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We study the spin-S Kitaev model in the classical (S → ∞) limit using Monte Carlo simula-
tions combined with semi-classical spin dynamics. We discuss differences and similarities in the
dynamical structure factors of the spin-1/2 and the classical Kitaev liquids. The quantum behavior
is restricted to low temperatures where a gap protects visons from decohering the system. Once
this quantum gap is breached, at low temperatures compared to the coupling constant, significant
entropic disorder decoheres the Majorana fermions and the system is described quantitatively by
classical dynamics. The low-temperature and low-energy spectrum of the classical model exhibits
a finite energy peak, which is the precursor of the one produced by the Majorana modes of the
S = 1/2 model. The classical peak is spectrally narrowed compared to the quantum result, and can
be explained by magnon excitations within fluctuating one-dimensional manifolds (loops). Hence
the difference from the classical limit to the quantum limit can be understood by the fractionaliza-
tion of magnons propagating in one-dimensional manifolds. Moreover, we show that the momentum
space distribution of the low-energy spectral weight of the S = 1/2 model follows the momentum
space distribution of zero modes of the classical model.

PACS numbers: 75.10.Jm, 75.30.Ds, 03.65.Ge, 03.65.Nk

INTRODUCTION

Quantum spin liquids (QSLs) have attracted great in-
terest in both theoretical and experimental condensed
matter physics due to their remarkable topological prop-
erties. Among many different proposals, the Kitaev
model [1] defined on the honeycomb lattice, is a proto-
typical two-dimensional (2D) QSL, which can be experi-
mentally studied in iridium or ruthenium based materi-
als [2]. However, the lack of a symmetry-breaking order
parameter poses a challenge for the experimental char-
acterization of QSLs. In the absence of a smoking-gun
experiment, it is important to characterize the dynamical
response of QSLs in order to identify signatures, which
can guide the experimental search of these exotic states
of matter [3]. The computation of dynamical correla-
tors of interacting quantum spin systems in dimension
higher than one is very challenging for state of the art
techniques. For instance, the study of dynamics in the
Kitaev-Heisenberg model, which is not integrable due to
the additional Heisenberg interaction, was recently ini-
tiated by using a matrix-product state based T = 0
method [4] and exact diagonalization [5]. These T = 0
techniques can only applied to relatively small clusters or
quasi-one-dimensional lattice geometry. Fortunately, the
integrability of the pure Kitaev model allows for an exact
calculation of the magnetic structure factor, S(Q, ω), at
T = 0 [6, 7] and for a controlled numerical calculation at

any finite temperature T [8–10]. This remarkable prop-
erty is being used to identify proximates to Kitaev liq-
uids [3, 11, 12]. However, the actual model Hamiltonians
of these materials are not integrable, so it is more chal-
lenging to assess the effect of the additional Hamiltonian
terms on S(Q, ω, T ).

Given the above considerations, it is relevant to ask if
a semi-classical treatment can shed light on the dynamics
of the Kitaev QSLs. Semi-classical treatments are very
useful for describing the low-temperature properties of
unfrustrated magnets, whose low energy modes are quan-
tized spin-waves or magnons. For instance, semiclassi-
cal dynamics simulations using an appropriate quantum-
classical correspondence were found to produce a good
description of the intermediate and high temperature
regimes of the 2D S = 5/2 antiferromagnet Rb2MnF4,
over all wavevector and energy scales, with a crossover
temperature ∼ θCW /S (θCW is the Curie-Weiss temper-
ature) [13]. It is clear, however, that the semi-classical
treatment cannot capture the intrinsically quantum me-
chanical nature of the low-energy excitations of quantum
liquids. At first sight, this observation seems to render
semi-classical approaches completely inadequate. Never-
theless, we will demonstrate that a semi-classical treat-
ment of the Kitaev model can capture several properties
of the dynamical structure factor of the S = 1/2 model,
including a quite remarkable agreement above the quan-
tun to classical crossover temperature TQC [14, 15].
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FIG. 1. (a) Schematic illustration of the Kitaev-Heisenberg
model consisting of the Heisenberg interaction J and the
compass-like nearest-neighbor Ising interactions, with the as-
sociated spin component for each bond depending on the bond
orientations (xx, yy, or zz). The site indices around the pla-
quette p correspond to the definition of the Z2 flux operator
Wp in Eq. (2). (b) The first BZ (solid line) and the second

BZ (dashed line) of the honeycomb lattice.Here, Q̃ = Qa/2π.
The green arrows indicate a path connecting high-symmetry
points in the reciprocal space (i.e., K−Γ−M−Y−X−K−M),
along which we evaluate S(Q, ω). (c) Example of a CN-
ground state formed by antiferromagnetic dimer coverings.

The spin-S Kitaev model with S > 1/2 was introduced
by Baskaran et al. [16, 17] and it was subsequently stud-
ied by different groups [18–22]. This model is not exactly
solvable, but it preserves the Z2 gauge structure of the
S = 1/2 model. The set of commuting operators

Wp = −σy1σz2σx3σ
y
4σ

z
5σ

x
6 , (1)

defined on each hexagonal plaquette of the honeycomb
lattice (see Fig. 1), is generalized to

Wp = eiπ(S
y
1+S

z
2+S

x
3+S

y
4+S

z
5+S

x
6 ) (2)

for arbitrary spin S. An immediate consequence of this
local Z2 symmetry is that the two-spin correlator 〈Sνi Sνj 〉
is nonzero only for i = j and for the nearest-neighbor
(NN) sites connected by a νν bond (ν = x, y, z) [16,
23]. Consequently, both the quantum and the classical
pure Kitaev models share the property of having a very
short correlation length ξ ≤ a (a is the lattice space) for
arbitrary temperature T .

As expected, the main differences between the quan-
tum and the classical limits of the model appear in the
low energy sector. While the S = 1/2 version of the
model has a unique QSL ground state, the ground state is
massively degenerate in the classical limit. The structure

of the classical ground-state manifold corresponds to an
exponentially large number of isolated points in the phase
space, known as the Cartesian(CN)-ground states [16], as
well as continuous families of intermediate states connect-
ing one CN-ground state to another [16, 20]. The CN-
ground states have each spin pointing along one of the
three axes (x, y or z), in such a way that one of the three
bonds that arrive to a common site has the minimum
possible energy, while the other two have zero energy
[see Fig 1(c) and the animation in [24]]. The zero modes
associated with the continuous ground-state degeneracy
lead to a singular ω = 0 contribution to S(Q, ω), which
is naturally absent in the S = 1/2 version of the model.
Instead, the S = 1/2 model leads to a structure factor
S(Q, ω, T = 0), which vanishes for ω ≤ ∆v, as a con-
sequence of the finite activation gap ∆v of the pair of
bound Z2 fluxes (or “visons”) created by the application
of a spin operator to the ground state.

Despite these qualitative differences between the low-
energy magnetic response function of the quantum and
the classical Kitaev liquids at T = 0, we will show
in this manuscript that the magnetic structure factors,
S(Q, ω, T ), of both models become very similar for ω
and T bigger than a quantum to classical crossover en-
ergy scale TQC . Our results then suggest the possibility
of describing the thermally induced random-flux state at
T & ∆v in the S = 1/2 Kitaev model [14, 15, 25] with the
classical liquid of the model obtained in the S →∞ limit.
This observation can be exploited to identify proximate
quantum Kitaev liquid materials because S(Q, ω, T ) can
be computed under control for any arbitrary deformation
of the pure Kitaev Hamiltonian in the classical limit.

ZERO TEMPERATURE LIQUIDS

The dynamics of the classical version of Kitaev
model is studied by combining Metropolis sampling and
Landau-Lifshitz (LL) dynamics ∗:

dSi
dt

= Si ×Bi (3)

Where Bi is the effective local field (molecular field) act-
ing on the spin Si. The temperature of the simulation
is fixed during the Metropolis sampling and the Landau-
Lifshitz dynamics starts from a randomly selected well-
thermalized configuration. To study the effect of relevant
perturbations, which replace the Kitaev liquid by an or-
dered state at low-enough temperatures, we will consider

∗ LL dynamics is more appropriate than Langevin dynamics when
the experiment is much faster than spin-lattice relaxation.This
is the typical case in inelastic neutron scattering experiments
[26–28].
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FIG. 2. Comparison of the dynamical structure factor, S (Q, ω), in the classical limit (S →∞) and quantum limit (S = 1/2)
of the pure Kitaev model (J = 0) at T = 0. Panels (a) and (b) show S(Q, ω) obtained from LL simulations of the classical
AFM and FM Kitaev models, respectively. Panels (c) and (d) show S(Q, ω) at T = 0 for the S = 1/2 Kitaev model obtained
in Ref. 6. Constant energy cuts of (e) AFM and (f) FM classical Kitaev liquids obtained by integrating over the energy range
ω/|K| = [0.17, 0.35], corresponding to the low-frequency mode. Similar plots for the high-frequency mode are also shown for
(g) AFM and (h) FM classical Kitaev liquids with the integration energy range ω/|K| = [1.4, 1.6].

the simple case of the classical Kitaev-Heisenberg (KH)
Hamiltonian [18, 19] with only nearest-neighbor (NN) in-
teractions:

H = K
∑

ν= x,y,z

∑
{i,j}ν

Sνi S
ν
j + J

∑
{i,j}

Si · Sj , (4)

The index ν for the variable i, j indicates that the two
n.n. sites i and j are connected by a νν bond [see
Fig. 1 (a)]. To compare the results of this classical
model against the spin S quantum version of the model,
we normalize the classical spins as |Si| =

√
S(S + 1).

The quantum version of this Hamiltonian has been pro-
posed as a model for iridium or ruthenium-based materi-
als [2, 29–31]. The magnetic structure factor S(Q, ω, T )
is obtained by Fourier transforming the real-space corre-
lator 〈S(ri, t) ·S(r0, 0)〉 evaluated from the LL dynamics
over a finite period with periodic boundary conditions.

We first focus on the pure Kitaev limit (J = 0). Fig-
ure 2 shows the magnetic structure factor S(Q, ω) of the
classical and the quantum models at T = 0 for both
antiferromagnetic (AFM) and ferromagnetic (FM) cases.
S (Q, ω) is plotted along the BZ path (KΓMYXK) shown
in Fig. 1(b). The calculations in the classical limit (CL),
shown in Figs. 2(a) and 2(b), are averages over 120 LL
simulations on a supercell of 20×20 unit cells (800 spins).
The quantum limit (QL) calculations, shown in Figs. 2(c)
and 2(d), correspond to the exact result in the thermo-
dynamic limit [6]. Remarkably, both the classical and
the quantum Kitaev liquids are found to have two differ-
ent almost dispersionless modes centered at high and low
frequencies (ω) with striking similarities.

The high-energy mode is centered around the Γ (Y)
point for K > 0 (K < 0) and it is accompanied by a
suppression of the low-energy spectral weight centered
around the same wave vector. This behavior is better
illustrated by the contour plots shown in Figs. 2(e)–2(h).
These panels are constant frequency cuts of S(Q, ω),
which show the distribution of spectral weight over mo-
mentum space. Figures 2(e) and 2(f) correspond to the
distribution of low-frequency modes (integral of S(Q, ω)
over the interval ω/|K| = [0.17, 0.35]), while Figs. 2(g)
and 2(h) show the distribution of high-frequency modes
(integral of S(Q, ω) over the interval ω/|K| = [1.4, 1.6]).
As it is clear from these panels, the low-energy spec-
tral weight is suppressed in the same region in momen-
tum space where the distribution of high-energy spectral
weight has a peak. This is the center of the first BZ for
K > 0 and the center of the second BZ for K < 0 [see
Fig. 1(b)].

To understand the differences and similarities between
the classical and the quantum limits of the Kitaev model,
it is instructive to go back to the real-space. Figure 3
shows the real space spin-spin correlators for the classical
and the quantum limits of the AFM model. Figures 3(a)
and 3(b) include the on-site correlator for the CL and the
QL, respectively. Similarly, Figs. 3(c) and 3(d) contain
the NN correlator for the CL and the QL, respectively.
As we mentioned before, the local gauge structure shared
by the quantum and the classical models leads to a real
space spin-spin correlator that vanishes beyond NN sites.
This implies that the spin structure factor in the pure
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Kitaev model for arbitrary S can be decomposed as

Sνν(Q, ω) = S0(ω) + cos(Q · uν)S1(ω), (5)

where ν = x, y, z and uν is the relative vector between
two NN sites connected by a νν bond; S0(ω) and S1(ω)
are the Fourier transformations into the frequency do-
main for the on-site and the NN dynamical spin correla-
tors, respectively. This peculiarity leads to the sinusoidal
Q-modulation in the high- and low-energy peak intensi-
ties as illustrated in Figs. 2(e)–2(h). In other words, the
similar wave vector dependence of the different modes in
the classical and the quantum limits are a direct con-
sequence of the similar real space correlations shown in
Fig. 3.

The real space correlators also exhibit a low and a
high-frequency peak in both models. The low-frequency
peak of the S = 1/2 model appears right above the
small activation gap ∆v for the pair of excited Z2 gauge
fluxes (visons) created by the action of a spin operator
on the ground state. The extended linewidths of the low
and the high-energy peaks arise from the continuum of
Majorana fermion excitations, which leads to a rather
narrow low-energy peak and a broad high-energy peak.
In contrast, the low energy peak of the classical model
extends down to zero frequency because the fluxes be-
come gapless in this limit. The CN-ground states are
not eigenstates of the Wp operators, implying that the
classical limit (S → ∞) corresponds to a flux conden-
sation (the flux number is no longer a good quantum
number). It is interesting to note that quadratic quan-
tum fluctuations partially restore this quantum number
by selecting the CN-ground states, which maximize the
number of hexagonal plaquettes with well-defined flux
equal to zero (eigenvalue of Wp equal to one). These are
the 3 × 2N/3 states with every single loop being an ele-
mentary hexagon [16]. The extensive degeneracy of the
classical limit leads to sharp δ-function singularity in the
spectral weight at ω = 0. The simple analysis that we
present below explains the origin of this singularity and
of the high-energy peak centered around the Γ point of
the AFM model [see Fig. 2(a)].

The main qualitative aspects of the dynamical struc-
ture factor of the classical model at T = 0 can be
captured by the CN-ground states. As explained in
Ref. [16], the CN-ground states can be mapped into the
close-packed dimer coverings of the honeycomb lattice
by assigning one dimer to each “satisfied” bond (i.e.,
with its local energy taking the minimum value) [see
Fig. 1(c)]. Within linear spin-wave theory [16], magnons
for CN-ground states can only propagate along the one-
dimensional paths of empty bonds because of the Ising
nature of the interactions. These 1D paths become self-
avoiding loops if we adopt closed boundary conditions,
which fully cover the whole lattice (every spin site is vis-
ited by one and only one loop). The spin-wave Hamilto-
nian for each loop is invariant under translations by two

sites along the loop [16]. In other words, the unit cell
of the loops has two sites, implying that each loop has
two branches of magnetic modes: a flat branch of zero
modes, E0(k) = 0, and second branch with a dispersion
relation

E(k) = 2|K|S cos(k/2), (6)

with k being the momentum associated with the two-unit
translation within a loop.

The top of the single-magnon band is at k = 0, imply-
ing that the density of single-magnon states has a Van
Hove singularity at k = 0 for infinitely long loops. For
the AFM model (K > 0), the k = 0 magnon wave func-
tion has the same phase for both sites in the unit cell.
Consequently, the singular density of states leads to a
high-energy peak centered at the Γ point [Fig. 2(a)]. On
the other hand, the flat band of zero modes leads to a
delta-like contribution at ω = 0. While the real space dy-
namical structure factors are obtained by averaging over
all the CN-ground states, this average is dominated by
loops of very long length because of the critical nature
of the close-packed dimer coverings of the honeycomb
lattice. (The fully-packed self-avoiding loops on the hon-
eycomb lattice is a critical system that can host loops of
infinite length [32, 33].) Consequently, we can approxi-
mate the average over loops by the result that is obtained
for an infintely long loop (see Appendix):

S0(ω) ' Sπ
ρ̄
(
ω
KS

)
ω

+
πS

2
δ(ω)

∫ π

−π

dk

cos(k2 )
, (7)

for the average on-site spin-spin correlator, and

θS1(ω) '
[

πωS

2(KS)2
− πS

ω

]
ρ̄
( ω

KS

)
−πS

2
δ(ω)

∫ π

−π

dk

cos(k2 )
.

(8)
for the NN spin-spin correlator, where θ = K/|K| is the
sign of K. The function ρ̄(x) = KSρ(x) is the dimen-
sionless density of single magnon states,

ρ̄(x) =
2√

1−
(
x
2

)2 . (9)

The 1/ω singularity that appears in the first term of
Eqs. (7) and (8) arises from the 1D nature of the prob-
lem at the linear spin-wave level. This singularity must
then be regularized by higher order corrections in the 1/S
expansion, which restore the 2D nature of the problem
by connecting different loops. Nevertheless, we will see
that the linear spin-wave contributions (7) and (8) are
already enough to understand the main features of the
numerical results. In particular, the 1/ω tail explains the
broad low-energy spectral weight of the numerical results
shown in Figs. 2(a) and (b).

The second term of Eqs. (7) and (8) corresponds to the
singular contribution from the flat band of zero modes in
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FIG. 3. Temperature dependences of the dynamical spin structure factor decomposed into the on-site contribution, S0(ω),
and the NN contribution, −S1(ω), for the classical Kitaev model and also for the S = 1/2 Kitaev model: S0(ω) for (a) S =∞
and (b) S = 1/2 and −S1(ω) for (c) S = ∞ and (d) S = 1/2. Frequency-dependence of S0(ω) and −S1(ω) in the classical
model at selected temperatures (e) T/K = 0, (f) 0.014, (g) 0.25, (h) 0.6 and (i) 2.7 [indicated by the dashed lines in panels
(a) and (c)]. Similar plots for the S = 1/2 model are shown for comparison for (j) T/K = 0, (k) 0.015, (m) 0.24, (l) 0.6 and
(n) 2.4 [indicated by the dashed lines in panels (c) and (d)]. Note that the n.n. dynamical correlation function is ±S1(ω) for
K = ±|K|, while the on-site correlator is the same for both signs of K.

FIG. 4. (a) Frequency dependence of S0(ω) and −S1(ω)
associated with the CN-ground states in the classical Kitaev
model at T = 0. (b) Refined evaluations of S0(ω) and −S1(ω)
with the inclusion of an artificial broadening ε = 0.1K, which
mimics the effect of the continuum of the intermediate ground
states connecting different CN-ground states through the slide
transformations (see the text).

each loop. We note that these singular contributions to
the on-site and the NN correlation functions differ only
by a minus sign. Equation (5) then implies that the
singular contribution from the zero modes vanishes ex-

actly at the Γ point for the AFM classical Kitaev model:
Sνν(Γ, ω) = S0(ω) + S1(ω). This fact remains true for
any loop length. In other words, the distribution of zero
modes over the Brillouin zone (BZ) has a node at the
Γ point for K > 0. Moreover, the singular contribu-
tions from the first terms of Eqs. (7) and (8) (infrared
singularity associated with the 1D nature of the loops)
also cancel exactly at the Γ point. The numerical re-
sult for this distribution is shown in Fig. 2(e) for K > 0
and in 2(f) for K < 0. As expected from our analy-
sis, S(Q, ω → 0) is suppressed around the Γ point for
K > 0. This “hole” in the density of zero modes is a
signature of the AFM classical Kitaev liquid. Similarly,
the FM Kitaev liquid is characterized by a suppression of
the density of zero modes around the Y point (center of
the second BZ). In this case, the zero mode contribution
cancels exactly at the Y point only for the component
Sνν(Y, ω) = S0(ω) − S1(ω) with the νν bond is paral-
lel to Y. Consequently, the singular weight contribution
at ω → 0 is suppressed at the Y point, but it does not
vanish. In both cases, the missing low-energy spectral
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weight is shifted to the high-energy peak at ω & |K|, as
it is shown in Figs. 2(g) and 2(h).

The high-energy peak of the classical Kitaev model
arises from the 1D Van-Hove singularity in the density
of states given in Eq. (9). According to Eqs. (7) and (8),
both S0(ω) and S1(ω) have a contribution proportional
to the density of states ρ̄

(
ω
KS

)
, which becomes singular

at ω = 2S|K|. Eq. (5) implies that Sνν(Q, ω) has also a
contribution proportional to ρ̄

(
ω
KS

)
. For the AFM Ki-

taev model (K > 0), the proportionality factor takes its
maximum value 2π/K at Q = 0 ( Γ point). In contrast,
this proportionality factor vanishes at the Γ point for the
FM Kitaev model (in this case the proportionality factor
reaches a significantly smaller maximum value around the
Y point). This analysis explains the different momentum
space distribution of the high-energy peak of the AFM
and FM classical Kitaev modes [see Fig. 2(a) and 2(b)].
We note that the quantum version of the model shows a
similar behavior [see Fig. 2(c) and 2(d)].

As we anticipated, the zero modes are removed in the
quantum limit because the massive ground state degen-
eracy is lifted by quantum fluctuations. The net result is
that the divergent spectral weight at ω = 0 is transferred
to a small, but finite frequency region ω & ∆v. The lack
of zero modes at the Γ point suggests that the “hole” in
the low-energy spectral weight should still be present in
the spectral weight distribution right above the two vison
gap ∆v. This expectation is confirmed by the numerical
results shown in Fig. 2 (a) for K > 0 and Fig. 2 (b)
for K < 0. Consequently, this suppression of the low
energy spectral weight and the associated shift to high en-
ergy is also a characteristic of the quantum Kitaev liquid.
We note that low-energy spectral weight around the Γ
point can in principle be induced by perturbations that
break the two-flux selection rule (spin operators connect-
ing subspaces that differ by two gauge fluxes). However,
as it was shown in Ref. 34, the rule is broken to fourth
order in the typical perturbations of the Kitaev Hamil-
tonian, implying that the low-frequency spectral should
remain very small.

Figure 4(a) shows the on-site, S0(ω), and the NN,
S1(ω), dynamical structure factors given by Eqs. (7) and
(8), respectively. These quantities are only an approxi-
mation of the exact S(Q, ω, T = 0) because the average
is taken over the CN-ground states. The missing ground
states correspond to the continuous deformations that
connect different CN-ground states [16].

Let us consider an intermediate ground state, which
is obtained by continuous “slide” transformations [16] of
a given CN-ground state. A slide transformation only
involves spins along either a closed loop or an infinitely
long string corresponding to alternating dimer and empty
bonds. For small transformations, magnons will still
propagate mainly along the loops of the “parent” CN-
state. However, the corresponding 1D spin-wave Hamil-
tonian is no longer translationally invariant. Moreover,

magnons can tunnel between different loops because the
spins on the “satisfied bonds” are no longer parallel to
the Ising anisotropy axis of the bond. In other words, the
spin-wave Hamiltonian of the intermediate state can be
regarded as a disordered version of the spin-wave Hamil-
tonian of the parent CN-state. To zeroth order, the effect
of disorder is to broaden the quasi-particle peaks of the
parent CN-state. Figure 4(b) shows S0(ω) and S1(ω) af-
ter introducing an effective broadening ε = 0.1K. These
curves reproduce quite well the numerical results shown
in Fig. 3(e). In particular, the effective disorder intro-
duced by the “intermediate” ground states broadens the
high-frequency peak originated by the Van Hove singu-
larity in the density of states. The success of such a
minimal perturbative treatment of intermediate states
relies on the fact that CN-ground states maximize the
number of zero modes, i.e., most of the classical ground
states are small deformations of CN-ground states [16].
Although this property does not lead to an order-by-
disorder phenomenon at any temperature, it may renor-
malize the effective stiffness leading to a nontrivial T -
dependent power law in the short-range decay of the en-
ergy density correlator [35].

Finally, 1D magnons must decay into pairs of spinons
upon inclusion of quantum fluctuations beyond linear
spin-wave theory. The resulting two-spinon continuum
can be regarded as a precursor of the Majorana modes,
which appear in the S = 1/2 limit. The main effect of the
two-spinon continuum is to broaden the high-frequency
peak, in agreement with the result obtained for the quan-
tum limit of the model [see Fig. 3(b), (d) and (j)].

Thus, to summarize our discussion on the low-T clas-
sical liquid state, the high-energy peak of S(Q, ω) is
common to the quantum (S = 1/2) and the classical
(S →∞) T = 0 liquids. The classical limit of the model
provides a new insight for understanding the origin of
this peak, which has been used as a fingerprint of the
proximity to a Kitaev liquid state [3, 11, 12]. The classi-
cal model also provides a new insight for understanding
the momentum dependence of the low-energy spectral
weight distribution of the S = 1/2 model. This distri-
bution is very similar to the distribution of the ω = 0
spectral weight induced by the zero modes of the classical
model. These facts establish a clear connection between
the T = 0 spectra of the classical and quantum liquids.

FINITE TEMPERATURE LIQUIDS

The S = 1/2 Kitaev model can be mapped into a gas of
free Majorana fermions interacting with static Z2 gauge
fields [1]. Because of the quadratic nature of the action,
the fermionic degrees of freedom can be integrated out
to obtain an effective classical action for the Z2 vari-
ables, which can simulated by using Monte Carlo simu-
lations [14, 15], similar to other problems of noninteract-
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ing fermions coupled to classical degrees of freedom [36].
To evaluate the dynamical spin structure factor at finite
temperatures, one needs to combine such Monte Carlo
samplings with a quantum Monte Carlo solver [10]. To
compare against the results for S(Q, ω, T ) of the S = 1/2
Kitaev model [see Fig. 3], extracted from Refs. [8] and
[9], we present the corresponding results for the classical
Kitaev model in Figs 3 and 5.

FIG. 5. Temperature evolution of S(Q, ω) in the classical
Kitaev model calculated along a BZ path shown in Fig. 1 (b)
for the AFM coupling [(a)–(d)] and the FM coupling [(e)–(h)]
at (a),(e) T/K = 0.04, (b),(f) T/K = 1.1, (c),(g) T/K =
2.9 and (d),(h) T/K = 7.5. Panels (i) and (j) show the tem-
perature dependence of the intensity at the Γ-point for the
AFM and the FM models, respectively. The dashed line in
(i) traces the peak position of the high energy mode.

As shown in Figs. 5(d) and 5(h), the high-temperature
paramagnetic (PM) state of both the AFM and FM clas-
sical Kitaev models exhibits a characteristic broad dif-
fusive peak with a small Q-dependence. Figures 5(c),
5(g), 5(b), and 5(f), show that the low-frequency dif-
fusive mode becomes more structured upon decreasing
temperature and an additional mode emerges at the BZ
center for K > 0 and at the center of the second BZ (Y
point) for K < 0. Finally, at very low temperatures [see
Figs. 5(a) and 5(e)] the upper mode goes up in energy
and it separates from the low-frequency spectral weight.

Figures 5(i) and 5(j) show the temperature depen-
dence of S(Γ, ω) for the AFM and the FM cases, re-
spectively. The dashed line in Fig. 5(i) indicates the
temperature evolution of the high-frequency peak. This
peak merges with the low-energy peak at a temperature

scale TH ∼ 0.3 − 0.4K, which roughly coincides with
the high-temperature peak of the specific heat curve of
the quantum (S = 1/2) version of the model [8]. TH is
also the temperature at which the high-energy mode of
the S = 1/2 Kitaev model merges with the low-energy
mode [8, 9].

The quantum to classical crossover occurs at the tem-
perature scale TQC ' ∆v, which is significantly lower
than TH . Degenerate Hamiltonian eigenstates whose
number of fluxes differ by two only exist for energies
bigger than ∆v, as it is indicated by the finite value of
S0(ω = 0) for the S = 1/2 Kitaev model [see Fig. 3(l)].
Linear combinations of these degenerate states produce
eigenstates with non-zero 〈Sj〉 (the total flux is no longer
a good quantum number), which can be regarded as
“classical states”.

A large concentration of Z2 fluxes is induced at T >
TQC ' ∆v. These fluxes act as scattering centers for
the Majorana fermions, which loose their coherence when
the distance between scattering centers becomes compa-
rable to their wave-length. This condition is fulfilled at
T > TQC because the average distance between ther-
mally activated fluxes becomes of order one lattice space.
Figures 3(g) and (l) show that the dynamical structure
factors of the quantum and classical AFM models are
very similar for T/K = 0.25 and ω > ∆v. The quantum
character of the liquid is manifested at low temperatures
in the low-frequency dip at ω < ∆v visible even up to
T/K = 0.6 K (Fig. 3(m)). The resulting low-frequency
peak is then a remnant of the 2-vison gap.

FIG. 6. Schematic phase diagram of the classical K-H model
with AFM (K > 0) Kitaev interaction. The color gradient
denotes the quantum-classical crossover region. The solid
lines represent phase transitions. We note that the quantum
spin liquid phase is stable over a finite interval of J/K values
around J = 0 in the quantum limit (S = 1/2).
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KITAEV-HEISENBERG MODEL

FIG. 7. S(Q, ω) for the KH model with FM Heisenberg
exchange (J < 0) and AFM Kitaev interaction (K > 0) as a
function of −J/K. The green lines correspond to the S(Q, ω)
obtained from linear spin-wave theory (the line thickness in-
dicates the intensity ). Panel (a) corresponds to the pure
Kitaev model (J = 0), while panels (b) and (c) correspond to
J/K = −0.1 and J/K = −0.3, respectively. Panels (c) shows
that the magnon modes are more sharply defined away from
the Kitaev point. Panel (b) clearly shows that the magnon
modes become less defined upon approaching the Kitaev point
because of the increasing importance of non-linear effects cap-
tured by the LL simulation.

A big advantage of the classical limit of the model is
that we can study the evolution of S(Q, ω) away from the
Kitaev point. In contrast to the quantum case, an arbi-
trarily small perturbation is enough to replace the T = 0
liquid with a magnetically ordered phase that is also sta-
ble at finite temperatures. This ordered phase has three
different regimes: a low temperature regime, T � TN ,
in which the magnetic structure factor is dominated by
the single-particle excitations of the ordered state (spin-
wave dispersion), an intermediate temperature regime,
TN < T . K, with liquid-like correlations, and a high-
temperature paramagnetic state, T � K, that can be
regarded as a “spin-gas” because the off-site correlations
are negligibly small in comparison to the on-site corre-

lations. Price and Perkins [18, 19] argued that the or-
dering occurs via two consecutive Berezinskii-Kosterlitz-
Thouless transitions, as in the C6 clock model, with a
small critical phase in between.

The KH model (4) is one of the simplest Hamiltonians
that can be used to study the three regimes (in what
follows, our discussion excludes details related to critical
phenomena at T ≈ TN ). Given that the intermediate
spin-liquid regime only exists in the proximity of a T =
0 liquid phase (see Fig. 6), this regime can be used to
detect proximate quantum spin liquid behavior. If TN >
TQC , the liquid-like regime is described by the classical
limit of the model, implying that finite-T classical spin
dynamics can be exploited to identify magnets near a
T = 0 quantum melting point.

As shown in Fig. 6, the ground state of the classi-
cal KH model has zig-zag ordering for J/K < 0 and
a two-sublattice AFM ordering for J/K > 0 (K > 0).
At T = 0, the spin-wave dispersion deviates from the
linear spin-wave spectrum (green lines in Fig. 7) upon
approaching |J |/K = 0. These deviations arise from
the non-linear effects associated with spin fluctuations
towards the large manifold of classical states that be-
come ground states for J = 0. We note that this non-
linearity may have a different manifestation in the quan-
tum S = 1/2 model. In particular, the magnon modes of
the S = 1/2 model should become weakly bounded pairs
of Majorana fermions upon approaching the transition
into the spin liquid phase (here we are assuming that the
transition is continuous or quasi-continuous). It is clear
that this intrinsically quantum phenomenon cannot be
captured by the classical limit of the model. However,
as we discuss below, the classical model is still capable
of capturing the evolution of the high-energy features of
the magnon spectrum. Moreover, based on the results
discussed in the previous sections, the classical model
can describe the second way of approaching the spin liq-
uid regime, which is by increasing temperature at a fixed
value of J/K.

Figure 7 shows the evolution of the low-temperature
S(Q, ω) as a function of J/K, from the pure AFM clas-
sical Kitaev model [Fig. 7(a)] to −J/K = 0.3 [Fig. 7(c)].
As expected, S(Q, ω) exhibits a sharply defined spin
wave dispersion with a pseudo-Goldstone mode at the
M-point (ordering wave vector) well inside the ZZ phase.
We note that there are three inequivalent M-points corre-
sponding to the possible directions of the FM ZZ chains.
Upon reducing |J |/K, the magnon modes become less
defined due to the increasing relevance of non-linear ef-
fects triggered by the proximity to the (J = 0) spin
liquid point. In particular, the spectrum obtained for
J/K = −0.1 [Fig. 7(b)] shows an overall softening of the
acoustic magnon modes, except for the region around
the Γ point where the spectral weight remains around
the original optical mode. The evolution of this “high-
energy” feature should be common to both the classical
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and quantum limits of the model. In other words, this
unusual behavior can be used to detect the proximity to
a Kitaev quantum spin liquid, as long as the transition
between the ZZ phase and the liquid state remains con-
tinuous (or quasi-continuous) in the S = 1/2 limit.

As shown in Fig. 6, the spin liquid state can also
be accessed by increasing T at a fixed value of J/K.
Fig. 8 shows the temperature evolution of S(Q, ω) for
J/K = −0.1. The corresponding Néel temperature is
TN ≈ 0.06K, implying that there is a temperature win-
dow, |J | < T < K, above TN , where S(Q, ω, T ) should be
very similar to the dynamical structure factor of the pure
Kitaev model (T is high-enough to suppress the magnetic
correlations induced by the Heisenberg interaction). This
is true for any other small perturbation that can be added
to the pure Kitaev model. Fig. 8 (c) confirms this expec-
tation: S(Q, ω) is very similar to the result shown in
5 (c) for the pure Kitaev model (J = 0). As shown in
Fig. 8 (g), the low frequency region shows the signature of
a Kitaev liquid, with a rather uniform distribution of low
energy modes over the BZ, which is suppressed around
the Γ point. Correspondingly, Fig. 8 (k) shows the op-
posite behavior for the distribution of high-energy modes
over the BZ (1.2 < ω/K < 1.6). The rest of the panels
on the right hand side of Fig. 8 show the continuous re-
distribution of spectral weight upon moving towards the
low and high temperature regimes. Given that quantum
corrections are small above TQC ' ∆v ' 0.06K, the re-
sult obtained at ω > ∆v with the classical spin model
represents the S(Q, ω, T ) of the QL (see Fig. 3).

We remark that the Kitaev liquid state that appears
in the intermediate temperature regime is independent
of the particular model Hamiltonian, as long as the ad-
ditional terms can be treated as small perturbations rel-
ative to the Kitaev contribution (separation of energy
scales). This observation is relevant for candidate mate-
rials based on 4d and 5d elements because their micro-
scopic Hamiltonian models include multiple interaction
terms, whose values are still uncertain [37–50].

CONCLUSIONS

We have shown that the dynamical spin structure fac-
tors of the classical and the quantum (S = 1/2) limits of
the Kitaev model become very similar above a crossover
temperature TQC ' ∆v. Moreover, both structure fac-
tors exhibit similar qualitative behavior in their high-
frequency response (ω & K) even at T = 0. This “high-
energy” response is characterized by a broad peak above
ω ' K, which is centered around the Γ point for AFM
Kitaev model (K > 0) and around the Y point for the
FM Kitaev model (K < 0). Correspondingly, the singu-
lar spectral weight at ω = 0, produced by the zero modes
of the classical model, is suppressed around the Γ point
for AFM Kitaev model and around the Y point for the

FM Kitaev model. This dip in the momentum space de-
pendence of the low-energy spectral weight is still present
in the S = 1/2 model. The main difference is that the
low-energy modes of the quantum S = 1/2 Kitaev model
appear right above the two-vison activation gap ∆v.

In the classical limit, the low-energy modes of the CN-
ground states correspond to single-magnons states that
propagate in 1D loops [16]. The high-energy peak of the
classical Kitaev model arises from the singular density of
single-magnon states at the top of the dispersive branch
of excitations. This Van Hove singularity is smoothed
out by the deformations of the CN-ground states into
the non-Cartesian ground states (valleys) that lead to
the flat branch of zero modes and also by thermal fluc-
tuations. As discussed in Ref. 16, the 1D magnons of
the CN-ground states must decay into fractionalized ex-
citations upon inclusion of quantum fluctuations. These
excitations can be regarded as precursors of the Majo-
rana modes obtained in the quantum S = 1/2 limit. In
particular, this fractionalization leads to an additional
broadening of the high-energy peak of S(Q, ω), which
explains why the peak of the classical model is narrower
than the peak of the S = 1/2 model.

Our results provide a systematic procedure for iden-
tifying proximate quantum spin liquid behavior of real
materials. A dip in the density of low-energy modes at
the Γ (Y) point must be accompanied by a high-energy
peak around the same wave-vector for K > 0 (K < 0).
For materials that exhibit low-temperature magnetic or-
dering, the signatures of the Kitaev liquid should appear
over an intermediate temperature window above the or-
dering temperature. As long as T & TQC , the classical
approach can be used in this temperature window to ob-
tain a good approximation of S(Q, ω) for the S = 1/2
model.

The analysis presented here can have more general
implications for other quantum liquids with extensive
ground state degeneracy in the classical limit. Given the
lack of magnetic ordering, one needs to find an alternative
low-energy characterization of the liquid state. Our re-
sults suggest that the distribution of zero modes over the
BZ provides clear signature of the classical liquid, which
is inherited by the distribution of low-energy modes of the
quantum spin liquid. Given that such a distribution can
be measured with inelastic neutron scattering,[11, 12, 51]
this experimental technique can play a crucial role in the
characterization of quantum spin liquids. Moreover, the
quantum to classical crossover can be exploited for com-
puting other dynamical correlation functions and trans-
port properties of quite general quantum spin models at
T > TQC .

We thank Y. Motome for enlightening discussions and
for providing the finite temperature results for the S =
1/2 Kitaev model shown in Fig. 3. We additionally thank
J. Knolle and R.Moessner for providing the T = 0 re-
sults for the S = 1/2 Kitaev model shown in Fig. 2.
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FIG. 8. S(Q, ω) obtained for the KH model with J/K = −0.1. The different panels show S(Q, ω) along the BZ path
K − Γ −M −Y −X −K −M for (a) T/K = 0.02 (T � TN ), (b) T/K = 0.09 (T ' TN ), (c) T/K = 0.17 (T > TN ) and
T/K = 1.7 (T � TN ). The panels on the right hand side show the distribution of spectral weight over the BZ: the first column
shows the low-energy spectral weight (0.03 < ω < 0.13), while the second column shows the spectral weight in the frequency
interval of the high-energy peak (1.2 < ω < 1.6).

Work at ORNL is supported by the US DOE, Office of
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Division. Y.K. acknowledges support by JSPS Grants-in-
Aid for Scientific Research under Grant No. JP16H02206.
C.D.B. and S.-S. Zhang acknowledge support from the
Los Alamos National Laboratory LDRD program.

Linear Spin Waves for CN-ground States

The ground state of the classical Kitaev model has an
extensive degeneracy. The subset of CN-ground states
can be mapped to the the close-packed dimer coverings
of the honeycomb lattice. [16] The empty bonds of each
dimer covering form self-avoiding (SW) paths, which are
loops for closed boundary conditions. Within linear spin-
wave theory, magnons can only propagate along these 1D
paths to lowest order in a 1/S expansion. To compute
the spin-wave Hamiltonian in each loop for a given CN-
ground state, it is convenient to use a twisted reference

frame for the original Hamiltonian defined on a given
loop, where the local z-axis on a given site is chosen to
be parallel to the spin direction:

H1D = K

m∑
i=1

(S̃xi1S̃
x
i2+S̃yi2S̃

y
i+1,1)−KS

m∑
i=1

2∑
α=1

S̃ziα, (10)

where m = n/2 with n being the number of sites on the
loop. The local reference frame is chosen in such a way
that two adjacent sites have the same local x (y) axis if
they are connected by a xx (yy) bond. With this con-
struction, the closed boundary condition can be periodic
or anti-periodic depending on the direction of the last
spin [16]. In this reference frame, the Hamiltonian is
invariant under translations by two lattice sites. Corre-
spondingly, the index α = 1, 2 denotes the two sites on
the effective unit cell. The second term of Eq. (10) repre-
sents an effective perpendicular magnetic field generated
by the adjacent 1D path through the antiferromagnetic
interaction on the dimer.
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After a Holstein-Primakoff transformation,

S̃ziα = S − a†iαaiα, (11)

S̃xiα =
1√
2

(a†iα + aiα), S̃yiα =
1√
2i

(a†iα − aiα). (12)

the spin wave Hamiltonian (10) can be rewritten as

Hsw =
KS

2

m∑
i=1

2∑
α=1

(
a†iαaiα + aiαa

†
iα

)
+
KS

2

m∑
i=1

(
a†i1a

†
i2 + a†i1ai2 + h.c.

)
− KS

2

m∑
i=1

(
a†i,2a

†
i+1,1 − a

†
i,2ai+1,1 + h.c.

)
. (13)

Given the translational symmetry of Hsw, we can diago-
nalize it by Fourier transforming the creation and anni-
hilation operators:

aiα =
1√
m

∑
k

akαe
ik(i+δα), (14)

where δα refers to the displacement within each unit cell.
After Fourier transforming and applying a Bogoliubov
transformation to Hsw, we obtain the diagonal form

Hsw =
∑
k

E(k)β†kβk + E0

∑
k

γ†kγk +KS
∑
k

| cos(
k

2
)|,

where E0 = 0. The branch of zero modes arises from
the continuum of (non-CN) ground states connecting dif-
ferent CN-ground states. The dispersion relation of the
dispersive branch is [16]

E(k) = 2|K|S cos(k/2). (15)

Dynamical structure factor

To the lowest non-trivial order in the 1/S expansion,
the dynamical structure factor in momentum-frequency
space for a given ground state, |0〉, has only contribu-
tions from the transverse spin components in the local
reference frame

S̃µναβ(k, ω) = 4π2
∑
n=1,2

〈0|S̃µk,α|k, n〉〈k, n|S̃
ν
−k,β |0〉δ(ω − Eq,n).

(16)

As we explained in Sec. I, the local gauge structure of
the Kitaev Hamiltonian, [HK ,Wp] = 0, implies that the
real space spin-spin correlators must vanish for distances
bigger than one lattice parameter. Based on that ob-
servation, we will only compute the on-site and the NN
spin-spin correlators that arise from taking the average
over all the CN ground states. Note that a more rigorous
calculation of the T = 0 spin-spin correlator should also

include the non-CN ground states. However, a calcula-
tion based on the just the CN-ground states is enough to
capture the main qualitative features of the dynamical
structure factor obtained from our numerical simulations
of the classical AFM Kitaev model.

Finally, given the critical nature of the dimer coverings
of the honeycomb lattice, the loop length has a power law
distribution, implying that most of the loops containing
a given site (for the on-site correlator) and a pair of sites
(for the two-site correlator) have a very long length. Con-
sequently, we will assume that the average over CN states
is dominated by the result for infinitely long loop length.

On-site dynamical structure factor

The on-site dynamical structure factor is obtained by
averaging over both sites of the unit cell of the loop:

S̃xx0 (ω) =
1

2m

∑
k

[χ̃xx11 (k, ω) + χ̃xx22 (k, ω)] , (17)

Replacing the creation and annihilation operators
of Holstein-Primakoff bosons with Bogoliubov bosons
through(

ak,1 ± a†−k,1
ak,2 ± a†−k,2

)
=

(
uk vk
vk −uk

)(∗)
(
γk ± γ†−k
βk ± β†−k

)
,

(18)

with

uk =
i sin(k4 ) + cos(k4 )√

2 cos(k2 )
,vk =

i sin(k4 )− cos(k4 )√
2 cos(k2 )

, (19)

where the conjugation (∗) of the transformation matrix is
taken for the “−” sign. After this substitution and taking
the limit of m→∞, the on-site correlator is given by:

S̃xx0 (ω) = πS
ρ̄
(
ω
KS

)
ω

+
πS

2
δ(ω)

∫ π

−π

dk

cos(k2 )
, (20)

where the dimensionless density of states, ρ̄(ω/(KS)) =
KSρ(ω), is defined as follows:

ρ̄(x) =
2√

1−
(
x
2

)2 . (21)

The divergence at ω = 2KS arises from the Van Hove
singularity in the density of single-magnon states at the
top of the spin-wave band. Going back to the original
reference frame, we have

S0(ω) = 〈S̃xx0 (ω)〉, (22)

where we do need not to specify the superscript because
Sxx0 (ω) = Syy0 (ω) = Szz0 (ω).
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Nearest-neighbor dynamical structure factor

There are two different contributions to the dynamical
spin correlator between nearest-neighbor sites because of
the two-site unit cell. Let us first consider the xx bond
(i, 1)− (i, 2). The conservation of the flux operators Wp

implies that only the correlator between the twisted x
spin components, 〈S̃xi,1S̃xi,2〉, is non-zero on this bond.
From the spin wave theory, we have

S̃xx1 (ω) ' 1

m

∑
k

e−ik/2〈χ̃xx12 (k, ω)〉, (23)

with

〈χ̃xx12 (k, ω)〉 =
π2

| cos(k2 )|

[
e−i

k
2 δ(ω − Ek)− ei k2 δ(ω)

]
.

In the m→∞ limit, there is

S̃xx1 (ω) =

[
πωS

2(KS)2
− πS

ω

]
ρ̄
( ω

KS

)
−πS

2
δ(ω)

∫ π

−π

dk

cos(k2 )
.

Similarly, only the y-components of the twisted spins,
S̃yy1 (ω) = 〈S̃yi,2S̃

y
i+1,1〉, contribute to the NN spin correla-

tor on the other yy bond (i, 2)− (i+ 1, 1). By symmetry,
this correlator is the same as the xx correlator on the
bond (i, 1) − (i, 2) calculated above. Consequently, we
can ignore the superscripts xx/yy when referring to the
NN spin correlator. Back to the original spin reference
frame, we NN dynamic structure factor becomes

S1(ω) = S̃xx1 (ω). (24)
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024426 (2017).

[6] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moess-
ner, Phys. Rev. Lett. 112, 207203 (2014).

[7] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moess-
ner, Phys. Rev. B 92, 115127 (2015).

[8] J. Yoshitake, J. Nasu, and Y. Motome, Physical Review
Letters 117, 157203 (2016).

[9] J. Yoshitake, J. Nasu, Y. Kato, and Y. Motome,
ArXiv:1704.02707.

[10] J. Yoshitake, J. Nasu, and Y. Motome,
ArXiv:1705.07760.

[11] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B.
Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant,
R. Moessner, and S. E. Nagler, Science 356, 1055 (2017).

[12] S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome,
Y. S. Kwon, D. Adroja, D. Voneshen, K. Kim, T.-H.
Jang, et al., arXiv preprint arXiv:1703.01081 (2017).

[13] T. Huberman, D. A. Tennant, R. A. Cowley, R. Coldea,
and C. D. Frost, Journal of Statistical Mechanics: Theory
and Experiment 2008, P05017 (2008).

[14] J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett.
113, 197205 (2014).

[15] J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B
92, 115122 (2015).

[16] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78,
115116 (2008).

[17] G. Baskaran, S. Mandal, and R. Shankar, Physical re-
view letters 98, 247201 (2007).

[18] C. C. Price and N. B. Perkins, Phys. Rev. Lett. 109,
187201 (2012).

[19] C. Price and N. B. Perkins, Phys. Rev. B 88, 024410
(2013).

[20] I. Rousochatzakis, Y. Sizyuk, and N. B. Perkins,
ArXiv:1706.03756.

[21] S. Chandra, K. Ramola, and D. Dhar, Physical Review
E 82, 031113 (2010).

[22] Z. Nussinov and J. v. d. Brink, arXiv preprint
arXiv:1303.5922 (2013).

[23] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev.
Lett. 98, 247201 (2007).

[24] See Supplemental Material at [URL will be inserted by
publisher] for the animation demonstrating the magnons
propagate along the one-dimensional paths of empty
bonds on a CN-ground state of spin-S antiferromagnetic
Kitaev model.

[25] J. Nasu, Y. Kato, J. Yoshitake, Y. Kamiya, and Y. Mo-
tome, Phys. Rev. Lett. 118, 137203 (2017).

[26] S. P. Bayrakci, D. A. Tennant, P. Leininger, T. Keller,
M. C. R. Gibson, S. D. Wilson, R. J. Birgeneau, and
B. Keimer, Physical review letters 111, 017204 (2013).

[27] D. A. Tennant, B. Lake, A. J. A. James, F. H. L. Essler,
S. Notbohm, H.-J. Mikeska, J. Fielden, P. Kögerler, P. C.
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