase, and can be explained by CP 1 modeling16,17.

We studied a 2D film of chiral magnet, whose Hamil-
tonian is described by the following classical spin model

H =
∑
〈i,j〉

(−JSi ·Sj +Dij ·Si×Sj)− gµBH ′
∑
i

Szi , (2)

where Si = Sni is the spin on site i with ni, a three di-
mensional unit vector, and 〈i, j〉means the nearest neigh-
bors. In the Monte Carlo calculation, S = 1 and a square
lattice is employed. J > 0 is the ferromagnetic Heisen-
berg exchange coupling, while Dij is the vector of the
DM interaction between neighboring sites i and j. The
strength of DM interaction is D = |Dij |. The last term
describes the Zeeman coupling, where µB is the magnetic
moment and H ′ is the applied magnetic field along z di-
rection. We define B = gµBH

′ and choose the natural
units (~ = kB = c = 1). It has been confirmed that this
simple Hamiltonian captures most essential physics of 2D
chiral magnets3,16,18.

To calculate the thermal average of the TC, we trian-
gulated the square lattice. Summation over all the solid
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angles Ω of three spins on each triangle divided by 4π
gives the total TC for each spin configuration. Ω is com-
puted by the Berg formula19:

exp(
iΩ

2
) = ρ−1[1+n1 ·n2+n2 ·n3+n3 ·n1+in1 ·(n2×n3)],

(3)
where n1, n2 and n3 are three spins on the triangle and
ρ = [2(1 + n1 · n2)(1 + n2 · n3)(1 + n3 · n1)]

1
2 is the nor-

malization factor. The Metropolis20 and over-relaxation
algorithm are employed iteratively to generate a Markov
chain of spin configurations20,21, averaging over which
thermal average of the TC was derived. We imposed pe-
riodic boundary conditions and performed averaged over
2.4 × 106 ensembles at each temperature. The main re-
sults of the TCs are shown in Fig. 2(a). It shows the color
plot of the average TC in the B-T diagram with the fixed
DM interaction as D = 0.3J . A dramatic upturn of the
TC is addressed along a ridge in the phase diagram. The
value of the TC is significant in areas greatly extended
to the skyrmion phase, which is located at small B and
low T in the bottom region of the ridge.

Special attentions are paid to the high field region,
where no skyrmions are expected. As a typical example,
we fix the field at B = 0.2J , and the relation between
average TC and temperature is shown in Fig. 2(b). At
very low temperature, TC is equal to zero, as all spins
are nearly polarized. At very high temperature, TC
again converges to zero due to the topological trivial-
ity of a completely random phase. However, in between,
TC becomes significantly elevated at finite temperatures.
A deep dip of the TC is witnessed around T = 1.0J ,
the Curie temperature of the corresponding Heisenberg
model. Here, the negative TC is consistent with the fact
that the spin at the skyrmion core is opposite to the
external magnetic field. The same calculations were per-
formed for lattices with sizes varying from 20 × 20 to
100 × 100. No difference could be found between differ-
ent lattice sizes. This immunity to the finite size effect
suggests robustness of the TC upturn, which might be
related to the scaling-free atomic scale physics.

This emergent topology at finite temperatures does not
correspond to any ordered phase such as the skyrmion
crystal phase (SkX) or meron-helix composite. Two
snapshots of spin states around the ridge were taken, as
shown in Fig. 3(a) and (b). Location of their correspond-
ing parameters are labeled by the same letter in the B-T
phase diagram in Fig. 2. At point A to the right of the
ridge, B = 0.2J , T = 1.02J , and the total TC is about
-12 in a 100× 100 lattice. However, the real space image
shown in Fig. 3(a) is completely random. Fast Fourier
transformation of the image provides only one peak at
Γ point in the reciprocal space. This indicates the uni-
form randomness and absence of any spin ordering at
this point. For point B to the left, where the tempera-
ture T = 0.8J is relatively lower, the corresponding real
space snapshot in Fig. 3(b) shows similar randomness
with a single peak at the Γ point of the reciprocal space.
Compared to point A, a higher spin polarization parallel
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FIG. 2: Field-, temperature- and DM- dependent TC. (a)
The phase diagram of TCs with the magnetic field and tem-
perature dependence with D = 0.30J . The peak value
is connected as a symbolled line. The horizon and vertical
dashed lines correspond to the finite size test in (b) and field-
dependent TC in the insert panel of (b). Star symbols la-
beled A to F correspond the snapshot in Fig. 3. (c) The TC
as a function of DM interaction with the fixed magnetic field
B = 0.12J . The insert panel shows the square relationship
between the peak value of TC and DM interaction.

with the field is achieved here. From zero temperature
to points A or B of interest, no phase transition occurs.
The emergence of TC is thus purely a consequence of the
thermal fluctuation.

In contrast, TCs at low field, especially at low temper-
atures, have distinct origin. Our Monte Carlo simulation
shows that the TC grows significantly around T = 0.25J
during the annealing procedure and remains stable to
zero temperature. It is attributed to the formation of the
skyrmion crystal phase. A typical snapshot was taken at
point C with B = 0.06J and T = 0.02J [Fig. 3(c)]. The
real space image shows a well aligned skyrmion lattice,
and the reciprocal space shows the hexagonal pattern as
expected. At the same field, if the temperature is ele-
vated to point D, the snapshot in 3(d) does not present
any ordering, although the TC remains significant. Den-
sities of the TC for C and D points are ploted in Fig.
3(c) and Fig. 3(d) for comparison. Non-zero TC emerges
only near the skyrmion in the ordered skyrmion phase,
while it is evenly distributed in the high temperature
state. At a relatively higher field at point E [Fig. 3(e)],
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FIG. 3: Snapshots and corresponding reciprocal space plots
by Fast Fourier Transform (FFT) at points on the phase di-
agram shown in Fig. 2(a). (a) B = 0.2J and T = 1.02J , (b)
B = 0.2J and T = 0.80J , (c) B = 0.06J and T = 0.02J , (d)
B = 0.06J and T = 0.66J , (e) B = 0.08J and T = 0.02Jand
(f) B = 0.02J and T = 0.02J . In real space snapshots, red
(blue) contour represent the positive (negative) value of Siz

and the arrows represent the directions of in-plane compo-
nent. For (c) and (d), the density of TC is also shown at
right panel respectively.

the skyrmion crystal is melted and sparse skyrmions are
observed. While at a lower field at point F, the tran-
sition from skyrmion crystal phase to the helical phase
takes place, and a meron-helix composite appears at this
first order phase transition. In all these regions at low
temperatures, the TC is consistent with the number of
skyrmions in the lattice. Thermal fluctuation induced
TC is suppressed. These low-field low-temperature re-
sults are consistent with previous studies8,22.

As indicated by its scaling-free property, origin of the
thermal driven topology can be understood by a simple
physical picture on the atomic scale. As defined earlier,
TC is the summation of solid angles of all triangles in
the lattice. Due to the presence of the DM interaction,
these three spins in each triangle are canted, as shown in
Fig. 1, and contribute a solid angle of Ω. If we reverse all
three spins, the new configuration cants an opposite solid
angle Ω. In the absence of the field, these two configura-
tions share the same energy, as both the Heisenberg and
DM interactions are quadratic spin interactions. These
two configurations thus have the same probability of ap-
pearance at any temperature, and the average TC is zero.
However, these two configurations, being time reversal to
each other, share opposite magnetizations. An external
magnetic field can thus lift the degeneracy and induce a
net TC after thermal averaging. One needs to be aware
that under large enough field, canting of spin takes place
only when the temperature approaches the Curie tem-
perature, far below which the polarized state is robust
and the average TC is zero. On the other hand, at very
high field, the energy difference induced by the field is no
longer relevant, and average TC decays to zero as well.
This well explains the behavior of TC in Fig. 2(b).

We can even convey this physical picture in a relatively

quantitative way. Again, focus on a triangle in the lattice
with three spins S1, S2 and S3 on the vertices. Notice
that S2 and S3 are not a pair of nearest neighbors, so no
direct exchange exists between them in our model. The
energy of this triangle is thus given by

E = −J(n1 · n2 + n1 · n3)−D(n1yn2z − n1zn2y

+n1zn3x − n1xn3z)−B(n1z + n2z + n3z) . (4)

In the small canting approximation, TC defined in Eq.
(3) is simplified as Q = n1 · (n2 × n3). Thermal av-
erage of TC is 〈Q〉 = 1

Z
´ ∏

i dniQ exp(−ET ), where

Z =
´ ∏

i dni exp(−ET ) is the partition function. At
the high temperature limit, E/T � 1, we can expand
the Boltzmann distribution in terms of polynomials of
E/T . As a result, 〈Q〉 = 1

Z
´ ∏

i dnin1·(n2 × n3)(1 −
E
T + 1

2! (
E
T )2− 1

3! (
E
T )3 +O[(ET )4]). The leading two orders

of E/T vanish because one cannot pair up all ni and their
components into even powers. The leading non-zero term
is the third order terms of E/T , where non-zero terms are
listed in the Supplementary Materials23. As a result, the

average TC is proportional to D2B
T 3 . That is reasonable

because the TC respects spatial inversion symmetry but
breaks the time reversal symmetry; the former requires
TC to be proportional to D squared, which is spatial in-
version odd, while the latter enforces linear proportion-
ality between TC and B, which is time reversal odd. No
lower order term could meet this symmetry requirement.
This scaling is consistent with the numerical simulation.
As shown in the inset of Fig. 2(b), the TC is truly pro-
portional to the field at high temperatures. The relation
between TC and temperature T is examined at various
D values [Fig. 2(c)]. A scaling between peak value of TC
and D is shown in the inset, and a perfect quadratic rela-
tion between them is identified. This quadratic relation
is persistent all the way to high temperatures.

Up to now, our handwaving argument is based on
only one triangle. A complete analysis is developed
in terms of the CP 1 formalism of the spin model. In
the continuum limit, the Hamiltonian is given by H =´
d2r[ J̄2 (∂in)(∂in)− D̄n · (∇×n)− B̄nz], where i = x, y

and J̄ = JS2, D̄ = DS2

a , and B̄ = BS
a2 with finite value of

S = |S| recovered. a is the lattice constant. A normal-
ized two-component complex field z is introduced and let
nµ = z†σµz(µ = x, y, z), where σ are Pauli matrices. In
this representation, the Hamiltonian can be written in
terms of a CP 1 doublet field given by

H =

ˆ
d2r2J̄ [|(∂i − iαi + iκσi)z|2 − hz†σzz], (5)

where κ = D̄
2J̄

and h = B̄
2J̄

16. αi = − i
2 [z†∂iz− (∂iz

†)z] is
the emergent U(1) gauge field, whose total flux is nothing
but the topological charge defined in Eq. (1):

Q =
1

4π

ˆ
d2r(∇×α)z . (6)

Due to the z-dependence of α, the Hamiltonian has
quartic terms of z, so the integration over z cannot
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FIG. 4: Feynman rules and diagrams with various integral
paths. See details in the text.

be performed straightforwardly in the partition function
Z =

´
Dz†Dz exp(−H/T ). Therefore, we rescale the

field z →
√

2J
T z , λ → 1

2
T
J̄
λ, define f = T

J̄
, and per-

form the Hubbard-Stratonovich transformation17,23, end-
ing up with the partition function:

Z =

ˆ
Dz†DzDαiDλ exp{−[|(∂i − iαi + iκσi)z|2

−hz†σzz + iλ(z†z− 2

f
)]} (7)

in which z and α are now two independent dynamical
variables. A Lagrange multiplier field λ is introduced to
enforce the normalization of z.

The basic idea in what follows is to integrate out the
z field, and get an effective theory in terms of the gauge
field α. The gauge invariance requirement gives rise to
only two possible terms up to the second order of α in
the effective action. One is b2 with b = (∇ × α)z the
topological charge density, and the other is hb. A saddle
point solution of b thus gives the average value of the
TC density proportional to the field h, consistent with
the discussions above. To work it out, a perturbation
approach is employed24,25. In momentum space, the un-
perturbed part of the action in Eq. (7) is

S0 = L2

ˆ
d2k

(2π)2
z†k(k2 +m2

0 − 2κkiσi)zk, (8)

where L2 is the area of the 2D film we considered. The
corresponding Feynman diagram is shown in Fig. 4(a).
The massm2

0 = iλ+2κ2 is determined by the saddle point
approximation. Denote the partition function in Eq. (7)
by Z =

´
DαiDλ exp(−Seff [αi, λ]). A uniform saddle

point solution i〈λ〉 = λ̄ and 〈αi〉 = 0 solves δSeff/δλ̄ = 0,

and we finally get log Λ2

m2
0
≈ 4π

f , where Λ ∼ 1
a is the

ultraviolet cutoff in Pauli-Villars regulation scheme23.
The perturbative part of the action in Eq. (7) is di-

vided into two terms

Si1 = L4

ˆ
d2kd2q

(2π)4
z†
k+ q

2
(−2kiαi, q − 2καi, qσi

−hqσ3)zk− q
2
, (9)

Si2 = L6

ˆ
d2kd2qd2q

(2π)4
z†kzqαi,pαi,k−q−p. (10)

The Feynman diagram Fig. 4(b) corresponds to Si1,
where the spring line represents the part −2(kiαi, q +

καi, qσi+
h
2σ3) in the three-point vertex. Fig. 4(c) is four

point interaction in Si2. The tilde line represents the pure
emergent gauge field αi of the four-point vertex. The first
order perturbation from Si2, shown by the diagram Fig.

4(d), contributes to a term Sd = L4

2π log Λ2

m2
0

´
d2q

(2π)2α
2
i . We

don’t consider the quadratic term of αi at κ2 and higher

order because κ2

Λ2 � 1. In contrast, the first order per-
turbation of Si1 is a vanishing tadpole diagram. The
lowest contribution is the second order perturbation Se
depicted in Fig. 4(e). Se can be split into two parts, Se1
correspond to the b2 term and Se2 which includes the hb
term. Combining Sd with Se1, we get the gauge invariant
term b2 as expected:

Sb2 = Sd + Se1 =
L

4

π

ˆ
d2q

(2π)2
b−q[

exp( 4π
f )

12Λ2
+O(q2)]bq.

(11)
The expected hb term also arises from the second order

perturbation. The leading term of hb in Se2 is

Shb = L4

ˆ
d2kd2q

(2π)4

8κ2( q
2

4 +m2
0)h−qbq

[(k + q
2 )2 +m2

0]2[(k − q
2 )2 +m2

0]2

(12)
and the effective action is therefore Seff = Sb2 + Shb.
Solving the saddle point of the field b, we obtain

b̄ = −12κ2h

Λ2
sinh2(

2π

f
)[1− exp(−12π

f
)]. (13)

The thermal average of the TC at the high temperature
limit is

〈Q〉 ≈ −18π2L2BS5

T 3
(
D

a
)2[1− 6πJS2

T
+O(

1

T 2
)] , (14)

where D
a is the DM interaction in the continuum limit.

This result matches well with the simple argument based
on one triangle. Actually, if we further proceed to the
fourth order of E/T in the single triangle argument, a
term proportional to JD2B/T 4 is present, but its sign
is opposite to the 1/T 3 term. The emergent topology
at finite temperature can be thus well explained by this
effective theory of the emergent gauge field.

In conclusion, we have discovered thermal driven topol-
ogy in 2D chiral magnets. A significant upturn of TC was
observed outside the skyrmion crystal phase. This phe-
nomena is well understood by both analyzing thermal
fluctuations in the atomic scales and field theoretical ap-
proach based on CP 1 formalism. As has been extensively
studied in the skyrmion physics, non-zero TC would lead
to the topological Hall effect, which was observed in the
skyrmion crystal phase only7,26,27. The discrepancy be-
tween the topological Hall signal and distribution of the
TC observed in this work is due to the itinerant nature
of the magnetism in most chiral magnets under inves-
tigation. Close to or above the Curie temperature, the
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local magnetic moment in these magnets is significantly
reduced so that our simulation based on constant local
magnetic moment does not apply. Only in insulating
magnets such as Cu2OSeO3

28, local magnetic moments
are persistent at elevated temperatures, and our discov-
ery would apply. On the other hand, the thermal Hall
effect related to the to the magnon deflection by TC
has been addressed in frustrated magnets29–31 and chiral
magnets32,33. We therefore predict the thermal Hall ef-
fect of insulating chiral magnets, in which local magnetic
moments are persistent at high fields and temperatures.
Actually the phenomenon of thermal driven topology can
be even generalized to ferroelectrics34, and we would ex-
pect rich experimental observations will come out in the

future.

Upon finishing this work, we noticed that similar be-
havior of the topological charge was recently studied by
Levente Rózsa et al.35 and Mohit Randeria. Both of them
studied the skyrmion crystal phase rather than the high
field case we are emphasizing in this work. We also no-
ticed a recent work36 which addressed the similar phe-
nomenon in terms of skyrmion-antiskyrmion formations.
We acknowledge initial discussions with Jung Hoon Han,
Oleg Tchernyshyov and Di Xiao. This work was sup-
ported by the U.S. Department of Energy (DOE), Office
of Science, Basic Energy Sciences (BES) under Award
No. DE-SC0016424.
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