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Accurate thermodynamic descriptions are a key ingredient to kinetic theories that describe the
mesoscale evolution of a solid undergoing ordering or decomposition reactions. We introduce a
general approach to identify order parameters for order-disorder reactions and to calculate first-
principles free energy surfaces as a function of these order parameters. The symmetry of the disor-
dered phase is used to formulate order parameters as linear combinations of sublattice compositions
of a reference supercell. The order parameters can distinguish the disordered phase from the sym-
metrically equivalent variants of a particular ordered phase. A thermodynamic formalism is then
developed to rigorously define a coarse grained free energy as a function of order parameters. Bias
potentials are added to the potential energy to enable sampling of the unstable regions within the or-
der parameter domain. Monte Carlo sampling in the biased ensemble is combined with free energy
integration to calculate high-temperature free energies. We illustrate the approach by analyzing
the free energies of order-disorder transitions on a two-dimensional triangular lattice and in the
technologically important Ni-Al alloy.

I. INTRODUCTION7

Order-disorder transformations in alloys have been the focus of research since the early 1900’s. Since then, various8

methods to model and characterize these phenomena have been developed. A number of metallurgical alloys exploit9

ordering transformations to achieve a variety of desirable properties. For example, a dispersion of ordered-precipitates,10

coherently embedded within a matrix phase can lead to a dramatic strengthening of an alloy as it impedes dislocation11

glide. Precipitation hardening is commonly applied to nickel-based superalloys1,2 to increase their creep resistance12

and to aluminum and magnesium alloys3–6 to enhance their strength.13

Order-disorder phenomena are not just limited to metallurgical alloys, but can also play an important role in14

functional materials. Ordering reactions have been used to develop superior thermoelectric materials with a low15

thermal conductivity through the formation of multiphasic microstructures7–9. The ability to control the degree16

of ordering on the surfaces of catalyst alloys has also been recognized as a lever with which to improve catalytic17

efficiencies10–14. However, ordering is not always desirable. The onset of cation ordering within the electrodes and18

electrolytes of electrochemical energy storage devices is often accompanied by a reduction in cation mobility15–17.19

Strategies are, therefore, actively sought with which to suppress ordering among mobile species18.20

The phase field method can model the temporal and spatial evolution of a solid undergoing order-disorder trans-21

formations at the mesoscale19–24. The beginnings of this method can be traced back to the work of Cahn, Hilliard22

and Allen19,20. A key step in formulating a phase field model for a particular order-disorder transformation is the23

identification of suitable order parameters that can distinguish the ordered phase from the disordered phase. Other24

essential ingredients include homogeneous free energies (as a function of temperature, composition and order pa-25

rameters), gradient energy coefficients and atomic mobilities. Several approaches have been developed to link these26

quantities directly to the electronic structure of the alloy using first-principles statistical mechanics approaches25–40.27

However, the formulation of suitable order parameters for arbitrarily complex order-disorder transformations and the28

calculation of free energies as a function of those order parameters has remained elusive.29

Here, we introduce a general approach to identify order parameters for any order-disorder transformation within a30

multi-component crystalline solid (meant to broadly include metallic alloys, oxides, semiconductors, surfaces, etc.).31

We also develop an approach to calculate first-principles free energies as a function of those order parameters, both32

in regions where the free energy is convex and where it is concave. We apply this methodology to study the thermo-33

dynamics of ordering predicted by the triangular lattice-model Hamiltonian with nearest and next-nearest neighbor34

interactions and to shed light on ordering phenomena observed in the technologically important Ni-Al alloy.35

II. GENERATING ORDER PARAMETERS36

The formation of an ordered phase from a disordered solid solution leads to a reduction in symmetry. The high37

symmetry disordered phase can transform to one of several symmetrically equivalent variants of the ordered phase.38
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Order parameters that describe this lowering of symmetry must satisfy several criteria. The order parameters must39

be able to distinguish between the disordered phase and the ordered phase of interest. Furthermore, they must be40

able to distinguish between the symmetrically equivalent variants of a particular ordered phase. The definition of the41

order parameters must prescribe a mapping of any arbitrary configuration of atoms within the crystal onto a point42

in the space defined by the order parameters (Figure 1). The function that performs this mapping may map several43

configurations onto the same point in order parameter space. Such a many-to-one mapping is desired as the aim is44

to minimize the number of descriptors needed to characterize the symmetry breaking of the ordering process. The45

following sections describe an approach to formulate order parameters for any order-disorder reaction in a crystalline46

solid.47

FIG. 1. Schematic picture showing the function mapping an arbitrary configuration (~σ) to a value of the order parameters (~η)

A. Order parameters from sublattice compositions48

Conventionally, the order parameters for simple orderings such as B2, D019 and L12 are written as linear combi-49

nations of sublattice compositions. We illustrate this for a binary substitutional alloy consisting of A and B atoms.50

An ordered phase is then a particular arrangement of A and B atoms on the sites of a parent crystal structure that51

repeats itself periodically throughout the whole crystal. The periodicity of the ordering can be described with trans-52

lation vectors that define a supercell of the primitive cell of the parent crystal structure. The supercell consists of53

s sublattices. It is convenient to associate a composition variable xp with each sublattice p = 1, ..., s of a reference54

supercell. For a crystal containing M supercells, the sublattice compositions can be defined as55

xp =
NB

p

M
. (1)

where NB
p is the number of B atoms on all sites related to sublattice p by the translational symmetry of the supercell.56

We will denote the collection of sublattice compositions as a vector containing s entries, i.e. ~x = [x1, x2, · · · , xs]
T .57

As an example, consider the CsCl type B2 ordering on the BCC parent crystal structure shown in Figure 2. The58

smallest supercell of B2 is the conventional cubic unit cell of BCC. Figure 2 labels the two sublattice sites within this59

supercell. The two sublattice compositions, x1 and x2, are sufficient to characterize both the disordered phase (i.e.60

x1 = x2) and the two translational variants of B2 (i.e. x1 = 1 and x2 = 0 for one translational variant and x1 = 061
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FIG. 2. Conventional cell of BCC, showing 2 sublattices
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FIG. 3. Schematic of the space spanned by the sublattice compositions of fig. 2. The figure shows the four orderings commen-
surate with this supercell, as well as the reorientation of the space defined by eqs. (2) and (3)

and x2 = 1 for the other). However, the same information can be more conveniently represented with the following62

linear combinations of the sublattice compositions:63

η0 =
x1 + x2

2
(2)

64

η1 =
x1 − x2

2
(3)

The order parameters, η0 and η1, span the same space as the sublattice compositions, albeit rotated by 45◦ (Figure 3).65

The first order parameter, η0, corresponds to the overall composition of the alloy and is independent of the degree66

of long-range order. The second order parameter, η1, in contrast, measures the degree of long-range B2 order and67

is exactly zero in the absence of any long-range order. Transforming from the x1 − x2 coordinate system to the68

η0 − η1 coordinate system corresponds to a reorientation of the space such that the disordered solid solution falls on69

the line defined by η1 = 0. Furthermore, the sign of η1 distinguishes the two symmetrically equivalent translational70

variants of B2 as they occur at different points in this space: at η0 = 1
2 , one translation variant of perfectly ordered71

B2 has η1 = 1
2 while the other translational variant has η1 = − 1

2 . The order parameters of Equations (2) and (3)72

qualitatively split the sublattice composition space into two. Though the exact same information is represented by73
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both coordinates systems, the order parameters, η0 and η1, are more insightful since one of them (i.e. η1) naturally74

captures the symmetry breaking that occurs upon ordering.75

1

2

3
4

FIG. 4. Sublattices in the conventional FCC crystal structure, labelled 1-4.

a

c d

b

FIG. 5. Crystal structure of the L12 (A3B) ordering on the FCC crystal structure. This ordering has four symmetrically
equivalent translational variants.

Sublattice compositions can also be used to describe L12 ordering on the FCC parent crystal. The periodicity of76

the L12 ordering is that of the conventional cubic FCC unit cell containing four sublattices (fig. 4). There are four77

symmetrically equivalent translational variants of L12 (fig. 5). Order parameters can be defined as linear combinations78

of the sublattice compositions x1, x2, x3 and x4 according to41:79

η0 =
x1 + x2 + x3 + x4

4
(4)

80

η1 =
x1 + x2 − x3 − x4

4
(5)

81

η2 =
x1 − x2 − x3 + x4

4
(6)
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82

η3 =
x1 − x2 + x3 − x4

4
(7)

Similar to B2, η0 corresponds to the overall composition of the alloy, while the remaining order parameters, η1, η283

and η3, describe the symmetry breaking accompanying L12 type ordering. The linear combinations separate the84

four-dimensional sublattice composition space into two qualitatively distinct subspaces: a one-dimensional subspace85

corresponding to the global composition and a three-dimensional subspace that tracks the degree of long range order86

similar to L12. In the disordered state, the order parameters η1,η2 and η3 all equal zero. Non-zero values of η1, η287

and η3 correspond to configurations with partial long-range order similar to L12. At a composition of η0 = 0.25, all88

allowed configurations map onto points inside a tetrahedron in η1,η2 and η3 space as illustrated in fig. 6. The vertices89

of the tetrahedron correspond to the four perfectly ordered translational variants of L12. The η1,η2 and η3 coordinates90

are therefore suitable order parameters to distinguish the four translational variants of L12 from each other and from91

the disordered phase.92
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FIG. 6. Schematic of the domain of η1, η2, and η3 values spanned by real configurations at a composition of η0=0.25. Perfect
L12 type orderings are formed at the corners of the tetrahedron. The disordered phase with the same composition is mapped
on to the origin of this domain.

The two examples illustrate that particular linear combinations of sublattice compositions of a reference supercell93

can generate a set of order parameters that can be partitioned into qualitatively distinct subspaces, each describing94

different aspects of the ordered and disordered phases. The B2 and L12 order parameters can be thought of as95

coordinates in a space that has been rotated relative to the s sublattice composition axes. The axes of the order96

parameter space are aligned with high symmetry directions of the sublattice composition space. The re-orientation97

allows a natural partitioning of the space into symmetrically distinct sub-spaces that describe different types of98

symmetry breaking. Not all subspaces are needed to distinguish between the different translational variants of the99

ordered phase and the disordered phase, thus allowing a reduction in the number of variables needed to describe the100

phase transition.101

In general, when seeking to identify order parameters for a particular ordering, it is necessary to determine a suitable102

coordinate transform that converts the sublattice compositions, ~x, to the desired order parameters, ~η, according to103

Q~x = ~η, (8)

where Q is a s× s rotation matrix that satisfies QTQ = I (with I the identity matrix). As the B2 and L12 examples104

illustrate, the choice of Q is motivated by the effect of operations in the space group of the parent crystal on the105

sublattice compositions. The application of a particular symmetry operation of the parent crystal is equivalent to106

permuting the sublattices in the reference supercell. This can be represented mathematically as a matrix multiplication107

~x′ = A(i)~x (9)

where ~x′ and ~x are sublattice concentrations corresponding to two symmetrically equivalent orderings related to each108

other by a symmetry operation i of the parent crystal and where the matrixA(i) represents the effect of that symmetry109

operation on the sublattice compositions. The symmetry representations that act on the sublattice compositions110
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according to Eq. 9 are all permutation matrices. For instance, the representation of any symmetry operation of the111

BCC crystal that acts on the two sublattice compositions of the B2 supercell (Figure 2) takes one of two forms:112

A(1) =

(

1 0
0 1

)

A(2) =

(

0 1
1 0

)

(10)

The matrix A(1) is the symmetry representation of all BCC space group symmetry operations that leave the sublattice113

sites in place, whileA(2) is the symmetry representation for the space group operations that permute the two sublattice114

sites. The factor group of the reference supercell of B2 contains 96 operations, 48 of which are represented by A(1)
115

and the rest by A(2).116

Group theory tells us that the rotation matrix, Q, will simultaneously block-diagonalize all the symmetry matrices117

A(i). The matrix representations, Ã(i), acting on ~η for each space group symmetry operation i of the parent crystal118

are related to the matrix representations A(i) that act on ~x according to:119

Ã(i) = QA(i)Q−1 = QA(i)QT , (11)

This relation follows upon substitution of Equation (8) into Equation (9). Therefore, in order to identify symmetry120

adapted order parameters for a particular order-disorder transition, it is simply necessary to find a rotation matrix121

Q such that every distinct matrix Ã(i) given by Eq. 11, has the same block diagonal structure. Simultaneous block122

diagonalization of the set of symmetry matrices A(i) to yield Ã(i) and Q can be performed using an algorithm123

described by Thomas and Van der Ven42.124

Once all symmetry representations, Ã(i), are in the same block diagonal form, the space of order parameters is split125

into a number of subspaces with lower dimensionality than s. Each sub-space has as many dimensions as the size126

of the blocks in its symmetry representation. Block-diagonal symmetry operations can only transform vectors in a127

particular sub-space (i.e., block) into other vectors in the same sub-space. As such, these subspaces are thus invariant128

under the application of symmetry. Group theory shows that if a block-diagonal symmetry representation cannot129

be partitioned into smaller subspaces by subsequent block-diagonalization, then the blocks correspond to irreducible130

representations of the group, and the basis vectors that span their corresponding subspaces transform according to131

these irreducible representations. There is always a one-dimensional subspace corresponding to the composition of132

the alloy, which is invariant to symmetry.133

B. Accounting for orientational variants134

The general approach outlined in the previous section will generate a complete set of symmetry adapted order135

parameters that describe the symmetry breaking accompanying an ordering transformation within a specific reference136

supercell. Unlike L12 and B2, most ordered phases have supercells that are not invariant to the point group of137

the parent crystal structure. Symmetrically equivalent variants may have supercells that have different orientations,138

leading to some ambiguity in indentifying appropriate sublattice concentrations.139

As an example, consider the (2 × 1) row ordering on the triangular lattice shown in fig. 7. Due to the three-fold140

symmetry of the triangular lattice, there are three symmetrically equivalent orientations of the (2× 1) row ordering.141

As shown in fig. 7, the smallest supercells associated with the three orientations of row orderings are not the same.142

Formally, the relationship between a supercell (S) and a primitive lattice (P ) can be written as a matrix multipli-143

cation:144

S = PT (12)

where P = [~a,~b,~c] and S = [ ~A, ~B, ~C] are matrices containing the lattice vectors of the primitive and supercells145

respectively and the transformation matrix T is a full-rank integer matrix with the same dimensions as P and S. For146

two-dimensional lattices, the primitive and supercell matrices are of dimensions 2× 2, while for 3-dimensional lattices147

they are 3× 3. The supercell transformation matrices for the three orientational variants of the (2× 1) row ordering148

on the triangular lattice are:149

T (1) =

(

1 −1
0 2

)

T (2) =

(

0 −2
1 1

)

T (3) =

(

1 1
−1 1

)

(13)

We refer to equivalent variants having different primitive supercells as orientational variants. But as with the150

simpler orderings such as B2 and L12, there are usually also several translational variants per orientational supercell.151

The (2 × 1) row ordering has two translational variants for each orientational supercell since the smallest supercell152
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FIG. 7. Variants of the (2 × 1) ordering on the triangular lattice. The primitive cell required to describe each ordering is
highlighted in blue, while the decoration of each variant in the mutually commensurate cell is highlighted in orange.

1

2 3

4

FIG. 8. Reference cell that can accommodate all the translational and orientational variants of the 2 × 1 ordering on the
triangular lattice. The cell contains four sublattices that are labeled as shown in the figure.

that describes this ordering contains two lattice sites of the underlying triangular lattice. This results in a total of six153

symmetrically equivalent variants of the row ordering on the triangular lattice.154

In order to identify symmetry adapted order parameters for more complicated orderings that have both orientational155

and translational variants, it is necessary to work with a supercell and accompanying sublattice concentrations that156

can describe all variants simultaneously. For example, the smallest supercell that is commensurate with the three157

orientational supercells of the (2 × 1) row ordering (Eq. 13) has the transformation matrix:158

T =

(

2 0
0 2

)

. (14)

Thismutually commensurate supercell is illustrated in fig. 8 and is clearly a supercell of all three primitive orientational159

supercells of the (2 × 1) row orderings. The sublattice concentrations of the mutually commensurate supercell serve160

as an appropriate basis with which to construct symmetry adapted order parameters that describe all orientational161

and translational variants of the row ordering as well as the disordered phase.162

Once the mutually commensurate supercell has been established for a particular ordering we can apply the approach163

described in the previous section to identify the transformation matrix linking the sublattice concentrations within164

this supercell to the symmetry adapted order parameters. For the row ordering using the mutually commensurate165

supercell of Eq. 14 to specify sublattice concentrations, this transformation matrix takes the form166

Q =
1

4







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






(15)

The rows of the transformation matrix, Q, correspond to the linear combinations of the sublattice compositions that167

yield the order parameters.168

The symmetry matrices that act on the order parameter space for the row ordering are block diagonal with dimen-169

sionalities of 1 and 3. This means that the first order parameter does not mix with the other three variables upon170

application of symmetry of the parent crystal. The one-dimensional space containing only the first order parameter171

(or row) corresponds to the average value of the sublattice compositions and is therefore equal to the global compo-172

sition. The next three rows correspond to three order parameters that distinguish between the ordered variants and173

the disordered state. At a composition of 0.5, the values of the order parameters η1, η2 and η3 for the variants of the174
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row ordering reside at the vertices of an octahedron (fig. 9). Each order parameter describes a particular orientational175

variant while its sign describes a translational variant. Points with perfect ordering have coordinates such as
(

1
2 , 0, 0

)

.176

The origin of this space (i.e. (0, 0, 0)) corresponds to the disordered phase.177

FIG. 9. Schematic of the η1, η2, η3 domain for the triangular lattice at a composition (η0) of 0.5. Each row ordering is formed
at the corners of the octahedron. The disordered phase is mapped on to the origin.

C. A summary of the algorithm for a general ordering178

In this section we summarize and generalize the approach to determine symmetry adapted order parameters for179

any order-disorder transformation on a multi-component crystalline solid. The first step is to determine the mutu-180

ally commensurate supercell that can accommodate all orientational variants of the ordered phase. Applying the181

point group of the undecorated parent crystal structure to the supercell of a “seed” ordering will generate a set of182

transformation matrices, T, containing all orientational variants:183

T = {T (1),T (2), · · · } (16)

Each T (i) is a transformation matrix for a particular orientational variant relative to the primitive cell. In the case184

of the triangular lattice, the set of transformation matrices are given by Equation (13). The transformation matrix185

(T ) of the mutually commensurate supercell must be a solution to the following equation:186

PT = (PT (i))V (i), ∀T (i) ∈ T (17)

where V (i) and T are integer matrices. The left hand side of Equation (17) denotes a supercell that is related to187

the primitive cell (P ) through the integer transformation matrix T . The right hand side of the equation denotes188

the relationship of the same cell to each of the orientational variants (PT (i)) through another integer transformation189

matrix V (i). Equation (17) is a constraint that is satisfied only by a supercell of the primitive cell that is also a190

supercell of all the orientational variants in T. A solution for T can be found by counting over all symmetrically191

distinct supercells of a crystal and checking if Equation (17) is satisfied. Algorithms to generate the symmetrically192

unique cells in increasing order of volume are described and implemented elsewhere43,44. Although there are many193

possible solutions for T , we choose the one with the smallest volume. While this choice is not necessary, it reduces194

the number of sublattice sites that need to be explicitly considered. An efficient algorithm for the generation of the195

mutually commensurate supercell is described in appendix A.196

The mutually commensurate supercell is used as the reference supercell to define a set of sublattice compositions.197

A rotation of the space spanned by the sublattice compositions, into a space that block-diagonalizes their symmetry198

representations should next be determined using the algorithm described by Thomas and Van der Ven42. The corre-199

sponding rotation matrix Q specifies, via eqs. (8) and (11), the s independent order parameters and their associated200
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block-diagonal symmetry representations. The order parameter subspaces identified via the block-diagonalization of201

the symmetry representations each correspond to particular classes of symmetry breaking.202

Taken together, the generated order parameters can distinguish between all the 2s possible orderings of a binary203

alloy within the reference supercell. Usually, we are interested in describing only a small subset of these orderings.204

Not all s order parameters are always needed to distinguish among a small subset of the 2s possible orderings.205

Calculating the order parameters across all the symmetrically equivalent variants of an ordering shows that some of206

the order parameter subspaces have zero or identical values in all variants. Because such order parameters do not207

aid in distinguishing between orderings of interest, they can be discarded for the purpose of many thermodynamic208

analyses.209

Mathematically, we can identify the minimal subset of the full s-dimensional order parameter space that are needed210

to describe a particular ordered phase as follows. The sublattice compositions across the m symmetrically equivalent211

variants (~x(i)) of a particular ordering can be collected in a matrix V with the columns containing the sublattice212

occupancies for each variant:213

V =
[

~x(1) ~x(2) · · · ~x(m)
]

(18)

The value of the order parameter for each of these variants can be calculated from Equation (8) as ξ = QV . Here,214

ξ is an s ×m matrix, where each column is the value of the order parameters for a particular variant. A particular215

row, i of ξ corresponds to the values of order parameter ηi in each variant. If each element in a row i of ξ is identical216

across all variants (columns), then order parameter ηi does not provide any information with which to distinguish217

the different variants. Order parameter ηi is therefore superfluous and need not be considered to track the degree218

of long-range order. These order parameters correspond to directions in ~x-space that are orthogonal to the space219

spanned by the orderings.220

The above steps can be further generalized to generate order parameters if we are interested in distinguishing221

among several different types of ordering that are not all symmetrically equivalent. This collection of orderings may222

occur at different compositions and exhibit different super lattice periodicities. The set of transformation matrices223

(T) in Equation (16) must be extended to include the orientational variants for all the orderings. The solution to224

Equation (17) is to be calculated across the larger set of transformation matrices. The larger reference supercell will225

then accommodate the orientational and translational variants of all orderings. The order parameters calculated in226

this reference supercell, via block-diagonalization of its factor group, can then be used to discern the minimal set of227

variables required to describe all the orderings of interest.228

III. THERMODYNAMIC FRAMEWORK229

Having outlined a general approach to generate order parameters for any order-disorder transformation in a crystal,230

we next describe a thermodynamic framework with which to calculate coarse-grained free energy as a function of231

these order parameters.232

A. Legendre transforms, sublattice chemical potentials and the free energy233

In order to construct a free energy description that explicitly depends on order parameters, we introduce sublattice234

chemical potentials. As with chemical potentials that are conjugate to the number of atoms of a particular species, it235

is possible to define a sublattice chemical potential that is conjugate to the number of atoms on each sublattice. The236

differential form of the Gibbs free energy of a (large) crystal when controlling the temperature, T , and the number of237

atoms on each sublattice can then be written as:238

dG = −SdT +
s
∑

i=1

2
∑

j=1

µj
idN

j
i (19)

where G is the Gibbs free energy, S is the entropy, µj
i is the chemical potential of component j on sublattice i and239

N j
i is the number of atoms of the jth component on the ith sublattice. (We assume a constant pressure and to be240

consistent with conventional first-principles total energy calculations set it equal to zero). The differential form of G241

in Eq. 19 indicates that the sublattice chemical potential is a partial derivative of the free energy according to242

µj
i =

(

∂G

∂N j
i

)

T,p,N
q 6=j

p 6=i

(20)
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In a binary crystal having a fixed number of unit cells of the reference crystal, it is possible to rewrite Eq. 19 as243

dG = −SdT +M

s
∑

i=1

(µB
i − µA

i )dxi

= −SdT +M~µTd~x (21)

where244

~µ = ~µB − ~µA (22)

Here, ~µA and ~µB are vectors of dimension s × 1 that contain the chemical potentials of A and B on each of the s245

sublattices.246

It is convenient to work within the semi-grand canonical ensemble (SGC) to calculate coarse-grained free energies247

using Monte-Carlo and free energy integration techniques. In this ensemble, the controlled thermodynamic variables248

are the chemical potentials, ~µ, and the temperture with the total number of sites of the crystal held constant:249

Φ = G−M~xT ~µ (23)

M in this expression corresponds to the number of reference supercells that can tile the crystal. The differential form250

of the semi-grand canonical free energy takes the form251

dΦ = −SdT −M~xT d~µ (24)

Inserting Equation (8), which relates the sublattice compositions, ~x, to the order parameter, ~η, in Equation (24), the252

differential form of the semi-grand canonical form becomes:253

dΦ = −SdT −M~ηTd~λ (25)

where ~λ is defined as:254

~λ = Q~µ (26)

Just as the sublattice chemical potentials, ~µ, are conjugate to the sublattice compositions, the elements of ~λ are255

conjugate to the order parameters ~η.256

B. Coarse-grained free energies from first principles257

Any ordering of A and B atoms in a crystal can be represented as a vector ~σ, in which every element, σi contains258

an integer (−1 or +1) corresponding to the occupant (A or B) of site i. The free energy G(x, T ) as a function of the259

composition, x, of B species and temperature, T , can be expressed in terms of the partition function from statistical260

mechanics according to:261

G(x, T ) = −kBT lnZ(x, T ) (27)

with the partition function, Z, given by:262

Z(x, T ) =
∑

~σ

exp

(

−E(~σ)

kBT

)

(28)

Here, E(~σ) is the formation energy of configuration ~σ and kB is Boltzmann’s constant. The sum is taken over all263

configurations, ~σ, of the alloy having a composition x. Here we consider only configurational degrees of freedom, but264

other excitations (e.g. vibrational and electronic) can be incorporated in a straightforward manner as described by265

Ceder30. There are various methods to approximate E(~σ) in eq. (28). A common approach is to rely on a cluster266

expansion Hamiltonian parameterized with ab-initio density functional theory calculations25,26.267

The partition function, eq. (28), can be coarse grained to a sum over order parameters ~η for a particular ordered268

phase according to269

Z(x, T ) =
∑

~η∈Γx

exp

(

−G(~η, T )

kBT

)

(29)
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provided a coarse grained free energy is introduced that is defined as270

G(~η, T ) = −kBT ln

(

∑

~σ

exp

(

−E(~σ)

kBT

)

δ (~η(~σ)− ~η)

)

(30)

The Kronecker delta function, δ, is included to ensure that only configurations that map onto ~η according to the271

mapping function ~η(~σ) contribute to the sum. The sum in eq. (29) extends over all values of ~η belonging to a domain272

Γx consistent with the composition x.273

The above coarse graining scheme yields a free energy that is an explicit function of the order parameters ~η. In most274

experimental situations it will not be possible to control the order parameters directly. Instead, the order parameters275

are internal degrees of freedom that adopt particular values once the solid has reached its equilibrium state. Away276

from critical phenomena, where the saddle-point approximation can be invoked45, the solid in equilibrium will exhibit277

values of the order parameters ~η that minimize the coarse grained free energy G (~η, T ).278

From a practical point of view, it is more convenient to work within the semi-grand canonical ensemble for which279

Equation (24) is the characteristic potential. The partition function within this ensemble can be written as:280

Θ =
∑

~σ

exp

(

−E(~σ)−M~ηT~λ

kBT

)

(31)

where the sum now extends over all configurations and where the elements of ~λ, conjugate to the order parameters ~η,281

are linear combinations of the sublattice chemical potentials according to Eq. 26. This ensemble is more amenable282

for Monte-Carlo simulations as they can be performed by controlling the values of ~λ without the need to restrict283

the types of configurations that are sampled. Ensemble averages of thermodynamic quantities, including ~η and the284

average energy Ē, etc. can then be calculated as a function of T and ~λ. Relationships between ensemble averages285

and T and ~λ can then be integrated to yield free energies as is commonly done for alloys35,46,47.286

Conventional free energy integration approaches can only be used to calculate the stable parts of the free energy287

surface35,46,47. However, to serve as meaningful input to phase field model studies it is also of interest to possess288

information about regions in order-parameter space where the solid is unstable and where the Hessian of the free289

energy has negative eigenvalues. These regions can be accessed using umbrella sampling48 to estimate the unstable290

part of the free energy49–51. In the context of alloys, bias potentials are typically added to composition variables to291

estimate the free energy within the spinodal of a miscibility gap. Here we extend this approach to probe the free292

energy surface as a function of order parameters where free energy curvatures may be negative. This can be achieved293

by adding bias potentials that are functions of the order parameters according to:294

Θ =
∑

~σ

exp

(

−E(~σ) +M
∑

i φi(ηi(~σ)− κi)
2

kBT

)

(32)

where the bias potential is centered about κi and has a curvature that is related to φi. In this ensemble, we are free to295

choose the values of κi and φi. Metropolis Monte Carlo can then be used to calculate ensemble averages of the order296

parameters, ηi, and other extensive quantities such as the average energy, Ē etc. Similar to other umbrella sampling297

schemes49–51, the partition function in eq. (32) can alternatively be written as:298

Θ =
∑

~η

exp

(

−M
∑

i φi(ηi − κi)
2

kBT

)

∑

~σ

exp

(

−E(~σ)

kBT

)

δ (~η(~σ)− ~η)

=
∑

~η

exp

(

−G(~η, T ) +M
∑

i φi(ηi − κi)
2

kBT

)

Here, the outer sum is over all possible values of ~η corresponding to configurations that are accesible in the real system299

and G(~η, T ) is the coarse-grained free energy of eq. (30) evaluated for order parameters ~η and temperature T .300

In the thermodynamic limit, the probability distribution of states having a particular value of the order parameters301

~η is expected to be peaked at their average values, 〈~η〉, such that the derivative of Θ with respect to any order302

parameter, ηi, should be zero when evaluated at the equilibrium values of the order parameters:303

∂Θ

∂ηi

∣

∣

∣

∣

〈~η〉

= 0 ≈
∂ exp

(

−G(~η,T )+M
∑

i
φi(ηi−κi)

2

kBT

)

∂ηi

∣

∣

∣

∣

〈~η〉

(33)
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Simplifying this equation, yields:304

1

M

∂G

∂ηi

∣

∣

∣

∣

〈~η〉

= −2φi(〈ηi〉 − κi) (34)

This last equation is the key to calculating free energies as a function of order parameters. Semi-grand canonical305

Monte Carlo simulations can be used to calculate ensemble averages of the order parameters 〈~η〉 as a function of φi, κi306

and T . By mapping out a path in φi and κi space that connects to a reference state where the free energy is known,307

it becomes possible to integrate eq. (34) to calculate the free energy at an arbitrary value of ~η.308

IV. CASE STUDIES309

We illustrate the calculation of free energies as a function of order parameters and temperature for two examples.310

The first focuses on an order-disorder transition predicted by the well studied Ising Hamiltonian for a triangular311

lattice having nearest neighbor (NN) and next nearest neighbor (NNN) pair interactions52. In the second example312

we explore the free energy surface as a function of order parameters that link the Ni-rich fcc solid solution to the313

L12(Ni3Al) ordering within the Ni-Al binary.314

A. Triangular lattice and the row ordering315

The Ising model with nearest neighbor (JNN) and next-nearest neighbor interactions (JNNN) predicts a rich variety316

of low-temperature orderings when the ratio of interactions ( JNN

JNNN

) is 10 (using spin based occupation variables, i.e.317

σi = ±1)53. Of particular interest is the row ordering shown in Figure 7 at a composition of 0.5. It undergoes a318

first order phase transition to the disordered phase upon heating52. The formation of row-orderings on a triangular319

lattice are found in many technological applications such as the adsorption of gases on metal surfaces10,11 and the320

intercalation of lithium into cathode materials54,55.321

As described in Section II B, suitable order parameters for the row ordering can be expressed as linear combinations322

of the sublattice compositions within a (2× 2) supercell (fig. 8) of the primitive cell using the transformation matrix of323

eq. (15). The first order parameter η0 corresponds to the global composition, while the other order parameters describe324

the extent of long-range order similar to the row ordering. Figure 9 shows the locations of the six symmetrically325

equivalent variants of the row orderings in η1, η2 and η3 space. The origin in this space corresponds to the disordered326

phase. Of interest is the dependence of the free energy landscape on temperature and order parameters.327

Figure 10 shows a portion of the phase diagram around x = 0.5 as calculated with Monte Carlo simulations applied328

to the Ising Hamiltonian. The row ordering undergoes a first-order phase transition to the disordered phase at elevated329

temperatures. Figure 10 also shows free energies calculated by integrating eq. (34) using data collected with Monte330

Carlo simulations in a biased ensemble (eq. (32)). The free energies are plotted along the η1 order parameter axis that331

connects two translational variants (i.e. the line corresponding to η2 = η3 = 0 in fig. 9). The translational variants332

that lie along this line consist of rows that are oriented along the same direction but are translated by a primitive333

lattice translation relative to each other. The disordered phase corresponds to a value of zero along this axis.334

At elevated temperatures, Figure 10 shows that the free energy as a function of order parameter is convex, with335

the lowest free energy corresponding to the disordered phase (η = 0). At this temperature, the ordered phases have336

a higher free energy than the disordered phase. Furthermore, they are also unstable as there are no local minima at337

finite values of the order parameters (Figure 10). As the temperature is lowered to values closer to the order/disorder338

temperature, but still above it, the free energy landscape qualitatively changes. The disordered phase continues to339

have the lowest free energy, but the ordered phases become locally stable. The row orderings and the disordered phase340

are separated from each other by a small free energy barrier. At this temperature, the ordered phase is metastable341

while the disordered phase is still globally stable. Figure 10 shows that a further reduction of the temperature to342

below the order/disorder temperature reverses the relative stability between the ordered and disordered phases. The343

row ordering now has the lowest free energy, but the disordered solid solution still remains metastable residing in a344

free energy well. Lowering the temperature even further, makes the disordered phase unstable. Anti-phase boundaries345

separating two translational variants form within the Monte Carlo simulations cells. This leads to the flat portion of346

the free energy around η1 ≈ 0 since a variation of the order parameter when anti-phase boundaries are present only347

changes the relative fraction of one translational variant relative to the other. The anti-phase boundary free energy348

may be extracted from this free energy landscape in a manner similar to that described by Sadigh and Erhart49 for349

interfacial free energies between coexisting phases within a miscibility gap.350
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FIG. 10. Phase diagram and free energies for a model Hamiltonian on the triangular lattice with JNN

JNNN
= 10. The temperature

and free energies are scaled based on the nearest neighbor interaction. Free energies are mirrored across η1 = 0 due to the
symmetry of the domain.

The free energy landscapes of Figure 10 provide a means with which to extract not only the thermodynamic order-351

disorder transformation temperature, but also the temperatures of ordering and disordering spinodals. The ordering352

spinodal corresponds to the temperature at which the disordered phase becomes unstable. It is the temperature353

at which the curvature of the free energy at the origin in order parameter space (i.e. for the disordered state)354

transitions from positive to negative. The ordering spinodal occurs below the order-disorder transition temperature.355

The disordering spinodal occurs above the thermodynamic transition temperature and corresponds to the temperature356

where a superheated ordered phase becomes unstable. It is the temperature at which the barrier separating the ordered357

phase from the disordered phase disappears. The ordering and disordering spinodals signify transitions in the kinetic358

mechanism with which an order-disorder transition can occur. When a disordered phase is cooled to a temperature359

below the thermodynamic transition temperature but above the ordering spinodal, it can only transform through a360

localized nucleation and growth mechanism since the disordered phase is still metastable. However, if the disordered361

phase is supercooled below the ordering spinodal, it becomes unstable and will begin to order in a continuous manner362

and uniformly throughout the solid.363

B. γ/γ′ in Ni-Al alloys364

Nickel-based superalloys are widely used as high-temperature materials in the aerospace industry1. Commercial365

alloys used in jet engines employ a two-phase mixture of an ordered L12 intermetallic (e.g. γ′-Ni3Al) coherently366

embedded within a nickel-rich disordered solid solution (γ). Alloy compositions are chosen to optimize the shape,367

morphology and composition of the L12 precipitates in order to boost high-temperature strength. A detailed analysis368

of phase stability starting from first principles in the prototypical Ni-Al binary alloy has been recently described by369

Goiri and Van der Ven2. A portion of the FCC phase diagram as calculated with Monte Carlo simulations applied to370

a first-principles cluster expansion for FCC Ni-Al is shown in Figure 11. It consists of a two-phase field that separates371
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the γ FCC solid solution from the L12 ordered γ′ phase.372
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FIG. 11. Ni-rich part of the phase diagram for the Ni-Al binary alloy calculated from Monte Carlo simulations on a cluster
expansion Hamiltonian parameterized from first-principles2

The symmetry adapted order parameters that describe the symmetry breaking associated with L12 ordering were373

described in Section II A and are given by Equations (4) to (7). They are defined as linear combinations of the374

sublattice compositions in the conventional FCC cell (Figure 4).375

Free energies were determined by integrating the chemical potential and average order parameter values as calcu-376

lated with Monte-Carlo simulations within the biased ensemble (eq. (32)) using the cluster expansion Hamiltonian377

as parametrized by Goiri et al.2. The full free energy generated for this system spans 5 dimensions at constant tem-378

perature (4 order parameters and the the free energy). To visualize this multi-dimensional free energy landscape, we379

project it onto a two-dimensional subspace in Figure 12a. The two-dimensional subspace is spanned by the average380

composition of the alloy, xAl, and a high symmetry path in η1, η2 and η3 space, parametrically represented by ξ381

defined as382

ξ =
η1 + η2 + η3√

3
(35)

This path follows the dashed line connecting the origin to one of the corners of the tetrahedron in Figure 6 corre-383

sponding to a particular translational variant of L12.384

Figure 12a shows the calculated free energy as a function of xAl and the projected order parameter, ξ, at 600 K.385

The size of the tetrahedron of allowed values for η1, η2 and η3 in fig. 6 depends on concentration and shrinks as the386

concentration is reduced below xAl = 0.25. The maximum allowed value of ξ, which measures the distance from the387

origin to one of the corners of the tetrahedron in order parameter space (fig. 6), therefore, decreases linearly to zero as388

the concentration of the alloy is decreased to zero. As a result, the allowed values of concentration xAl and projected389

order parameter ξ fall in a triangle in fig. 12a. The free energy is referenced to the free energy of pure Ni and perfectly390

ordered L12 at 0K.391

At low Al concentrations, the minimum of the free energy occurs along the ξ = 0 line. The Ni-rich alloy therefore392

does not exhibit any long-range order and forms a disordered solid solution. At higher aluminum compositions, there393

is second minimum in the free energy albeit at a non-zero value of the order parameter, corresponding to L12 ordering.394

It is instructive to consider the path of the order parameters that minimizes the free energy at fixed xAl in fig. 12a:395

~η(xAl, T ) = argmin
~η

G(xAl, ~η, T ) (36)

The path in xAl-ξ space is shown by a dashed line in fig. 12a. At low concentrations, the value of ξ minimizing the396

free energy is zero, but abruptly increases inside the two phase region, reaching its maximum value as xAl approaches397

0.25, the composition of perfectly ordered L12. Figure 12b shows the free energy along this path as a function of398
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FIG. 12. Free energy surfaces and sections calculated from biased Monte-Carlo sampling on a cluster expansion Hamiltonian
parameterized from first-principles calculations. The ensemble averages were calculated at 600K.

composition. This is the free energy for a homogeneous Ni-Al alloy in which the Ni and Al have achieved their399

equilibrium degree of long-range order. Application of the common tangent construction to this free energy curve400

determines the bounds of the two-phase region separating the Ni-rich solid solution from L12 ordering.401

It is also instructive to consider the free energy along other paths in xAl-ξ space. The free energy of the disordered402

phase corresponds to the locus of points along the composition axis having ξ = 0. This free energy is shown as the403

purple curve in fig. 12c. The orange curve in fig. 12c corresponds to the free energy as a function of composition404

when the solid has the maximum degree of L12 type ordering. This curve exhibits two wells, but the well at low405
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concentrations is well above that of the disordered phase.406

While free energy surfaces such as those of fig. 12 are necessary to establish the equilibrium state, they also have407

relevance in determining the kinetic pathways that an ordering transformation may follow. A common practice is to408

quench a disordered solid solution such as γ into a two-phase field to precipitate a dispersion of an ordered phase.409

The mechanism with which an ordering transformation occurs will depend on whether the Hessian of the free energy410

of the quenched solid has only positive eigenvalues or whether it has at least one negative eigenvalue (unstable). If all411

eigenvalues are positive, the quenched phase is locally stable and the ordering reaction will occur with a nucleation412

and growth mechanism. If the quenched in phase is unstable, the transformation will proceed continuously. It is413

possible to distinguish two time scales during a continuous ordering reaction. The first is a rapid relaxation involving414

a relatively small number of atomic hops that are required to reorder the atoms. While the local concentration does415

not change much on this time scale, the local value of the order parameters may evolve rapidly until the minimum416

in the free energy has been reached at fixed local concentration. The second, longer time-scale process, involves417

long-range diffusion that is required to redistribute atoms to form a two-phase mixture consisting of phases with very418

different compositions. If the two time scales are very different, they can be decoupled. The phase separation process419

will then proceed similar to a spinodal decomposition reaction following a path in order parameter space coinciding420

with the minimum free energy. Since the order parameter locally adopts its equilibrium value that depends on the421

local concentration, the kinetics can be described with a Cahn-Hilliard approach relying on free energy that only422

depends on concentration. For the Ni-Al alloy this would be the free energy curve of fig. 12b. If the two processes423

cannot be decoupled, then the full free energy surface as a function of both concentration and order parameters must424

be considered. The kinetics of this decomposition would need to be described with a coupled Cahn-Hilliard and425

Allen-Cahn approach.426

V. DISCUSSION AND CONCLUSION427

We have introduced a general approach to generate symmetry adapted order parameters for any order-disorder428

transformation in a crystalline solid. The order parameters are expressed as linear combinations of sublattice compo-429

sitions in a reference supercell that can accommodate all the symmetrically equivalent variants of a particular ordering.430

The algorithm constructs the order parameters to be adapted to the high symmetry of the disordered phase, thereby431

making it possible to distinguish between the disordered phase and all symmetrically equivalent variants of the or-432

dered phase with a minimal set of descriptors. While we have introduced the approach for binary alloys, it can easily433

be extended to multicomponent alloys having more than two elements. An additional composition variable for each434

additional alloying element must then be assigned to each sublattice site of the mutually commensurate supercell. All435

subsequent steps are identical to that described here for a binary alloy. We have also introduced a thermodynamic for-436

malism to enable the calculation of free energies as a function of symmetry adapted order parameters. A key element437

of this formalism is the definition of sublattice chemical potentials that are conjugate to sublattice concentrations.438

The use of sublattice chemical potentials, together with umbrella sampling and free energy integration techniques,439

makes it possible to explore metastable and unstable portions of the free energy surface in Monte Carlo simulations.440

Free energy surfaces as a function of order parameters can provide rich insights, not only about the equilibrium441

properties of multi-component solids that exhibit ordered phases, but also about the kinetic mechanisms of order-442

disorder transitions. Soffa and Laughlin developed a “graphical thermodynamic approach” that relies on free energy443

surfaces similar to those of fig. 12 to identify and rationalize ordering reactions in different alloys. The approach444

developed here now makes it possible to calculate such free energy surfaces from first principles for technologically445

important solids.446

The coarse-graining scheme to calculate free energies relies on two ingredients: a method to calculate the energy of447

the crystal for arbitrary orderings and a method to estimate the free energy from Monte Carlo simulations. In this448

study we used a cluster expansion Hamiltonian to describe interatomic interactions. Alternate interatomic potentials449

such as the semi-empirical embedded atom method (EAM)56,57, ReaxFF58 or an artificial neural network potential450

parameterized from first principles59 can also be used, provided they accurately describe the relative energies between451

different atomic configurations on a parent crystal structure. To calculate free energies, we used umbrella sampling452

coupled with free energy integration techniques. There are alternate approaches to directly estimate the free energy453

including histogram sampling methods such as Wang-Landau60 or metadynamics61 that are capable of probing high-454

dimensional energy landscapes accurately.455

The methodological developments of this work brings us a step closer to enabling a truly first-principles treatment456

of kinetic processes associated with order-disorder phase transformations in the solid state. Phenomenological phase-457

field methods based on the Cahn-Hilliard and Allen-Cahn theories of continuous phase transformations are capable458

of describing the kinetic evolution of phase decomposition and ordering reactions at the meso and macroscopic scales.459

They depend on thermodynamic and kinetic functions that are determined by the chemistry and crystal structure460
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of the phases participating in the phase transformation. The ability to identify suitable order parameters and to461

calculate free energies as a function of those order parameters, along with methods to calculate kinetic transport462

coefficients36, is crucial to establishing a rigorous link between electronic structure calculations and phenomenological463

theories of non-equilibrium processes.464
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Appendix A: Obtaining mutually commensurate supercells472

We wish to find a solution to the mutually commensurate supercell relation473

S = PT = (PT (i))V (i), ∀T (i) ∈ T, (A1)

which states that there is a supercell S that is related to the primitive cell lattice vectors P via the full-rank integer474

matrix T and can also be written as a supercell of two or more smaller supercells of P . These smaller supercells that475

tile, or are commensurate, with S are given by S(i) = PT (i), and the various {T (i)} are specified by the set T. Each476

smaller supercell is related to S via S = S(i)V (i), where V (i) is also a full-rank integer matrix.477

We first consider the case of finding the mutually commensurate supercell of two smaller supercells S(1) and S(2)
478

having integer transformation matrices T (1) and T (2). We additionally impose the restriction that det(S) be minimized479

(i.e., we are attempting to find the smallest possible mutually commensurate supercell. Stated mathematically, we480

wish to solve481

PT (1)V (1) = PT (2)V (2) (A2)

for integer matrices V (1) and V (2), where |det(V (1))| is minimized. After multiplying through by P−1, Equation (A2)482

reduces to483

T (1)V (1) = T (2)V (2). (A3)

If we define the matrix M = det(T (1))T (1)−1T (2), then M is an integer matrix and we can rewrite eq. (A3) as484

V (1) =
MV (2)

det(T (1))
, (A4)

and we must find an integer matrix V (2) such that V (1) is integer and det(V (2)) is minimized. We can define the485

Smith normal form of M as M = UDW , where U and W are integer unimodular matrices, and D is an integer486

diagonal matrix. Additionally, diagonal elements of D satisfy Di,i|Di+1,i+1 (i.e., the element Di,i is divisible by487

Di+1,i+1). Inserting the Smith normal form into eq. (A4) yields488

V (1) =
UDWV (2)

det(T (1))
. (A5)

Equation (A5) is satisfied when V (2) = W−1Z, where Z is a diagonal matrix. Each element Zi,i must be the smallest489

integer such thatDi,iZi,i is divisible by det(T
(1)). This condition is satisfied when Zi,i = det(T (1))/ gcd(Di,i, det(T

(1))).490

Thus, the final solution is491

V (1) = UDZ (A6)

V (2) = W−1Z. (A7)

The use of the Smith normal form, which provides a unique set of elementary divisors via the matrix D, removes492

any ambiguity in the relative definition of T (1) and T (2), such that V (1) and V (2) are unique to within simultaneous493
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multiplication by a unimodular integer matrix. As such, the solution can be performed iteratively, so that to find the494

mutually commensurate supercell among three supercells {T (1),T (2),T (3)}, we can first find the mutually commen-495

surate supercell T (1,2) of T (1) with T (2) and then find the mutually commensurate supercell T (1,2,3) of T (1,2) with496

T (3).497
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