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Correlation functions of dimer operators, the product operators of spins on two adjacent sites,
are studied in the spin- 1

2
XXZ chain in the critical regime. The amplitudes of the leading oscil-

lating terms in the dimer correlation functions are determined with high accuracy as functions of
the exchange anisotropy parameter and the external magnetic field, through the combined use of
bosonization and density-matrix renormalization group methods. In particular, for the antiferro-
magnetic Heisenberg model with SU(2) symmetry, logarithmic corrections to the dimer correlations
due to the marginally-irrelevant operator are studied, and the asymptotic form of the dimer cor-
relation function is obtained. The asymptotic form of the spin-Peierls excitation gap including
logarithmic corrections is also derived.

PACS numbers:

I. INTRODUCTION

The one-dimensional (1D) model of S = 1
2 spins with anisotropic exchange interaction, the spin- 12 XXZ chain, is a

basic model in quantum magnetism. Its Hamiltonian is given by

H = J

L−1∑

l=1

(Sx
l S

x
l+1 + Sy

l S
y
l+1 +∆Sz

l S
z
l+1)− h

L∑

l=1

Sz
l , (1)

where Sl = (Sx
l , S

y
l , S

z
l ) is the spin- 12 operator at the lth site, L the number of spins, ∆ the anisotropy parameter,

and h the external magnetic field. The exchange-coupling constant is assumed to be positive, J > 0. The XXZ chain
is an important toy model, from both experimental and theoretical viewpoints, for understanding magnetic properties
of various (quasi-)1D materials.
An intriguing feature of the XXZ chain is that it realizes a quantum-critical Tomonaga-Luttinger liquid (TLL) for

a large region in the two-dimensional parameter space (∆, h).1–3 In the TLL phase of the XXZ chain, strong quantum
fluctuations prevent spontaneous breaking of continuous symmetries even at zero temperature; in the resulting critical
ground state, correlation functions have power-law dependence on the distance or time. For example, the equal-time
spin-spin correlation functions in the ground state of the XXZ chain in the TLL phase have the asymptotic forms,4

〈Sx
l S

x
l+r〉 = Ax

0

(−1)r

rη
−Ax

1

cos(2πMr)

rη+1/η
+ · · · , (2a)

〈Sz
l S

z
l+r〉 −M2 = Az

1

(−1)r cos(2πMr)

r1/η
− 1

4π2ηr2
+ · · ·

(2b)

for long distance r in the bulk (1 ≪ r ≪ L, l ≈ L/2), where M = 〈Sz
l 〉 is the magnetization per spin and 〈· · · 〉

denotes the expectation value in the ground state. The parameter η in the exponents can be obtained exactly by
solving integral equations from the Bethe ansatz, and its explicit solution at M = 0 (i.e., h = 0) is given by4

η = 1− 1

π
arccos(∆). (3)

The amplitudes Ax
0 , A

x
1 , and Az

1 have been determined as functions of ∆ and M .5–12 The dynamical spin-structure
factors of the XXZ chain have also been calculated.13
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In this paper, we focus our attention on correlation functions of the product of two adjacent spins,

O±
d (l) =

1

2
(Sx

l S
x
l+1 + Sy

l S
y
l+1)

=
1

4
(S+

l S−
l+1 + S−

l S+
l+1), (4a)

Oz
d(l) = Sz

l S
z
l+1, (4b)

where S±
l = Sx

l ± iSy
l . We call them dimer operators (their superposition 2O±

d (l)+∆Oz
d(l) is the “energy operator”).

One can show, using the bosonization method, that the correlation functions of the dimer operators in the critical
TLL phase of the XXZ chain have the asymptotic forms1–3

〈Oa
d(l)Oa

d(l + r)〉 − 〈Oa
d(l)〉〈Oa

d(l + r)〉

= Ba
1

(−1)r cos(2πMr)

r1/η
+

Ba
2

r4
+Ba

3

cos(4πMr)

r4/η
+ · · · , (5)

where a = ±, z. The exponent 1/η of the first term on the right-hand side is the same as that of the first term in
Eq. (2b). Thus the oscillating term in the dimer correlation function is as important as the oscillating component
in the longitudinal spin correlation in the TLL phase. These two terms are related to the same vertex operators
exp(±i

√
2πφ) in the low-energy effective theory; see related discussions below Eq. (8). The dimer correlation is also

important as a measure of the instability towards spin-Peierls order.14 In the spin-Peierls phase where there is a
small alternation in the magnitude of the exchange interaction J , spin excitations have an energy gap whose size
and scaling are directly related to the dimer correlation in the spin chain without the alternation in J [the first term
in Eq. (5)]. To the best of our knowledge, the exact values of the correlation amplitudes Ba

1 are not known, and
so far they are only numerically estimated from the exact diagonalization of small systems.15 Experimentally, the
dynamical structure factor of the dimer operators can be probed in the optical absorption spectrum16 and resonant
inelastic X-ray scattering.17,18 Accurate evaluation of the dynamical structure factor of the dimer operators has been
performed using the algebraic Bethe ansatz combined with numerical computation.19,20

The purpose of this paper is to numerically determine the amplitudes Ba
1 of the leading term in Eq. (5) to very high

accuracy. This is achieved by combining the powerful analytical and numerical approaches available for 1D systems:
bosonization and density-matrix renormalization group (DMRG) methods. The bosonization method provides the
low-energy effective theory of the XXZ spin chain.1–3 We calculate the ground-state expectation values of the dimer
operators in finite spin chains with open boundaries using the bosonization and DMRG methods. The numerical data
from the DMRG calculation are fitted to the corresponding formulas from the bosonization; this allows us to obtain
accurate numerical estimates of the amplitudes Ba

1 .
Another important result of this work concerns the dimer correlations in the SU(2) symmetric case where ∆ = 1 and

h = 0 in Eq. (1). In this case, a marginally-irrelevant operator in the low-energy effective theory leads to logarithmic
corrections in various physical quantities. An interesting example is a spin excitation gap in the antiferromagnetic
Heisenberg spin chain with weak bond alternation. Since the gap is directly related to the dimer correlation, we
can determine, from the scaling analysis of the excitation gap, the amplitude of the leading dimer correlation with
a multiplicative logarithmic correction; our result is consistent with a recent numerical estimate reported in Ref. 21.
We also derive the asymptotic form of the excitation gap in the bond-alternating Heisenberg chain.
The organization of the rest of the paper is as follows. In Sec. II we focus on the case of vanishing magnetization

M = 0 (h = 0) and easy-plane anisotropy |∆| < 1. The correlation amplitudes Ba
1 are obtained as a function of

the anisotropy ∆. In Sec. III we discuss the SU(2) symmetric case and derive the asymptotic forms of the dimer
correlation function and the spin-Peierls excitation gap with the logarithmic correction. In Sec. IV we present the
correlation amplitudes Ba

1 in the partially-polarized case 0 < M < 1/2. Section V is devoted to a summary and
concluding remarks.

II. XXZ CHAIN IN ZERO MAGNETIC FIELD

A. Theory

In this section, we consider the XXZ model in Eq. (1) for −1 < ∆ < 1 and h = 0. In this parameter regime, the
low-energy effective theory is a free-boson theory, i.e., the Gaussian model,

H̃0 =
v

2

∫ L+1

0

dx

[
1

η
:

(
dθ

dx

)2

: +η :

(
dφ

dx

)2

:

]
, (6)
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where φ(x) and θ(x) are bosonic fields that are dual to each other and satisfy the commutation relation

[φ(x), dθ(y)/dy] = iδ(x − y). The field φ(x) is compactified as φ +
√
2π ≡ φ. The operators in the integrand in

Eq. (6) are normal-ordered, as indicated by the colons. The parameter η is given by Eq. (3), and the renormalized
spin velocity v is related to ∆ (and η) as22,23

v =
π
√
1−∆2

2 arccos(∆)
J =

sin(πη)

2(1− η)
J. (7)

We set the lattice spacing to be unity so that the continuous coordinate x can be identified with the lattice index l. We
note that in the effective Hamiltonian (6), we have discarded symmetry-allowed operators which are irrelevant in the

renormalization-group sense. Among those operators, the leading irrelevant term g cos(
√
8πφ) has scaling dimension

2/η and becomes marginally irrelevant at the SU(2)-symmetric point (∆ = 1 and h = 0), yielding the logarithmic
corrections. Therefore, our results presented below (in Secs. II and IV) may include systematic errors near the SU(2)
point due to the leading irrelevant cosine term. The SU(2)-symmetric case will be discussed in Sec. III, where the

effect of the marginally irrelevant perturbation g cos(
√
8πφ) is taken into account.

The dimer operators defined in Eq. (4) are expressed in terms of the bosonic fields as1–3

Oa
d(l) = ca0 + ca1(−1)l cos[

√
2πφ(xl)]

+ caφ :

(
dφ(xl)

dx

)2

: + caθ :

(
dθ(xl)

dx

)2

:

+ cag cos[
√
8πφ(xl)] + · · · , (8)

where xl = l+ 1
2 is the center position of two spins forming dimer operators. Note that the second term of the right-

hand side is a cosine of the field φ so that the ground-state expectation value of Eq. (8) with the Dirichlet boundary
condition (17) correctly yields the Friedel oscillations near the open boundaries, as we will see in Eqs. (23) and (26).

Incidentally, the bosonization of the z-component of the spin operator, Sz
l , has (−1)l sin(

√
2πφ).9,11 A higher-order

term (∝ cos
√
8πφ) is also included in Eq. (8) for later convenience. Our task is to determine the coefficients in Eq.

(8). Among them, those of the uniform terms (ca0 , c
a
φ, c

a
θ , and cag) can be obtained exactly as follows.

Since a linear combination of the dimer operators, 2O±
d +∆Oz

d, is nothing but the exchange interaction in the XXZ
model (1) at h = 0, the coefficients of the uniform terms in Eq. (8) are related to the ground-state energy and the
parameters in the low-energy effective Hamiltonian of the model. Then, using the Hellmann-Feynman theorem, the
coefficients ca0 are related to the ground-state energy density e0 of the XXZ chain,

cz0 =
1

J

∂e0
∂∆

, c±0 =
1

2J

(
e0 −∆

∂e0
∂∆

)
. (9)

Substituting the exact ground-state energy density e0 obtained from the Bethe ansatz,24–26

e0
J

= − sin(πη)

π

∫ ∞

0

sinh(ηt)dt

sinh(t) cosh[(1 − η)t]
− cos(πη)

4
, (10)

into Eq. (9) gives

cz0 =
1

4
− cos(πη)

π sin(πη)
I1 −

1

π2
I2, (11a)

c±0 = − 1

2π sin(πη)
I1 −

cos(πη)

2π2
I2, (11b)

where the integrals I1 and I2 are given by

I1 =

∫ ∞

0

sinh(ηt)dt

sinh(t) cosh[(1− η)t]
, (12a)

I2 =

∫ ∞

0

t cosh(t)dt

sinh(t) cosh2[(1− η)t]
. (12b)
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Similarly, comparing the third and fourth terms in Eq. (8) with the Hamiltonian density of the Gaussian model (6),
one finds that the coefficients caφ and caθ are expressed in terms of the spin velocity v and the parameter η as

czφ =
1

2J

∂vη

∂∆
, c±φ =

1

4J

(
vη −∆

∂vη

∂∆

)
, (13a)

czθ =
1

2J

∂(v/η)

∂∆
, c±θ =

1

4J

(
v

η
−∆

∂(v/η)

∂∆

)
. (13b)

These relations, together with Eqs. (3) and (7), determine caφ and caθ :

czφ =
πη(1 − η) cos(πη) + sin(πη)

4π(1− η)2 sin(πη)
, (14a)

c±φ =
2πη(1 − η) + sin(2πη)

16π(1− η)2 sin(πη)
, (14b)

czθ =
πη(1 − η) cos(πη) + (2η − 1) sin(πη)

4πη2(1− η)2 sin(πη)
, (14c)

c±θ =
2πη(1 − η) + (2η − 1) sin(2πη)

16πη2(1 − η)2 sin(πη)
. (14d)

Note that these coefficients diverge at the SU(2) isotropic limit η → 1 as caφ, c
a
θ ∝ (η − 1)−1, which signals the

appearance of logarithmic corrections [∝ (ln r)2] in the uniform term (∝ 1/r4) of the dimer correlation function in Eq.

(5); see also Ref. 21. Incidentally, cag are related to the coupling constant g of the irrelevant perturbation g cos(
√
8πφ)

to the Gaussian Hamiltonian,

czg =
1

J

∂g

∂∆
, c±g =

1

2J

(
g −∆

∂g

∂∆

)
. (15)

The explicit form of g in the effective Hamiltonian for −1 < ∆ < 1 and h = 0 is given in Ref. 8 and used in
numerical studies.27,28 We will not consider the higher-order harmonics cag cos(

√
8πφ) anymore in this section, because

its contribution (∝ r−4/η) in Eq. (5) decays faster than the other terms for η < 1.
In contrast to the coefficients of the uniform part discussed above, the exact formula for the coefficients ca1 of the

cosine term in Eq. (8) is not available, except for the free-fermion point ∆ = 0,

c±1 (∆ = 0) =
1

2π
, cz1(∆ = 0) =

2

π2
. (16)

In order to evaluate ca1 , we consider Friedel oscillations in the expectation values of the dimer operators Oa
d(x) near

the open boundaries, which can be easily studied by applying the DMRG method to finite open chains. We also
calculate the ground-state expectation values of the dimer operators using the bosonization method. In the effective
theory, the presence of open boundaries can be taken into account by imposing the Dirichlet boundary conditions on
the bosonic field φ(x),9–11,29

φ(0) = φ(L+ 1) = 0. (17)

Since the low-energy theory is the Gaussian model in Eq. (6), we expand the bosonic fields with harmonic oscillator
modes as

√
ηφ(x) =

x

L+ 1
φ0 +

∞∑

n=1

e−αn/2 sin qnx√
πn

(
an + a†n

)
, (18a)

1√
η
θ(x) = θ0 + i

∞∑

n=1

e−αn/2 cos qnx√
πn

(
an − a†n

)
, (18b)

where qn = πn/(L + 1), [θ0, φ0] = i, and [am, a†n] = δm,n. The parameter α is a small positive constant that is
introduced for regularization. The fields φ(x) and θ(x) in Eq. (18) satisfy the commutation relation [φ(x), θ(y)] =
−(i/2)[1 + sgn(x− y)]. The ground state |0〉 is a vacuum of the bosons an and the zero mode φ0: an|0〉 = φ0|0〉 = 0.
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Using the mode expansions in Eq. (18), the ground-state expectation values of the operators that appear in Eq. (8)
can be obtained as

〈cos[
√
2πφ(x)]〉 = 1

[f(2x)]1/2η
, (19a)

η〈[dφ(x)/dx]2〉 = − π

24(L+ 1)2
− 1

2π[f(2x)]2
, (19b)

1

η
〈[dθ(x)/dx]2〉 = − π

24(L+ 1)2
+

1

2π[f(2x)]2
. (19c)

Here we have defined

f(x) =
2(L+ 1)

π
sin

(
π|x|

2(L+ 1)

)
, (20)

which is simplified to f(x) = |x| in the thermodynamic limit L → ∞. We have used the regularization

∞∑

n=1

e−αn

n
(1− cos qnx) = ln[f(x)] (21)

in Eq. (19a), such that the two-point function of vertex operators has the form

〈ei
√
2πµφ(x)e−i

√
2πµφ(y)〉 = |x− y|−µ2/η (22)

in the bulk limit, 1 ≪ |x − y| ≪ L, x ≈ L/2, y ≈ L/2. Note that we have not normal-ordered the operators on the
left-hand side of Eqs. (19b) and (19c), so that we can obtain the finite-size corrections ∝ 1/(L+ 1)2 coming from the
zero-point energy of harmonic oscillators. In this calculation we have used ζ(−1) = −1/12 and taken the α → 0 limit,
assuming that singular contributions proportional to α−2 are already included in the ground-state energy e0.
From Eqs. (8) and (19), we find that the ground-state expectation values of the dimer operators in finite open

chains are given by

〈Oa
d(l)〉 = ca0 +

(−1)lca1
[f(2l+ 1)]1/2η

− π2ca2
12(L+ 1)2

− c̄a2
[f(2l+ 1)]2

+ · · · . (23)

The constants ca0 are given in Eq. (11). We note that ca1 is positive in the open spin chains (1). The coefficients ca2
and c̄a2 are related to cφ and cθ by

ca2 =
1

2π

(
caφ
η

+ ηcaθ

)
, c̄a2 =

1

2π

(
caφ
η

− ηcaθ

)
, (24)

and are written explicitly as

c±2 =
sin(2πη) + 2π(1− η)

16π2(1− η)2 sin(πη)
, (25a)

cz2 =
sin(πη) + π(1 − η) cos(πη)

4π2(1 − η)2 sin(πη)
, (25b)

c̄±2 =
cos(πη)

8π2η(1− η)
, (25c)

c̄z2 =
1

4π2η(1− η)
. (25d)

We will use these results in the next section to estimate the unknown coefficients ca1 from numerical data.
We note that Eq. (23) is simplified to

〈Oa
d(l)〉 = ca0 +

(−1)lca1
(2l)1/2η

− c̄a2
(2l)2

+ · · · (26)
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FIG. 1: Expectation values of the dimer operators (a) 〈O±

d (l)〉 and (b) 〈Oz
d(l)〉 in the ground state of the XXZ chain (1) for

∆ = 0.5,−0.5, zero magnetic field h = 0, and L = 200.

for 1 ≪ l ≪ L. This should be contrasted with the two-point functions of the dimer operators in Eq. (5), which are
calculated in the bulk (away from boundaries). The boundary exponents in Eq. (26) are half the bulk exponents in
Eq. (5).
Finally, the asymptotic forms of the dimer correlation functions [Eq. (5)] can be derived by calculating the correlation

functions in finite open chains using Eqs. (8) and (18) and taking the thermodynamic limit L → ∞. The correlation
amplitudes in Eq. (5) are given in terms of the coefficients caj by

Ba
1 =

(ca1)
2

2
, Ba

2 =
1

2π2

[(
caφ
η

)2

+ (ηcaθ)
2

]
,

Ba
3 =

(cag)
2

2
. (27)

B. Numerical results

In this section, we present numerical results on the ground-state expectation values of the dimer operators in the
XXZ chain (1) with open boundaries at zero magnetic field h = 0. The numerical data shown here and in the following
sections were obtained using the DMRG method. The number of block states required to achieve a desired accuracy
depends on the model parameters. We typically kept a few hundred states (555 states in the most severe case) and
checked that the obtained data had enough accuracy for the subsequent analysis described below.
In order to estimate the coefficients ca1 (a = ±, z) for the XXZ chain at zero field, we computed the ground-state

expectation values of the dimer operators, 〈Oa
d(l)〉, for the systems up to L = 1600 spins. Figure 1 shows the numerical

results for ∆ = 0.5 and ∆ = −0.5. (Here we plot the results obtained for a rather small system size L = 200 for
clarity.) The ground-state expectation values of the dimer operators exhibit sizable Friedel oscillations near open
boundaries. The staggered part of the expectation values of the dimer operators, 〈Oa

d,stg(l)〉, can be obtained from

〈Oa
d(l)〉 by subtracting the non-oscillating contributions,

〈Oa
d,stg(l)〉 = 〈Oa

d(l)〉 − ca0 +
π2ca2

12(L+ 1)2
+

c̄a2
[f(2l + 1)]2

, (28)

where the exact values given in Eqs. (11) and (25) are substituted for the coefficients ca0 , c
a
2 , and c̄a2 . The staggered

part 〈Oa
d,stg(l)〉 obtained in this way is shown in Fig. 2. We see that data points of (−1)l〈Oa

d,stg(l)〉 computed for
different system sizes collapse onto a single line in the log-log plot, which corresponds to the power-law behavior
(−1)l〈Oa

d,stg(l)〉 = ca1/[f(2l + 1)]1/2η. This demonstrates the validity of Eq. (23) and indicates that the higher-order
terms neglected there are indeed very small.
The coefficients ca1 are obtained from 〈Oa

d,stg(l)〉 as follows. For an open spin chain of L sites, we calculate

ca1(l, L) = (−1)l〈Oa
d,stg(l)〉[f(2l+ 1)]1/2η (29)
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FIG. 2: Staggered part of the expectation value of the dimer operators (a) (−1)l〈O±

d,stg(l)〉 and (b) (−1)l〈Oz
d,stg(l)〉 in the

ground state of the XXZ chain (1) for ∆ = 0.5,−0.5 and zero magnetic field h = 0. The data for L = 100, 200, 400, 800, 1200,

and 1600 are plotted. The dashed lines represent the expected behavior, ca1/[f(2l + 1)]1/2η , with ca1 obtained by the procedure
explained in the text and η given by Eq. (3).

−0.5 0 0.5 1
0

0.01

0.02

B1
a

∆

B1

B1
z

FIG. 3: Amplitudes Ba
1 = (ca1)

2/2 of the leading staggered term in the dimer correlation functions, Eq. (5), in the XXZ chain
(1) at zero magnetic field h = 0.

for each l in the central region (L/2 − 10 ≤ l ≤ L/2 + 10) and the spatial average of ca1(l, L) over the central
region is denoted by ca1(L). We calculate ca1(L) for several values of L and obtain a set of data Ca

1 = {ca1(L)|L =
100, 200, . . . , 1600}. For three different subsets of Ca

1 we fit ca1(L) to the polynomial ca1(L) = ca1(∞)+βa
1/L+βa

2/L
2; this

defines the extrapolated value ca1(∞) for each subset of Ca
1 . We take the average of these ca1(∞) as the final estimate

of ca1 . The error is determined from the largest of the differences of the final estimate ca1 from the extrapolated values
ca1(∞) for the subsets of Ca

1 and from the estimates ca1(l, L) for the central region of the largest system L = 1600. In
this way we have determined the coefficients ca1 for ∆ ≥ −0.6, but we could not obtain accurate results for ∆ ≤ −0.7,
where the Friedel oscillations in 〈Oa

d(l)〉 decay so rapidly that the amplitude of oscillations away from the boundaries
becomes almost comparable to numerical accuracy of our DMRG data. The results for the amplitudes Ba

1 = (ca1)
2/2

of the leading staggered term of the dimer correlation functions are presented in Table I and Fig. 3.
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TABLE I: Amplitudes Ba
1 = (ca1)

2/2 of the leading staggered term in the dimer correlation functions Eq. (5) in the XXZ chain
(1) for h = 0 as functions of the anisotropy parameter ∆. The number in the parenthesis for the value of Ba

1 denotes the error
in the last digit. The error was estimated as described below Eq. (29).30

∆ B±

1 Bz
1

0.9 0.00582(6) 0.00606(7)

0.8 0.00826 0.00898

0.7 0.01008(2) 0.01144(2)

0.6 0.01139(2) 0.01351(3)

0.5 0.01229(2) 0.01528(3)

0.4 0.01285(1) 0.01677(2)

0.3 0.01314(1) 0.01804(1)

0.2 0.01319(1) 0.01909(1)

0.1 0.01302(1) 0.01992(2)

0.0 0.01267(1) 0.02055(2)

−0.1 0.01216(1) 0.02095(2)

−0.2 0.01149(1) 0.02112(2)

−0.3 0.01068(1) 0.02103(2)

−0.4 0.00975(1) 0.02066(2)

−0.5 0.00872(1) 0.01999(3)

−0.6 0.00760(7) 0.0190(3)

C. Application

The high-precision data of the coefficients ca1 can be used for quantitative analysis of physical quantities related to
the dimer operators, including spin-Peierls instability, dynamical structure factors of dimer correlations, and interchain
dimer-dimer couplings in quasi-1D systems. As an example of such applications, we discuss the excitation gap in the
XXZ chain with bond alternation in this section.
Let us consider the bond-alternating spin-1/2 XXZ chain, whose Hamiltonian is

Hba = J

L−1∑

l=1

[
1− (−1)lδ

]
(Sx

l S
x
l+1 + Sy

l S
y
l+1 +∆Sz

l S
z
l+1), (30)

where δ is a positive parameter controlling the magnitude of the bond alternation. We assume the easy-plane
anisotropy, |∆| < 1. From Eq. (8), it is found that the low-energy effective Hamiltonian for Eq. (30) is given
by

H̃ba = H̃0 − Jδ
(
2c±1 +∆cz1

)∫
dx cos[

√
2πφ(x)] + · · · , (31)

where H̃0 is the Gaussian model in Eq. (6). Since the nonlinear term cos[
√
2πφ(x)] has a scaling dimension 1/(2η) at

the Gaussian fixed point, it is a relevant perturbation and opens an excitation gap if η > 1/4 (i.e., ∆ > −1/
√
2). In

this case the excitation gap Eg(δ) for small bond alternation δ ≪ 1 is given by31

Eg(δ)

J
= A(∆)

∣∣δ(2c±1 +∆cz1)
∣∣2η/(4η−1)

(32)

with

A(∆) =
2v√
πJ

Γ
(

1
8η−2

)

Γ
(

2η
4η−1

)
[
πJ

2v

Γ
(
1− 1

4η

)

Γ
(

1
4η

)
]2η/(4η−1)

. (33)

Note that the parameter η and the spin velocity v are functions of ∆; see Eqs. (3) and (7). Thus, with the estimates
of ca1 obtained in Sec. II B, we can determine the excitation gap from Eqs. (32) and (33) without any free parameter.
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FIG. 4: Excitation gap Eg(δ) in the bond-alternating XXZ chain (30) at ∆ = 0.5. The circles represent the gap Eg(δ) obtained
using the DMRG method and the extrapolation as described below Eq. (34). The dotted line shows the theoretical curve from
Eqs. (32) and (33), in which the exact values of η and v [Eqs. (3) and (7)] and the coefficients c±1 and cz1 obtained in Sec. II B
are substituted.

To confirm this theory, we numerically calculated the excitation gap Eg(δ) for ∆ = 0.5 and δ = 2−3, ..., 2−10 using
the DMRG method. The gap Eg(δ) was obtained as follows. We first calculated the excitation gap for finite open
spin chains of various lengths up to L = 3200, using the relation

Eg(δ, L) = E0(δ;L, 1)− E0(δ;L, 0), (34)

where E0(δ;L, S
z
tot) is the lowest energy in the subspace in which the total magnetization

∑
l S

z
l = Sz

tot. We thus
obtained a set of data E = {Eg(δ, L)|L = 100, 200, . . . , 3200}. For three different subsets of E we fit Eg(δ, L) to a
second-order polynomial, Eg(δ, L) = Eg(δ,∞) + β1/L + β2/L

2, to obtain the extrapolated value Eg(δ,∞) for each
subset of E . We took the average of Eg(δ,∞) for the subsets as the final estimate of Eg(δ). The error in Eg(δ), which
is estimated from the difference between the final estimate Eg(δ) and the extrapolation Eg(δ,∞) for the subsets of E ,
is less than 3.9× 10−5J .
In Fig. 4, we show Eg(δ), together with a plot of Eq. (32) calculated with ca1 obtained in the previous section.

Clearly, the numerical and analytic results are in excellent agreement,32 demonstrating the accuracy of the estimates
of ca1 and the validity of the theory.

III. SU(2) SYMMETRIC CASE

In this section we discuss the SU(2) symmetric case where ∆ = 1 and h = 0 in Eq. (1). In this case the
marginally irrelevant operator in the low-energy effective theory brings about logarithmic corrections in various phys-
ical quantities.1–3,6,21,33 For example, the leading behavior of the dimer correlation function is

〈Oa
d(l)Oa

d(l + r)〉 − 〈Oa
d(l)〉〈Oa

d(l + r)〉

= B̃1
(−1)r

r (ln r)3/2
+ · · · , (35)

for r ≫ 1, where B̃1 is a constant common to a = ±, z. This behavior can be understood within the scheme of the
previous section as follows; in the SU(2) symmetric limit, the correlation amplitude B1 = (c1)

2/2 is renormalized and
acquires logarithmic dependence on the length or energy scale of interest. Namely, B1 ∝ (ln r)−3/2 and c1 ∝ (ln r)−3/4.

In the following, we reversely employ the analysis of Sec. II C, i.e., we deduce the amplitude B̃1 from the dependence
of the excitation gap Eg on the bond alternation δ.
Let us consider the Heisenberg spin chain with the bond alternation, Eq. (30) with ∆ = 1. The low-energy effective

Hamiltonian is written in terms of the bosonic fields as

H̃ba,SU(2) = H̃0 − 3c1δJ

∫
dx cos[

√
2πφ(x)]

+ g

∫
dx cos[

√
8πφ(x)] + · · · , (36)



10

0 0.5 1
0

1

2

10−3 10−2 10−1 100
10−2

10−1

100

E
g 
(δ

 )  
/  J

δ
E

g 
(δ

 )  
/  J

δ

FIG. 5: Excitation gap Eg(δ) in the bond-alternating Heisenberg chain, Eq. (30) with ∆ = 1. The circles represent the
numerical data extrapolated to the thermodynamic limit L → ∞ and the square is the exact value Eg(δ = 1) = 2. The red
dotted line is the theoretical curve, Eqs. (37) and (41) with C2 = 1.80. Inset shows the same figure in a log-log scale.

where H̃0 is the Gaussian model in Eq. (6) and c1 = c±1 = cz1. It is important to note that we have included the

marginally irrelevant term, g
∫
dx cos[

√
8πφ(x)], in the effective Hamiltonian. In the absence of the bond alternation

(δ = 0), the coupling constant g is renormalized to zero as g ∼ [ln(J/E)]−1 with decreasing energy scale E. When the
bond alternation is present, δ 6= 0, the renormalization of the coupling constant g is stopped at the energy scale of
the excitation gap Eg, where g takes a finite value. Using the renormalization-group scheme from Ref. 6, the relation
between the gap Eg and the running coupling constant g can be chosen as

Eg

J
=

√
2π3 eγEg−1/2e−1/g, (37)

where γE ≃ 0.5772... is the Euler constant.
We suppose that the gap formula of Eqs. (32) and (33) holds also in the SU(2) symmetric case and that logarithmic

corrections manifest themselves through the renormalized coefficient c1. Thus we substitute η = 1 and v = πJ/2,
which are the fixed-point values in the SU(2) case in the absence of the bond alternation, into Eqs. (32) and (33).
Then we write

c1 =
1

(2π3)1/4
g3/4

C(g)
, (38)

where

C(g) = (2π3)−1/4g3/4
3δΓ

(
3
4

)

Γ
(
1
4

)
[

Γ
(
2
3

)
√
π Γ

(
1
6

) Eg

J

]−3/2

. (39)

We have defined C(g) in such a way that the prefactor g3/4 in Eq. (38) incorporates the scaling c1 ∝ g3/4 at g ≪ 1.
It is then natural to expect that C(g) should be expanded in powers of g,

C(g) = C0 + C1g + C2g
2 + · · · (40)

for g ≪ 1.
In order to estimate the constants C0, C1, and C2 in Eq. (40), we calculated numerically the excitation gap Eg(δ)

in the bond-alternating chain (30) with ∆ = 1 and δ = 2−10, ..., 2−3, 0.2, ..., 0.8 using the DMRG method. Previous
works have obtained the excitation gap Eg(δ, L) for L . 200 spins.34,35 Here, we computed Eg(δ, L) for the finite
open chains up to L ≤ 3200 (L ≤ 800) spins with 2−10 ≤ δ ≤ 2−3 (0.2 ≤ δ ≤ 0.8). We then extrapolated the data to
L → ∞ in the same manner as in Sec. II C and obtained the estimate of the gap Eg(δ) in the thermodynamic limit.
The error in Eg(δ) is estimated to be less than 1.5×10−5J . The numerical results for Eg(δ) are shown by open circles
in Fig. 5.
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FIG. 6: C(g) as a function of g2. The circles represent the numerical data. The red dotted lines show the fitting to C(g) =
C0 + C2g

2 of the data points at n smallest g’s (n = 4, 5, ..., 8). Inset shows the same figure in an enlarged scale.

Having determined Eg(δ) numerically, we use Eq. (37) to obtain the renormalized coupling constant g as a function
of δ. Then we substitute Eg(δ) and g(δ) into the right-hand side of Eq. (39) to obtain C(g) for each δ calculated. In
Fig. 6, we plot the so-obtained C(g) (open circles). As clearly shown in the figure, when plotted as a function of g2,
C(g) exhibits a linear behavior and approaches unity as g2 → 0. Fitting C(g) of the n-smallest g’s (n = 4 ∼ 8) to
Eq. (40) with assuming C1 = 0 and neglecting the higher-order terms O(g3), we obtain 0.995 ≤ C0 ≤ 0.998. These
results indicate that C0 = 1 and C1 = 0. Then fitting C(g) with assuming C0 = 1 and C1 = 0 yields C2 ≃ 1.80(3).
The results obtained above lead to the following expression for the excitation gap. From Eqs. (39) and (40), we can

write the bond alternation δ in terms of Eg and g as

δ =
2Γ

(
1
4

)

3Γ
(
3
4

)
[

Γ
(
2
3

)
√
2Γ

(
1
6

) Eg

J

]3/2

g−3/4
(
1 + C2g

2
)
, (41)

where we have substituted C0 = 1 and C1 = 0 to Eq. (40) and omitted the higher-order terms O(g3) in C(g).
Equations (37) and (41) give a parametric representation of Eg(δ) in terms of g. In Fig. 5, we plot the gap Eg(δ)
calculated from Eqs. (37) and (41). Clearly, the theoretical curve reproduces the numerical data. We emphasize
that the agreement between the theory and numerical data is excellent even at the large bond alternation, δ → 1,
suggesting that the effect of the higher-order terms O(g3) in C(g) on the excitation gap Eg(δ) is negligible. Our theory
with Eqs. (37) and (41) thereby provides the accurate values of Eg(δ) for the whole range of the bond alternation
0 < δ ≤ 1.
In addition, the above theory allows us to derive the long-distance behavior of the dimer correlation function in the

uniform Heisenberg chain [Eq. (1) with ∆ = 1] in zero field h = 0. Substituting Eq. (38) with C(g) = 1 into Eq. (5)
with Ba

1 = (ca1)
2/2 and replacing g by (ln r)−1, we obtain

〈Oa
d(l)Oa

d(l + r)〉 − 〈Oa
d(l)〉〈Oa

d(l + r)〉

=
1

(2π)3/2
(−1)r

r (ln r)3/2
+ · · · , (42)

where a = ±, z (no summation is taken for the repeated index a). Note that the correlation functions of O±
d and Oz

d

are identical due to the SU(2) symmetry. We note that the amplitude B̃1 = (2π)−3/2 = 0.0635... is in good agreement
with the recent numerical estimate 0.067 reported in Ref. 21.
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IV. XXZ CHAIN WITH NONZERO MAGNETIZATION

A. Theory

In this section, we study the XXZ chain (1) in the TLL phase with a partial spin polarization under finite external
field hc < h < hs. Here, hc is the lower critical field (hc = 0 for −1 < ∆ ≤ 1 and hc > 0 for ∆ > 1), while
hs = J(1+∆) is the saturation field. The low-energy effective theory in this case is the Gaussian model (6) again. In
the partially polarized state with 0 < M < 1/2, the Fermi momentum kF of the Jordan-Wigner fermions is shifted
from the commensurate value kF = π/2 at M = 0 to the incommensurate one kF = π(12 + M). The boson-field
expression of the dimer operator Eq. (4) is then modified from Eq. (8) into

Oa
d(l) = ca0 + ca1(−1)l cos[Qxl +

√
2πφ(xl)]

+ caφ

(
dφ(xl)

dx

)2

+ caθ

(
dθ(xl)

dx

)2

+ cag cos[2Qxl +
√
8πφ(xl)] + · · · (43)

for a = ±, z. The wave number Q of the leading oscillating term is Q = 2πM in the limit L → ∞.
In the same manner as in Sec. II A, we can calculate the ground-state expectation values of the dimer operators in

Eq. (4) in finite chains with open boundaries. For the partially polarized state, we find it necessary to optimize the
positions at which the Dirichlet boundary condition is imposed, in order to achieve a better fitting of the numerical
data.36,37 We thus employ the Dirichlet boundary conditions φ(x0) = φ(L + 1 − x0) = 0, instead of Eq. (17).
Accordingly, the one-point functions of the dimer operators become

〈Oa
d(l)〉 = ca0 +

ca1(−1)l cos[Q̃(l + 1/2− x0)]

[f̃(2l+ 1− 2x0)]1/2η

− π2ca2
12(L+ 1− 2x0)2

− c̄a2

[f̃(2l + 1− 2x0)]2

+
cag cos[2Q̃(l + 1/2− x0)]

[f̃(2l + 1− 2x0)]2/η
+ · · · , (44)

where Q̃ = 2πML/(L+ 1− 2x0) and

f̃(x) =
2(L+ 1− 2x0)

π
sin

(
π|x|

2(L+ 1− 2x0)

)
. (45)

The parameter η can be determined exactly by solving the integral equations obtained from the Bethe ansatz.23,38,39

We have kept the last term (∝ cag) in Eq. (44) since it becomes larger than the third and fourth terms for η > 1,
which realizes at ∆ > 1 and not too large M > 0.
The coefficients of the uniform parts, ca0 , c

a
2 , c̄

a
2 , and cag are related to the ground-state energy density e0, the spin

velocity v, the exponent η, and the coupling constant g through equations similar to Eqs. (9), (13), and (15), while
explicit closed formulas for e0, v, η, and g are not available for 0 < M < 1/2. On the other hand, the exact values of
the coefficients ca1 of the oscillating terms are not known except for the free-fermion case ∆ = 0,

c±1 (∆ = 0) =
1

2π
, (46a)

cz1(∆ = 0) =
2

π2
[cos(πM) + πM sin(πM)]. (46b)

We will determine the coefficients ca1 in the following numerical analysis.

B. Numerical results

Using the DMRG method, we calculated the expectation values of the dimer operators 〈Oa
d(l)〉 in the partially-

polarized ground state of the XXZ chain (1) with L = 100, 200, and 400 spins for fixed magnetization M . We then
fit the data to the analytic form Eq. (44) by taking ca1 , c̄

a
2 , c

a
g , c

a
u := ca0 − π2ca2/[12(L+ 1 − 2x0)

2], and x0 as fitting

parameters.40 The exponent η was obtained from the Bethe ansatz integral equations.
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FIG. 7: Expectation values of the dimer operators in the ground state of the XXZ chain (1) for ∆ = 0.5, M = 0.16, and
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FIG. 8: Amplitudes Ba
1 = (ca1)

2/2 of the leading oscillating term in the dimer correlation functions in Eq. (5) as functions of
M for various values of the anisotropy parameter ∆: (a) B±

1 and (b) Bz
1 . The bold lines represent the exact results for ∆ = 0,

Eq. (46). The thin lines are guides for the eye.

We show in Fig. 7 the DMRG data and the fitting results for ∆ = 0.5 and M = 0.16. (The data for the small
system L = 100 are shown in the figure for clarity.) The agreement between the DMRG data and the fits is excellent,
which demonstrates the validity of Eq. (44) and justifies our scheme for estimating ca1 .
For each system size L, we fit the numerical data of 〈Oa

d(l)〉 in three different ranges of l to estimate the coefficients
ca1 (a = ±, z), which we denote ca1(i, L) (i = 1, 2, 3), and took their averages as the estimate ca1(L) for the system
size L. Then, we extrapolated the results for L = 100, 200, and 400 by fitting them to the polynomial form ca1(L) =
ca1(∞) + βa

1/L and took the extrapolated value ca1(∞) as the final estimate of ca1 . The error was determined from the
differences between the final estimate and the estimates ca1(i, L) at L = 400. Figure 8 shows the so-obtained values of
the amplitudes Ba

1 = (ca1)
2/2 of the dimer correlation functions in Eq. (5). We note that the numerical estimates for

the free-fermion case (∆ = 0) agree with the exact values in Eq. (46). Figure 8 also indicates that in the saturation
limit M → 1/2, the amplitudes converge at universal values, B±

1 = 1/(8π2) and Bz
1 = 1/(2π2). This behavior is easily

understood as the ∆Sz
l S

z
l+1 interactions between magnons are not effective in the limit of dilute magnon density,

M → 1/2. The numerical data of the amplitudes Ba
1 are presented in the Supplemental material.41

Another interesting feature found in Fig. 8 is that the curves of Ba
1 for different values of ∆ seem to intersect at

an intermediate value of magnetization, M ≃ 0.33− 0.34. Interestingly enough, the amplitude Az
1 of the longitudinal

spin-spin correlation function 〈Sz
l S

z
l+r〉 [Eq. (2b)] is also found11 to exhibit a similar behavior of intersection of ∆-

dependent curves at M ≃ 0.365 [see Fig. 2(c) in Ref. 11]. At present, we do not know exactly whether and why these
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correlation amplitudes really become independent of ∆ at some intermediate M . Furthermore, it is not clear whether
or not the values of M at which Ba

1 and Az
1 become independent of ∆ are the same. These questions are open for

future studies.

V. CONCLUSION

We have studied the dimer correlation functions in the ground state of the spin-1/2 XXZ chain in the critical
Tomonaga-Luttinger-liquid regime. We have determined with high accuracy the amplitudes of the leading oscillating
terms of the dimer correlation functions in the XXZ chain for both zero and finite magnetic fields, using the bosoniza-
tion and DMRG methods. We have also investigated the dimer correlations and the spin-Peierls instability in the
SU(2) symmetric chain (i.e., the antiferromagnetic Heisenberg model in zero field), in which the marginally-irrelevant
operator in the low-energy effective Hamiltonian yields logarithmic corrections. We have derived the asymptotic
formula for the excitation gap in the SU(2) symmetric chain with bond alternation and numerically determined the
coefficients of the first few terms in the formula expanded in powers of the coupling constant. From the formula of
the gap, we have obtained the asymptotic power-law behavior of the dimer correlation function with a multiplicative
logarithmic correction, Eq. (42).
The dimer correlation amplitudes obtained in this work can be used for quantitative study of physical properties

related with the dimer operators, such as the spin-Peierls instability, dynamical structure factors of dimer operators
measured in resonant inelastic X-ray scattering (RIXS) experiments, effects of weak interchain dimer-dimer interac-
tions in quasi-1D systems, etc.
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