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A microscopic theory of the spin Peltier effect in a bilayer structure comprising a paramagnetic
metal (PM) and a ferromagnetic insulator (FI) based on the nonequilibrium Green’s function method
is presented. Spin current and heat current driven by temperature gradient and spin accumulation
are formulated as functions of spin susceptibilities in the PM and the FI, and are summarized by
Onsager’s reciprocal relations. By using the current formulae, we estimate heat generation and
absorption at the interface driven by the heat-current injection mediated by spins from PM into FI.
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I. INTRODUCTION

In the field of spintronics, inter-conversion between
heat and spin current has attracted considerable atten-
tion and has been studied actively since the discovery of
the spin Seebeck effect1–3. The spin Seebeck effect refers
to the spin-current generation from heat in magnetic ma-
terials4,5. The spin Seebeck effect has been observed in
a variety of materials ranging from magnetic metals and
semiconductors to insulators1–3. Recently, the recipro-
cal phenomenon of the spin Seebeck effect, heat gener-
ation from spin current, was reported experimentally6,7.
While the spin Peltier effect has been studied using a phe-
nomenological model8–14, its microscopic theory is miss-
ing.
In this study, we formulate a microscopic the-

ory of the spin Peltier effect in paramagnetic metal
(PM)/ferromagnetic insulator (FI) junction systems by
using the nonequilibrium Green’s function method. To
reveal the microscopic mechanism of spin and heat trans-
fer, we perform investigations using the setup shown in
Fig. 1, where electron spins in PM, σ, are coupled with
localized spins in FI, S, via the exchange interaction, Jsd.
Let us consider spin accumulation at the interface, δµS ,
generated by the spin Hall effect15 in PM. Owing to the
exchange interaction, this spin accumulation excites the
localized spins in FI, and then, magnon flows are induced,
accompanying both the spin and the heat.
The outline of the paper is as follows. In Sec. II, a

brief review of the spin-current generation in PM/FI is
given by using the nonequilibrium Green’s function. In
Sec. III, the heat-current generation in PM/FI is derived
following the formalism shown in Sec. II. In Sec. IV, we
estimate the temperature change at the PM/FI interface
due to the spin Peltier effect. In Sec. V, we summarize
our results.

II. SPIN-CURRENT GENERATION AT

MAGNETIC INTERFACE

In this section, we briefly review spin-current genera-
tion in PM/FI by using the nonequilibrium Green’s func-

FIG. 1. (Color online) Schematic view of the spin Peltier
effect. We consider spin transport in a bilayer structure con-
sisting of a paramagnetic metal (PM) and a ferromagnetic in-
sulator (FI), where the electron spins in PI are coupled with
the localized moments in FI via the exchange interaction Jsd.
The spin accumulation at the interface (δµs) is found to be
a driving force of spin and heat current (IS and IQ) by us-
ing the nonequilibrium Green’s functions for electron spin χ

and magnon G, where TC denotes the time ordering on the
Keldysh contour.

tion. The PM/FI interface is modeled using the s−d ex-
change interaction:

Hsd = Jsd
∑

i∈int

σi · Si, (1)

where Jsd, σi and Si represent the coupling constant of
the exchange interaction, Pauli matrices and localized
spin of FI, respectively, and

∑

i∈int denotes the summa-
tion on the lattice sites at the interface.
The spin current IS is defined by the time derivative

of the z-component of the conduction electron spin in
PM, that is, IS ≡ ∑

i∈P 〈∂tσz
i 〉, where 〈· · ·〉 denotes the

statistical average16. The Heisenberg equation of motion
for σz

i gives5 IS = 2Jsd~
−1Re

∑

i∈int〈σ+
i (t)S

−
i (t)〉, where

σ±
i = σx

i ±iσy
i and S±

i = Sx
i ±iSy

i . After the perturbative
calculation17,18 of 〈σ+

i (t)S
−
i (t)〉 up to the second order of
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Jsd, the spin current is given by

IS = 2J2
intRe

∫

qkω

(χR
qr,ωtG

<
kr′,ωt + χ<

qr,ωtG
A
kr′,ωt), (2)

where, we have introduced the shorthand notation
∫

qkω
=

∫

d3kd3q
∫∞

−∞
dω
2π . J2

int is given by J2
int =

(Jsd/~)
2Nint, with Nint being the number of sites at

the interface. In Eq. (2), χ
R(<)
qr,ωt is the retarded (lesser)

component of the transverse spin susceptibility in PM

given by χ
R(<)
qr,ωt =

∫

δrδt
exp[−iq · δr + iωδt]χR(<)(r +

δr/2, t+δt; r−δr/2, t−δt), where χR(r+δr/2, t+δt; r−
δr/2, t − δt) and χ<(r + δr/2, t + δt; r − δr/2, t − δt)
are defined as χR(r + δr/2, t + δt; r − δr/2, t − δt) ≡
−iθ(t1− t2)〈[σ+

r1
(t1), σ

−
r2
(t2)]〉 and χ<(r+δr/2, t+δt; r−

δr/2, t − δt) ≡ −i〈σ+
r1
(t1)σ

−
r2
(t2)〉, respectively, with

r ≡ (r1 + r2)/2, δr = r1 − r2, t ≡ (t1 + t2)/2 and

δt = t1 − t2. G
A(<)
kr′,ωt is the advanced (lesser) compo-

nent of the transverse spin susceptibility in FI, and it is

given by G
A(<)
kr′,ωt =

∫

δrδt exp[−ik · δr + iωδt]GA(<)(r′ +

δr/2, t+δt; r′−δr/2, t−δt), where GA(r′+δr/2, t+δt; r′−
δr/2, t − δt) and G<(r′ + δr/2, t + δt; r′ − δr/2, t − δt)
are defined as GA(r′ + δr/2, t + δt; r′ − δr/2, t − δt) ≡
iθ(t2− t1)〈[S+

r1
(t1), S

−
r2
(t2)]〉 and G<(r′+δr/2, t+δt; r′−

δr/2, t−δt) ≡ −i〈S+
r1
(t1)S

−
r2
(t2)〉, respectively. Here, r is

defined in FI, while r′ is defined in PM. It is noted that
G<

kr′,ωt includes the effect of dynamics of the magnons in
the ferromagnet.
Let us focus on the steady state in terms of time and

spatially uniform interface, where χ
R(<)
qr,ωt → χ

R(<)
qω and

G
A(<)
kr′,ωt → G

A(<)
kω . By substituting the Kadanoff Baym

ansatz18 χ<
qω = 2iImχR

qωf
P
ω and G<

kω = 2iImGR
kωf

F
ω into

Eq. (2), with fP
ω = f(ω/TP) and fF

ω = f(ω/TF) being
the Bose-Einstein distribution functions in PM and FI,
respectively, we obtain the general expression of spin cur-
rent as follows:

IS = 4J2
int

∫

qkω

ImχR
qωImGR

kω(f
P
ω − fF

ω ). (3)

Equation (3) is a spin-current version of the Meir-
Wingreen formula17, where J2

int corresponds to the tun-
neling probability of the spin current at the interface.
The integration of ImχR

qω over q and that of ImGR
kω over

k represent the density of states of the transverse spin
fluctuations in PM and FI, respectively. The difference
fP
ω −fF

ω plays a crucial role in spin-current generation and
has a non-vanishing value only when the system is out of
equilibrium. In the following, we investigate the effect of
the temperature difference and the spin accumulation at
the interface.

A. Spin current driven by spin Seebeck effect

First, let us consider the spin Seebeck effect1–5 that
spin current injection is driven by the temperature dif-
ference δT between PM and FI, given as δT = TP − TF.

The difference between fP
ω and fF

ω is given by

fP
ω − fF

ω =
∂f

∂T
δT. (4)

Substituting Eq. (4) into (3), we obtain the spin-current
injection due to the spin Seebeck effect as follows5:

IS = 4J2
int

∫

qkω

ImχR
qωImGR

kω

∂f

∂T
δT. (5)

B. Spin current driven by spin accumulation

Now, let us focus on the spin-current injection driven
by the spin accumulation. The expression of spin
accumulation at the interface is given by δµS =
2eαSHρNλNjc tanh(dN/2λN)

19,20, where αSH, ρN, λN, jc,
and dN are the spin Hall angle, electrical resistivity, spin
diffusion length, charge current, and thickness of metal,
respectively. The retarded and the lesser components
of the spin susceptibility in the metal, χR

qω and χ<
qω, are

modified by the spin accumulation δµS as χR
qω→χR

q,ω+δµS

and χ<
qω→χ<

q,ω+δµS
= 2iImχR

qωf
P
ω+δµS

, respectively.

The difference between fP
ω+δµS

and fF
ω is as follows:

fP
ω+δµS

− fF
ω =

∂f

∂ω

δµS

~
. (6)

Substituting Eq. (6) into (3), we obtain the spin-current
injection driven by spin accumulation as follows:

IS = 4J2
int

∫

qkω

ImχR
qωImGR

kω

∂f

∂ω

δµS

~
. (7)

Note that Eq. (7) reduces to (S10) in Ref. 21 when we
evaluate spin susceptibility in the metal χR

qω for the non-
interacting electrons.

III. HEAT TRANSPORT MEDIATED BY SPIN

CURRENT

In this section, the heat-current generation in PM/FI
is derived according to the formalism developed in Sec. II.
Following Ref. 22, we define the heat current IQ injected
into the ferromagnet as the time derivative of the Hamil-
tonian of the ferromagnetHm, I

Q ≡ ∑

i∈F 〈∂tHm〉, where
〈· · ·〉 denotes the statistical average. The Heisenberg
equation of motion for Hm gives

∂tHm =
1

i~
[Hm, Hsd]. (8)

Substituting Eq. (1) into (8) and taking the statistical
average give the following heat current:

IQ =
Jsd
2

∑

i∈int

∂t′〈σi(t) · Si(t
′)〉t′→t, (9)

where we use the Heisenberg equation of motion for local-
ized spin at the interface ∂tSi = (i~)−1[Si, Hm] to derive
Eq. (9).
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Now we consider the spin wave approximation in the
lowest order of 1/S0 expansion, with S0 being the size of
the localized spins. The time derivative of Sz

i vanishes be-
cause the z-component of the localized spins Sz

i becomes
constant. By performing the perturbative calculation up
to the second order of the interfacial interaction Jsd, we
obtain the heat current as

IQ = 2J2
intRe

∫

qkω

~ω[χR
qωG

<
kω + χ<

qωG
A
kω]. (10)

By substituting the Kadanoff Baym ansatz into
Eq. (10), we can rewrite the heat current as

IQ = 2J2
intRe

∫

qkω

~ωImχR
qωImGR

kω(f
P
ω − fF

ω ). (11)

Especially, substituting Eqs. (4) and (6) into (11), we
obtain the interfacial heat current caused by the temper-
ature difference:

IQ = 4J2
int

∫

qkω

~ωImχR
qωImGR

kω

∂f

∂T
δT, (12)

and that caused by the spin accumulation:

IQ = 4J2
int

∫

qkω

~ωImχR
q,ω+δµS

ImGR
kω

∂f

∂ω

δµS

~
. (13)

Equations (5), (7), (12), and (13) are summarized by
Onsager’s reciprocal relation23:

(

IS

IQ

)

=

(

L11 L12

L21 L22

)(

δµS

δT/T

)

, (14)

where the transport coefficients are given by

L11 = 4J2
int

∫

qkω

ImχR
qωImGR

kω

∂f

∂ω
, (15)

L12 = 4J2
int

∫

qkω

ImχR
qωImGR

kω

∂f

∂T
, (16)

L21 = 4J2
int

∫

qkω

~ωImχR
qωImGR

kω

∂f

∂ω
, (17)

L22 = 4J2
int

∫

qkω

~ωImχR
qωImGR

kω

∂f

∂T
. (18)

Substituting the relation ω∂f/∂ω = −T∂f/∂T into
Eq. (17) yields the relation L12 = L21.

IV. TEMPERATURE CHANGE AT THE

INTERFACE

In this section, we estimate the temperature change
∆T due to the spin Peltier effect. At the interface,
magnons are excited and accumulated by the spin Peltier
effect. The energy change ∆E at the interface is gener-
ated by the accumulation of magnons. Then, the tem-
perature change ∆T is obtained as ∆T = ∆E/CFI, with
CFI being the heat capacity of the ferromagnet.

Now, we formulate the energy change ∆E of the
magnons with the lesser component of transverse spin
susceptibility G<

kω. In the spin wave approximation, the

operators of localized spins are given by S+
i ≈

√
2S0ai,

S−
i ≈

√
2S0a

†
i , where ai and a†i are the creation and

the annihilation operators of the magnons. Substitut-
ing these relations into the lesser component of trans-
verse spin susceptibility in FI, we obtain G<

k (t1, t2) =

−2iS0〈a†k(t1)ak(t2)〉. Because the statistical average of

a†k(t1)ak(t2) can be interpreted as the number of the
magnons when t2 corresponds to t1, the energy change
∆E is given by

∆E ≡ −1

2S0

∫

kω

~ωIm(G<
kω −G0<

kω), (19)

where G0<
kω = 2iImGR

kωf
F
ω is the lesser Green’s function

of the free magnons.
Let us consider a bilayer system composed of the plat-

inum (Pt) and the yittrium iron garnet (YIG). In spin
wave approximation, the retarded component of trans-
verse spin susceptibility GR

kω is given by GR
kω = 2S0(ω −

ωk+ iαω)−1, where ωk = Ak2+γH0 is the dispersion re-
lation of magnons, with A, γ, and H0 being the stiffness
constant, gyromagnetic ratio, and static magnetic field
in YIG, respectively. α is the Gilbert damping constant
of the magnons. After perturbative calculation up to the
second order of Jsd, we obtain the lesser Green’s function
of the magnons at the interface G<

kω as follows:

G<
kω = G0<

kω − 4i
J2
intS0

αω

∫

q

ImχR
qωImGR

kω

∂f

∂ω

δµS

~
. (20)

Equation (20) shows the accumulation of magnons
driven by spin-current injection. Let us consider the rate
equation of the magnons at the interface. Since the num-
ber density of the excited magnons can be derived from
the lesser component of the transverse spin susceptibility
in FI, the rate equation of magnons is written as

∂G<
kω,t

∂t
= −

G<
kω,t −G0<

kω

τkω
+ ISkω, (21)

where τkω = (αω)−1 is the lifetime of the magnons. In
Eq. (21), the source term ISkω is the spin current of a par-
ticular magnon with the wavenumber k and frequency ω,
defined as ISkω ≡ 4J2

int

∫

q
ImχR

qωImGR
kω(∂f/∂ω)(δµS/~).

In the steady state, where the time derivative of G<
kω,t

vanishes (∂G<
kω,t/∂t → 0), Eq. (21) reduces to G<

kω −
G0<

kω = ISkωτkω, corresponding to Eq. (20).
Substituting Eq. (20) into (19), we obtain the energy

change of the magnons as

∆E =
~

2α
IS, (22)

where IS is shown in Eq. (7).
The spin susceptibility in Pt, χR

qω, is written as

χR
qω = χN(τ

−1
sf + DNq

2 + iω)−15, where τsf and DN
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are the spin-flip time and the diffusion constant of Pt,
respectively. By integrating IS over ω in Eq. (22) by
using the relation ImGR

kω ≈ −πδ(ω − ωk), we have

∆E = −(Nintgs/2)(kBT/~ωM)3/2(γ1/γ2)δµS, where gs
is given as gs = (Jsd/~)

2S0

∫

q
ImχR

q,γH0
/(γH0), with

ωM being the maximum energy of the magnons es-
timated from the Curie temperature TC as ωM ≡
kBTC/~. The numerical factors γ1 and γ2 are de-

fined by γ1 =
∫ 1

0 dx
∫ yM

y0
dyy

√

x(y − y0)[4((1 + x)2 +

(ykBTτsf/~)
2) sinh2(y/2)]−1 and γ2 =

∫ 1

0
dx

√
x[(1+x)2+

(γH0τsf)
2]−1, respectively. In the factor γ2, y0 and yM

are given by y0 = ~γH0/kBT and yM = ~ωM/kBT , re-
spectively.

We examine the experiment in Ref. 7. By using the
parameters of Pt in Ref. 7 as ρN = 0.48 µΩ ·m, λN =
7.3 nm24, jc = 1.0 × 109 A/m2, dN = 5 nm, and αSH =
0.01315, we obtain the spin accumulation at the interface
as δµS = 2.3× 10−8 eV. In the case of YIG, where TC =
565 K andH0 = 200 Oe, we estimate γ1 = 0.215 and γ2 =
0.285 at room temperature. Combining the values of δµS,
γ1 and γ2, and α = 10−5 and gs = 0.124, we obtain the
energy change normalized per site of localized spin at the
interface ∆E/Nint as ∆E/Nint = −3.3×10−5 eV. Taking
Nint = 1.0 × 1011 and CFI = c̃FIρFIa

3
FINint, with the

density ρFI = 5170 (kg/m3), the lattice constant aFI =
1.24 × 10−9 m, and the specific heat c̃FI = 570 J/(kg·
K) of YIG, the temperature change is estimated to be
∆T = −1 mK, which is consistent with the experimental
result7.

Finally, we mention the temperature change ∆T when
the ferromagnetic insulator is replaced by a ferromagnetic

metal. The Gilbert damping constant α in a ferromag-
netic metal is, in general, much larger than that in a fer-
romagnetic insulator because of the interaction between
the magnons and the conduction electrons25. According
to Eq. (22), ∆T is inversely proportional to α. Therefore,
it is expected that ∆T in the ferromagnetic metal is sup-
pressed more than that in the ferromagnetic insulator.

V. CONCLUSION

In this study, a microscopic theory of the spin Peltier
effect in a magnetic bilayer structure system consisting
of PM and FI was formulated using the nonequilibrium
Green’s function method. We derived the spin- and heat-
currents driven by temperature gradient as well as by
spin accumulation at the interface in terms of spin sus-
ceptibility and the magnons’ Green’s function. These
currents have been summarized using Onsager’s recipro-
cal relation. In addition, we estimated heat generation
and absorption at the interface due to spin injection from
PM into FI. Our theory will provide a microscopic un-
derstanding of the conversion phenomena between spin
and heat at the magnetic interface.
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