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Abstract

We report on the experimental observation of topologically protected edge waves in a two-

dimensional elastic hexagonal lattice. The lattice is designed to feature K point Dirac cones that

are well separated from the other numerous elastic wave modes characterizing this continuous struc-

ture. We exploit the arrangement of localized masses at the nodes to break mirror symmetry at

the unit cell level, which opens a frequency bandgap. This produces a non-trivial band structure

that supports topologically protected edge states along the interface between two realizations of the

lattice obtained through mirror symmetry. Detailed numerical models support the investigations

of the occurrence of the edge states, while their existence is verified through full-field experimental

measurements. The test results show the confinement of the topologically protected edge states

along pre-defined interfaces and illustrate the lack of significant backscattering at sharp corners.

Experiments conducted on a trivial waveguide in an otherwise uniformly periodic lattice reveal the

inability of a perturbation to propagate and its sensitivity to backscattering, which suggests the

superior waveguiding performance of the class of non-trivial interfaces investigated herein.
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I. INTRODUCTION

Wave propagation in periodic media has been an active field of research for the past

few decades. Energy transport by waves arise in multiple areas of physics as it relates to

acoustic, elastic, electromagnetic, and electronic media. Unique phenomena like negative

refraction, directional propagation, focusing and cloaking have been pursued through careful

engineering of the band structure, which is a unifying theme for exploration in this diverse

set of physical domains. Recently, the advent of topological mechanics1 has provided an

effective framework for the pursuit of robust wave propagation which is protected against

perturbations and defects. Topologically protected edge wave propagation was originally

envisioned in quantum systems and has quickly evolved to other classical areas of physics,

such as acoustics2, photonics3,4, mechanics5,6, as well as to coupled wave domains such as

opto-mechanics7. In all of these different domains, properties such as lossless propagation,

existence of waves confined to a boundary or interface, immunity to backscattering and

localization in the presence of defects and imperfections are the result of band topology.

This makes them classical analogues of topological insulators that support the propagation

of topologically protected edge waves (TPEWs).

There are two broad ways to realize topologically protected wave propagation in elastic

media. The first one uses active components, thereby mimicking the quantum Hall effect.

Changing of the parity of active devices or modulating the physical properties in time, for

example, has shown to alter the direction and nature of edge waves8,9. Examples include

magnetic fields in biological systems10, rotating disks11 and acoustic circulators operating on

the basis of a flow-induced bias12. A second way uses solely passive components and relies

on establishing analogues of the quantum spin Hall effect. These media feature both forward

and backward propagating edge modes, which can be induced by an external excitation of

appropriate polarization. The concept is illustrated in several studies by way of both nu-

merical5,13,14 and experimental15,16 investigations, which involve coupled pendulums15, plates

with two scale holes5 and resonators13, as well as electric circuits16. Numerous studies have

also been conducted on localized non-propagating deformation modes at the interface of two

structural lattices6,17,18. These modes depend on the topological properties of the bands,
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which in 1D lattices are characterized by the Zak phase as topological invariant19. In 2D

and 3D lattices, several researchers have investigated the presence of floppy modes of mo-

tion due to nontrivial topological polarization and exploited these modes to achieve localized

buckling and directional response20–23. In spite of the intense level of activity in this area,

to the best of our knowledge, studies reporting on the experimental observation of TPEWs

in continuous elastic media have so far been limited. Unique challenges in elastic systems

exist due to their high modal densities, which complicate the analysis and design of the band

structure and the effective achievement of non-trivial topologies. These also often lead to

complex arrangements of materials and intricate connectivities that may be hard to realize

in practice. A promising avenue in this regard is the use of valley degrees of freedom as

originally envisioned in quantum systems like graphene bilayers24–26. The concept has also

been adopted in classical areas such as photonics4,27, acoustics28–30 and phononics2,6 .

The objective of this study is to exploit valley degrees of freedom to obtain and demon-

strate experimentally TPEWs in continuous elastic media. The considered configuration

consists of an elastic hexagonal lattice on which concentrated masses are attached at the

sub-lattice sites. This provides a simple assembly that is characterized by the symmetry

conditions sufficient to open a topologically non-trivial bandgap. The addition of masses

at selected locations within a unit cell breaks the C3v symmetry inherent to the hexagonal

geometry, while preserving the C3 symmetry. Exploiting the arrangement of masses con-

veniently leads to lattices that exhibit different topological properties of the bands. When

two such lattices wih different topological properties are joined together, TPEWs propagate

along the shared interface.

The outline of this paper is as follows: Sec. II explains the concept of valley modes, while

Sec. III presents the description of the continuous hexagonal lattice, along with its dispersion

analysis, and the dispersion analysis of a finite strip containing an interface. Section IV

describes the experimental setup, the estimation of the dispersion diagrams for the lattices,

and results showing TPEWs for two different interfaces. Finally, Sec. V summarizes the

main results of this study and presents potential future research directions.
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II. HEXAGONAL SPRING-MASS LATTICES AND VALLEY HALL EFFECT

ANALOGY

We briefly illustrate the Quantum Valley Hall Effect (QVHE) analogy for discrete hexag-

onal lattices, which provide the basic configuration for the design and subsequent study of

the continuous lattices investigated herein. While detailed descriptions of the concept can

be found in6, we briefly review how changes in topological properties can be achieved by

considering unit cells that are inverted copies of each other, leading to band inversion in the

dispersion diagram, and opposite topological properties at the valley points K and K′. In this

context, two sufficient conditions guarantee the existence of TPEWs in a periodic system:

the unit cell should satisfy C3 symmetry and violate mirror symmetry24,27,31,32. For exam-

ple, the discrete hexagonal lattice of Fig. 1a, comprises point masses at the sub-lattice sites

connected by linear springs of stiffness k joining nearest neighbors. The masses move only

in the out-of-plane direction, which is perpendicular to the plane of the page. Accordingly,

the springs provide a force which is proportional to the relative out-of-plane displacements

of neighboring masses. Each unit cell has two sites a, b where the masses respectively are

ma = m(1+γ) and mb = m(1−γ). Thus, the lattice satisfies C3 symmetry but violates mir-

ror symmetry about the lattice vectors C3v. Two lattice types can be conveniently obtained

by considering values of γ > 0 or γ < 0, which corresponds to switching the position of the

masses through a mirror symmetry operation. The band structure of the lattice with equal

masses (γ = 0) shown in Fig. 1b reveals the presence of Dirac cones at the high symmetry

points. The symmetry is also highlighted by the iso-frequency contours of the first dispersion

surface, on which the path along the boundaries of the first irreducible Brillouin zone and

its symmetric counterpart are represented (red solid line), along with the location of the K

and K′ points. The band diagrams obtained for the wave vector tracing these boundaries

are shown in Fig. 1c in terms of the dimensionless frequency Ω = ω/ω0, with ω0 =
√
k/m.

Comparisons are obtained for the symmetric case with equal masses (γ = 0, dashed curves),

and when mirror symmetry is broken (γ 6= 0, in this case γ = +0.2, solid curves), which

results in the opening of the Dirac cones to form a bandgap. The bounding frequencies of

the gap vary as a function of γ, and a band inversion occurs when γ changes in sign, which
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corresponds to the case of two mirror-symmetric unit cells (see Fig. 1d).

Expressing the Hamiltonian of this lattice in the basis of an extended vector combining

the eigenvectors at the K and K′ valley points, illustrates the analogy with quantum valley

Hall effect2,6. Alternatively, the topological properties of the vector bundle associated with

the eigenvectors u0(κ) can be used to infer the presence of interface modes33. The valley

Chern number, which is the integral of the Berry curvature over half the Brillouin zone,

characterizes the topology of this vector bundle, see24,26. In hexagonal lattices with broken

mirror symmetry, the valley Chern number takes values ±1/2 at the opposite valleys, i.e. the

K and K′ points in reciprocal space, indicating opposite polarization of the corresponding

eigenmodes31 (Fig. 1c). In the described discrete lattice (see Fig. 1a) the valley Chern

number of the first mode is (−)1/2 at (K)K′ points for γ > 0 and vice-versa for γ < 06.

To realize TPEWs, it suffices to build a structure in which two lattices with opposite valley

Chern numbers share an interface. These two lattices may have the same band structure but

their eigen modes at the valley points have opposite polarization. When these two lattices

share a common interface, topologically protected localized modes exist at frequencies within

the bandgap6, and TPEWs can propagate confined to that interface.

III. CONTINUOUS HEXAGONAL LATTICE

A. Configuration and material properties

The characteristics of the conceptual lattice summarized above guide the design of the

continuous hexagonal elastic lattice of Fig. 2. The lattice is fabricated out of a square acrylic

panel of side 308.4 mm and thickness of 1.59 mm. The side of the each hexagon measures

L = 10.7 mm, while the width of the beams is w = 3.2 mm. The masses consist of cylindrical

nickel-plated neodymium magnets (ρc = 7400 kg/m3, Ec = 41 GPa and νc = 0.28) of height

1.5 mm and diameter 3.2 mm. The material properties of acrylic are: density ρ = 1190 kg/m3,

Young’s modulus E = 3.2 GPa, Poisson’s ratio ν = 0.35. The lattice is generated by a set

of lattice vectors a1 =
√

3L [
√

3/2, −1/2] and a2 =
√

3L [
√

3/2, 1/2]. Unit cell mirror

symmetry is broken by adding cylindrical masses at selected sub-lattice sites a, b, in analogy
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FIG. 1: Hexagonal discrete lattice emulating the QVHE (a). Dispersion surfaces and

contours of the first surface for γ = 0, highlighting the presence of Dirac cones, the first

irreducible Brillouin zone (solid red line), and the location of the K and K′ points (b).

Band diagrams reporting the values of the valley Chern numbers at the K and K′ points for

γ = 0 (dashed, black) and γ = +0.2 (solid, red and blue) (c). Inversion of the bounding

frequencies of the bandgap as a function of the parameter γ (d).

with the discrete lattice in Fig. 1a. The mass added by the cylinders is defined respectively

as ma = (|γ|+ γ)mc,mb = (|γ| − γ)mc, where mc denotes the mass of one cylinder and γ is

the parameter chosen to define both magnitude and location of the added mass at each site.

Of note is the fact that the lattice is a continuous structure that is characterized by inherent
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mass properties defined by the density of the material. Therefore the terms ma,mb denote

the added mass at the sub-lattice sites. An even number of cylinders are added at each

location in order to preserve symmetry in the thickness direction, and for practical purposes

in the experimental implementation of the concept, whereby attracting magnetic cylinders

are clamped at the desired location. Hence, values γ > 0 describe the addition of masses at

site a, while γ < 0 corresponds to an added mass in b. In addition, the case γ = +1(−1)

describe the addition of two cylinders in a(b), and finally when γ = 0 corresponds to the

case of no additional masses.

FIG. 2: Experimental lattice with added masses at the sub-lattice sites. Insets show the FE

discretization of the unit cell for numerical study for configurations defined by γ = 0 and

γ = 1, as well as the first and irreducible Brillouin zone (red dashed line) for the lattice.

B. Dispersion Analysis

1. Unit Cell

The dispersion properties of the lattice are estimated based on the Finite Element (FE)

discretization of the lattice modeled as a three-dimensional continuous solid. In the model,

the motion of each material point within the domain at the generic location x, y, z, is governed

by the standard equations of linear elasticity for an isotropic medium34,

ρü−
[
(λ+ µ)∇ (∇ · u) + µ∇2u

]
= 0, (1)

where u(x, y, z) = uxi + uzj + uzk is the displacement vector and i, j, k denote the unit

vectors along the x, y, z directions. Also, λ, µ are the Lamé constants of the solid. For
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reference, in here and in the remainder of the paper, the x, y directions define the plane

of the lattice, while the z direction is the thickness, or out-of-plane, direction. The solid

is patterned according to the hexagonal topology considered herein, and is discretized for

analysis within the COMSOL Multiphysics environment. Each unit cell is discretized using

around 20000 second-order tetrahedral elements which produces the mesh shown in the insets

of Fig. 2. Upon discretization, imposing a plane wave solution along with the enforcement

of Floquet-Bloch conditions to the unit cell degrees of freedom leads to a linear eigenvalue

problem that is solved in terms of frequency for a wave vector varying along the edge of

the first irreducible Brillouin zone for the lattice under consideration. Results for lattices

characterized by γ = 0 and γ = 1 are shown in Fig. 3a,b.

The dispersion analysis predicts multiple wave modes that correspond to the numerous

degrees of freedom in the considered FE unit cell model. Each node has 3 degrees of freedom,

which is reflected by the three branches emanating from the Γ point at zero frequency.

In the long wavelength limit, the lattice approaches the behavior of a thin plate, and is

characterized by a flexural, or out-of-plane, mode, and two in-plane modes which can be

described as ’shear’ and ’longitudinal’-like. Consistently with its flexural nature, the out-

of-plane mode is characterized by a parabolic dispersion branch at long wavelengths, and

it is loosely coupled with the in-plane modes. This makes its identification based on the

eigenvector components relatively simple (see blue, thick line in Fig. 3). In contrast, the

modes that are mostly in-plane polarized, i.e. that are associated with eigenvectors where

ux, uy >> uz (red lines in Fig. 3), are significantly more difficult to differentiate from one

another. However, their distinct representation goes beyond the scope of the work, which

focuses on the out-of-plane mode.

In analogy with the discrete lattice, the hexagonal lattice with no masses attached (γ = 0)

has C3v symmetry. In addition, a Dirac point at the frequency identified by the horizontal

dashed line is observed for the out-of-plane branches at the K point of the reciprocal lattice

space (Fig. 3a). Adding 2 cylindrical masses at the a site (γ = 1) breaks mirror symmetry,

and produces a bandgap (see Fig. 3b). The bounding frequencies of the gap, denoted ω+ and

ω− are tracked as a function of γ, which produces the plot of Fig. 3c, where a band inversion

is observed. The eigenfunctions U associated to these eigenvalues for γ = −1 and γ = 1 are
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FIG. 3: Dispersion diagrams: lattice without masses, γ = 0 (a); lattice with masses, γ = 1

(b) (black thin dashed line: location of Dirac point, blue thick lines: out-of-plane wave

mode, red thin lines: shear polarized modes). Variation of bandgap bounding frequencies

ω+ (red line), ω− (blue line) at K as a function of γ showing band inversion (c), and phase

of corresponding eigenfunctions of the first two out-of-plane modes at K for γ = −1 and

γ = 1 (d).

depicted in Fig. 3d, which also illustrate the predominantly out-of-plane polarization of these

modes. Please see supplemental material at [URL] for animations of the first two out-of-plane

modes at K for γ = 1 (“Kpoint gamma 1 FirstMode CounterClockwisePolarization.gif”

and “Kpoint gamma 1 SecondMode ClockwisePolarization.gif”). We observe that, while the

eigenvalues are preserved under the transformation γ → −γ due to time reversal symmetry,

the eigenfunctions feature different polarizations that reflect the mirror-symmetry relations
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of the corresponding unit cells. The transformation γ → −γ may be achieved by simply

reversing the direction of the lattice basis vectors, so the positions of the sub-lattice sites

a and b are switched. Due to the broken C3v mirror symmetry, a reflection changes the

eigenfunctions and thereby the bands topology2. Let us examine in detail the phase of the

eigenfunctions U at K point. Note that for γ < 0 the eigenfunction of the first mode has

clockwise polarization and the eigenfunction of the second one has counter-clockwise po-

larization, whereas the opposite is observed for γ > 0. Fig. 3c shows that the bands are

inverted when γ changes sign (at γ = 0). Furthermore, the K′ points have opposite polar-

izations to the K points due to time reversal symmetry. The change in polarization across

γ = 0 suggests that lattices with γ > 0 and γ < 0 have opposite valley Chern numbers6,35,

and that TPEWs are expected to exist along an interface between a lattice with γ > 0 and

a lattice with γ < 0 at frequencies within the common bandgap.

2. Finite Strip

The dispersion analysis of a strip including a finite number of cells and an interface is

conducted to evaluate the existence of edge and interface modes. The study is based on the

FE model previously considered for the unit cell, extended to include the finite strip assembly

of Fig. 4a. The strip consists of 10 unit cells of the type γ = 1 and 10 unit cells with γ = −1,

which, as discussed in the previous section, are characterized by different topologies. The

top and bottom boundaries of the strip are considered free, which is a choice that does not

affect the existence of the interface mode. The corresponding dispersion diagram is presented

in Fig. 4b, where again, the out-of-plane modes are easily distinguished from the in-plane

polarized ones through the evaluation of the displacement components of the eigenvectors,

and are denoted by the thick blue lines. In addition to these bulk modes, two modes appear

in the bandgap, one of which is a mode localized at the interface (black dotted line), while

the second mode is localized at the boundaries of the strip (black line). One eigenvector

corresponding to the interface mode, is displayed in Fig. 4c, which shows the displacement

field of the edge mode for κx = 0.7π and frequency f = 3 kHz. The dispersion study shows

that in spite of the large number of modes present and of the fact that the bandgap is
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only associated with the out-of-plane modes, and is therefore only partial, the topological

differences between the two lattices still lead to a topologically protected interface modes.
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FIG. 4: Finite strip and close-up of the topological interface (a). Dispersion diagram: edge

mode (dotted black line), out-of-plane modes (thick blue lines), and in-plane polarized

modes (thin red lines) (b). Eigenvector corresponding to the edge mode evaluated for

wavenumber κx = 0.7π at f ' 3 kHz (c).

IV. EXPERIMENTAL RESULTS

A. Experimental Set-up

The numerical simulations described in the previous section guide the design and exper-

imental characterization of the considered hexagonal lattice. The lattice is cut out of an

acrylic panel according to the dimensions described in Section III. In the experiments, the

lattice is held in a vertical position by a vice that clamps its lower left corner. In addition,

commercially adhesive putty tape is added along the boundaries for absorption of incoming

waves and to minimize reflections which may affect the visualization of the propagation of

the interface modes. Wave motion in the lattice is induced by PZT discs bonded at selected

locations, and driven by a voltage signal generated by a signal generator upon amplifica-
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tion. The PZT discs are bonded to the top surface of the lattice. When the voltage is

applied, they induce a distribution of shear stresses at the bonded interface, which generates

both the in-plane and out-of-plane motion of the lattice. Full-field response of the lattice

is recorded through a scanning Laser Doppler vibrometer (SLDV), which measures the out-

of-plane velocity of points belonging to a predefined measurement grid. Given the SLDV

limitation to measurements of the out-of-plane motion only, no contribution from in-plane

modes is observed in the measured responses. While the equipment records one point at a

time, repeating the excitation to record the response at every measurement location and the

tracking of the phase between subsequent measurements allow the recording of the full-field

wave motion of the lattice. The measurements include 7 points along the side L of the

hexagon, so that a total of 3670 points are recorded over the entire lattice. After recording,

the wavefield data are interpolated on a regular rectangular grid that includes 100 points

along the horizontal (x) and vertical (y) extent of the measurement domain. The excitation

consists of broadband frequency pulses that cover the frequency range of interest, which is

up to 12 kHz. This is achieved through modulated sinusoidal pulses and their superposition,

or half-cycle pulses whose duration defines the frequency bandwidth of the excitation.

B. Estimation of the dispersion properties

The measurement and their subsequent interpolation produce a data set in the form

of a matrix w(x, y, t) that describes the evolution of the deflection of the lattice in time.

The matrix of the experimental results is analyzed in Fourier space by performing a three-

dimensional Fourier transformation (3D-FT), which gives36:

ŵ(κx, κy, ω) = F3D[w(x, y, t)]

The resulting quantity describes the spectral content, both in terms of frequency as well

as reciprocal space, of the recorded wavefield. Cross sections along defined wave paths

C, i.e. ŵ(κ|C, ω), illustrate the spectral content as a function of frequency for the wave

vector varying along specific lattice directions, while evaluation at one frequency ω0, i.e.

ŵ(κx, κy, ω0), illustrates the distribution of energy in the reciprocal wavenumber space at
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that frequency. These maps provide direct visualization of the dispersion characteristics of

the domain of interest, and are therefore used to validate the numerical predictions for the

lattice under consideration.

We first verify experimentally the dispersion diagrams of the acrylic hexagonal lattice with

γ = 0 configuration (no masses attached). The elastic lattice is excited at its center using a

PZT disc that applies a pulse of 40µs to excite frequencies up to 12.5 kHz. Figure 5a displays

the magnitude |ŵ(κx, κy, ω0)| of the 3D-FT at a frequency of f0 = ω0/(2π) ≈ 3.75 kHz, which

is close to the Dirac cone frequency identified by the numerical study of dispersion (see Fig.

3a). The contours correspond to the magnitude |ŵ|, which is not of particular interest

here. Most relevant is their location: they are localized at the high symmetry points and

effectively illustrate a condition that defines a Dirac point. For reference, the boundaries of

the first irreducible Brillouin zone are shown along with the points defining its boundary.

The size of the zone is defined by a lattice vector a =
√

3L ≈ 18.4 mm, which corresponds

to the magnitude of the wave vector at the K point of κ ≈ 226 rad/m. Next, results are

presented in terms of frequency/wavenumber content by considering a cross section of the

3D-FT along the path C : Γ − K − Γ for γ = 0 (no masses added). Figure 5b illustrates

the dispersion branches detected during the experiments, which compare very well with the

COMSOL predictions (red solid line). The case of γ = 1 is then tested and Fig. 5c displays

the results in the frequency/wavenumber domain. An opening of the bandgap at the K point

is observed as predicted by the COMSOL simulations, again represented by the solid red

line superimposed to the contours.

C. Experimental Observation of Topologically Protected Interface Waves

The dispersion studies and the experimental set-up developed allow the investigation of

the existence of topologically protected modes at the interface of lattices consisting of unit

cells that are inverted copies of each other (γ = −1 and γ = 1). This is easily achieved by

placing magnetic cylinders as added masses at the selected locations, so that a variety of

interfaces can be introduced and tested.

We first investigate the straight line interface shown in Fig. 6a. The cylindrical masses are
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FIG. 5: Experimental 3D-FTs. Lattice with γ = 0: cross section |ŵ(κx, κy, ω0)| at frequency

f0 ≈ 3.75 kHz close to the numerically predicted Dirac cone (a). Frequency/wavenumber

representation |ŵ(κ|C, ω)| along the path C : Γ−K − Γ and comparison with COMSOL

predictions (solid red line): lattice with γ = 0 (b), and γ = 1 (c).

placed so that the unit cells to the left of the interface have γ = 1 and those to the right have

γ = −1. Note that this interface has zero width, and the green lines in the figure only indicate

the path that TPEWs are expected to follow. The structure is excited at the location shown

with a tone burst signal of 11 cycles at a frequency of 3 kHz. The considered signal has a

bandwidth of approximately 1 kHz, and therefore excites a relatively broad frequency range

which falls entirely within the bandgap. Figures 6b and 6c display time snapshots of the
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measured out-of-plane displacement by plotting the contours of the interpolated wavefield.

Please see supplemental material at [URL] for an animation showing the measured out-

of-plane displacement in the experiment (“AHL Line TB11 DisplacementMov3D.avi”). As

indicated above, the displacement field shown is an interpolation over a rectangular grid

of the measured response in points belonging to the lattice. This produces a continuous

representation which facilitates visualization of the results along with the overlay of the

geometry of the lattice represented as thin black lines. The contours are normalized by the

maximum displacement amplitude of 3 × 10−8 m. The figures illustrate how the induced

out-of-plane wave travels along the interface, and has limited penetration into the bulk. The

results also show that the amplitude decays below 10% of the original value in approximately

4 unit cells, which is a number consistent with observations from similar investigations

presented in the literature28. The number of unit cells in our lattice (18 by 16) and their

size was set according to convenience of fabrication and testing and is quite limited. Future

designs may be scaled in order to include a larger number of units that may lead to a

reduction in the lateral spreading of the interface modes. The rate of spatial decay may

affect the results in Fig. 6a due to the proximity of the source from the boundary. Videos

showing the time evolution of the displacement field based on measurements are provided as

part of the supplementary material.

The excited in-plane waves, not measured in the experiment, do not exhibit a bandgap at

the targeted frequencies, and therefore are allowed to travel on both sides of the interface.

Of interest is the fact that the interface mode (for out-of-plane waves) is still observable

after it reaches the boundary opposite to the excitation location, although the amplitude

is reduced by material dissipation that is particularly noticeable in the acrylic substrate

utilized for the tests. The choice of acrylic as material for the experiments is driven by

considerations of convenience of fabrication and cost. In further studies, the use of metallic

lattices, such as aluminum for example, will be considered for investigations of effects such as

extent of propagation and attenuation along the interface, and interactions with boundaries

and defects. These interactions are not studied as part of this work, but are important

aspects of follow-on investigations for the characterization of the robustness of this class of

modes.
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FIG. 6: Line interface (red dots indicate two masses attached at the sub-lattice sites and

cyan dots denote locations where no masses are added) with γ = (−)1 on the left(right) (a).

Snapshots of measured wave motion at two instants of time. Excitation is a 11 cycles tone

burst at 3 kHz (Contours are normalized by the displacement amplitude of 3× 10−8 m) (b).

A second example considers a N-shaped zero width interface with segments parallel to

the lattice vectors (Fig. 7a). The objective is to observe the behavior of the wave in the

presence of 120° corners along the interface. The cylindrical masses are attached so that

the unit cells to the left top of the interface have γ = 1 and those to the right bottom

have γ = −1. The results in Figs. 7b and 7c show the propagation of the wave along

the N-shaped topological interface, and a limited propagation into the bulk. Furthermore,

the wave manages the 120o turn, illustrating the ability to change direction with limited

backscattering. The contours are normalized by the displacement amplitude 1.5 × 10−8
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m. Movie files are provided in the supplementary material. See supplemental material at

[URL] for an animation showing the measured out-of-plane displacement in the experiment

(“AHL NShape TopologicalInterface TB11 DisplacementMov3D.avi”).

We compare the results above to the case of a waveguide obtained by removing a unit cell

from an otherwise periodic domain, which leads to a trivial (non-topological) interface. To

this end, masses are attached so that all unit cells have γ = 1. The N-interface within one lat-

tice type is thus obtained by simply removing a line of masses, as illustrated in Fig. 8a, which

corresponds to a non-zero width interface. The resulting lattice response in Figs. 8b and 8c,

illustrates the limited ability of the wave to enter and propagate along the interface. See sup-

plemental material at [URL] for an animation showing the measured out-of-plane displace-

ment in the experiment (“AHL NShape TrivialInterface TB11 DisplacementMov3D.avi”).

The induced motion of the lattice appears to remain localized in the vicinity of the ex-

citation point, and eventually decays as a result of material dissipation. Comparing the

amplitude of transmitted waves, we conclude that the amount of energy traveling through

the interface is much lower in this case, in spite of the nonzero width of the interface. This

test is here based on the fact that for this non-zero width interface, the dispersion properties

are those of a lattice without added masses for which the flexural bandgap does not exist.

Thus the goal is here to illustrate that removal of a single row from a periodic assembly is

not sufficient to guarantee propagation.

V. CONCLUSIONS

Control of mechanical waves is applicable in many technological fields of interest, including

detection, energy harvesting and telecommunications. This study demonstrates the existence

of interface modes within the bandgap of a two-dimensional elastic hexagonal lattice and the

propagation of TPEWs exploiting a mechanical analogue of the quantum valley Hall effect.

This phenomenon allows creating a simple and robust waveguide for elastic waves in a wide

range of frequencies. Guided by studies on conceptual lattices and numerical simulations,

experiments are conducted to predict the dispersion properties of the considered hexagonal

lattices and to explore the existence of TPEWs along predefined interfaces. The difference in
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γ=1

γ=-1

PZT

(a)

(b) (c)

FIG. 7: A nontrivial N-shaped interface (red dots indicate two masses attached at the

sub-lattice sites and cyan dots denote locations where no masses are added) with γ = (−)1

on the left(right) (a). Snapshots of measured wave motion at two instants of time.

Excitation is a 11 cycles tone burst at 3 kHz (Contours are normalized by the displacement

amplitude of 1.5× 10−8 m) (b).

propagation along non trivial interfaces is also illustrated through an experiment that reveals

the difference of modes of propagation endowed with topological protection from those that

are obtained by introducing a line defect in an otherwise periodic assembly. The experimental

configurations illustrated herein are suitable for potential implementation of the concept to

phononic systems and structural components, and could be further utilized to investigate

the sensitivity of these configurations to a variety of defect and interface configurations.
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γ=1

γ=1

PZT

(a)

(b) (c)

FIG. 8: N-shaped trivial interface (red dots indicate two masses attached at the sub-lattice

sites and cyan dots denote locations where no masses are added) with γ = 1 everywhere

(a). Snapshots of measured wave motion at two instants of time. Excitation is a 11 cycles

tone burst at 3 kHz (Contours are normalized by the displacement amplitude of 1.5× 10−8

m) (b).
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