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We	measure	and	analyze	the	statistics	of	nanoindentation	pop-ins	in	a	bulk	metallic	
glass	 that	 has	 been	 annealed	 after	 being	 subjected	 to	 high	 pressure	 torsion.	 We	
argue	 that	 these	 pop-ins	 are	 avalanches	 of	 slip	 events.	 Larger	 slip	 avalanches	 are	
observed	 after	 annealing	 at	 higher	 temperatures.	 The	 slip	 avalanche	 size	
distribution	shows	scaling	behavior	and	suggests	the	existence	of	a	critical	annealing	
temperature.	 Results	 are	 shown	 to	 be	 consistent	 with	 the	 predictions	 of	 a	 simple	
mean	 field	 theory.	 This	 implies	 that	 the	 statistics	 of	 slip	 avalanches	 in	
nanoindentation	 can	 be	 used	 to	 extract	 information	 about	 the	 structure,	 history,	
density	and	free	volume	of	the	material.	The	methods	employed	here	are	expected	to	
be	applicable	to	a	wide	range	of	materials.	
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I.	INTRODUCTION	

Bulk	metallic	 glasses	 (BMGs)	 are	 amorphous	 alloys	with	 superior	 strength	 compared	 to	
conventional	crystalline	metals	[1].	But	due	to	their	tendency	for	sudden	failure,	BMGs	are	
limited	 in	 their	 applications	 [1-20].	 To	 improve	 the	 usefulness	 of	 BMGs,	 a	 better	
understanding	 of	 their	 deformation	 properties	 is	 sought.	 When	 a	 nanoindenter	 tip	 is	
pushed	into	a	BMG	sample	under	a	slowly	increasing	load,	the	BMG	exhibits	pop-in	events	
that	come	in	a	wide	range	of	sizes.	These	pop-in	events	are	correlated	with	the	activation	of	
shear	 bands	 [6].	 It	 has	 been	 shown	 that	 slip	 events	 observed	 in	 BMGs	 during	 uniaxial	
compression	progress	 via	 avalanches	of	 elastically	 coupled	weak	 spots	 [7,	 8].	We	extend	
that	analysis	here	 to	 the	pop-in	events	observed	 in	nanoindentation	of	BMGs,	 suggesting	
that	each	pop-in	corresponds	to	an	avalanche	of	slip	events.	

Previous	studies	[21]	have	revealed	that	high	pressure	torsion	(HPT)	deformation	leads	to	
a	significant	decrease	in	nanoindentation	hardness	and	elastic	modulus,	as	well	as	a	change	
in	the	deformation	mode	from	shear	band	formation	to	homogeneous	deformation	without	
shear	band	 formation.	Relaxation	by	 subsequent	 annealing	 can	partially	 reverse	 some	of	
the	effects	of	the	prior	HPT	deformation	and	increase	the	extent	of	shear	banding	[22].	As	
the	annealing	temperature	is	increased,	the	fictive	temperature	decreases	[23]	and	the	free	
volume	 decreases	 [22].	 There	 have	 also	 been	 experiments	 to	 show	 that	 severe	 plastic	
deformation	(SPD)	can	affect	the	presence	of	serrated	flows	in	BMGs	[24].	

We	observe	in	this	paper	that	the	statistics	of	slip	avalanches	seen	during	nanoindentation	
of	 a	 BMG	 that	 has	 undergone	 HPT	 depend	 on	 the	 temperature	 at	 which	 the	 BMG	 was	
annealed.	 Lower	 annealing	 temperatures	 lead	 to	 smaller	 slip	 avalanches	 while	 higher	
annealing	 temperatures	 lead	 to	 larger	 slip	 avalanches.	We	 extract	 the	 statistics	 of	 these	
events	from	many	indentations	and	then	compare	the	results	to	expectations	based	on	an	
approach	 to	 a	 critical	 annealing	 temperature	 [25].	 We	 hypothesize	 that	 there	 are	 two	
different	types	of	slip	avalanches	occurring	in	nanoindentation	experiments,	as	was	found	
of	slips	events	 in	uniaxial	compression	experiments	 [7,	8].	We	show	that	 the	smaller	slip	
events	are	scale	invariant,	as	was	found	for	uniaxial	compression	of	BMGs	[7,	8].	We	find	a	
scaling	collapse	of	the	complementary	cumulative	distribution	functions	(CCDFs)	of	the	slip	
avalanche	 sizes	 is	 possible	 with	 data	 from	 three	 different	 annealing	 temperatures.	 This	
suggests	the	presence	of	a	critical	annealing	temperature	where	power	law	distributions	of	
slip	avalanches	are	observed.	

II.	EXPERIMENT	

Master	alloy	ingots	of	Zr50Cu40Al10	in	atomic	percent	were	prepared	by	arc-melting	pure	Zr,	
Cu,	and	Al	elements	in	an	argon	atmosphere.		The	mother	ingots	of	the	alloy	were	
completely	remelted	at	least	three	times	and	then	cast	into	a	cylindrical	rod	with	diameter	
10mm	by	the	tilt-casting	method	in	an	arc	furnace.	X-ray	analysis	shows	that	the	as-cast	
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sample	is	fully	amorphous.		The	disk	for	this	experiment	was	sliced	from	the	as-cast	rod	
with	an	original	thickness	of	0.85	mm.		The	disk	was	subjected	to	high-pressure	torsion	
(HPT)	under	a	pressure	of	5	GPa	at	room	temperature	for	50	revolutions	which	brought	its	
thickness	down	to	near	0.8mm.		X-ray	diffraction	(XRD)	and	high-resolution	transmission	
electron	microscopy	(HRTEM)	results	indicate	the	amorphous	nature	and	absence	of	
crystallization	after	50	revolutions.	The	geometry	of	the	HPT	experiment	is	shown	in	Fig.	2,	
along	with	XRD	graphs.	
	
Annealing	treatments	were	performed	using	a	Perkin	Elmer	Diamond	Differential	Scanning	
Calorimeter	 (DSC).	 The	 specimen	 was	 heated	 to	 150°C	 at	 a	 heating	 rate	 of	 0.667°C/s	
followed	by	a	subsequent	cooling	to	room	temperature	at	a	rate	of	1.667°C/s;	there	was	no	
holding	 period	 at	 the	 annealing	 temperature.	 The	 annealed	 sample	was	 then	mirror-like	
polished	 using	 a	 0.06	 µm	 SiO2	 colloidal	 suspension.	 Forty-nine	 nanoindentations	 were	
carried	out.	The	sample	was	then	annealed	to	200°C	at	the	same	heating	rate	(0.667°C/s)	
and	 the	 same	 cooling	 rate	 (1.667°C/s).	 A	 few	micrometers	were	 removed	with	 grinding	
paper	to	remove	any	trace	of	the	previous	indentations.	The	sample	was	then	re-polished	
and	 subjected	 to	 forty-nine	 more	 nanoindentations.	 The	 sample	 was	 thus	 repeatedly	
annealed,	 ground,	 polished,	 and	 indented	 in	 this	way	 for	 annealing	 temperatures	 250°C,	
300°C,	350°C,	and	400°C.	A	schematic	 illustration	of	 the	annealing	treatment	 is	shown	in	
Fig.	4.	
	

	
Fig.	1:	Geometry	of	high-pressure	torsion	experiment.		A	disk	sample	(10mm	diameter	and	
0.85mm	thickness)	is	placed	between	two	cylindrical	anvils.		A	compressive	load	(typically	
5GPa)	is	applied	and	the	lower	anvil	is	rotated	at	a	constant	speed.	
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Fig.	2:	(a)	X-ray	diffraction	pattern	and	(b)	high-resolution	transmission	electron	
microscopy	image	with	corresponding	selected	area	diffraction	pattern	from	Zr50Cu40Al10	
BMG	deformed	by	HPT	with	50	revolutions.	

	

	

Fig.	3:	Optical	microscopy	image	of	the	cross-section	of	the	sample	deformed	with	50	
revolutions.	The	red	square	indicates	the	36	x	36	µm2	region	for	the	nanoindentation	tests.	

	
	

	
Fig.	 4:	 (a)	 Schematic	 illustration	 of	 annealing	 treatments	 and	 polishing	 and	
nanoindentation	 tests;	 (b)	 DSC	 heating	 curves	 for	 each	 heating	 cycle.	 There	 is	 an	
exothermic	peak	corresponding	to	structural	relaxation	when	the	peak	temperatures	range	
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from	150°C	to	400°C,	and	the	onset	temperature	of	relaxation	rises	after	each	heating	run.	
The	increase	of	onset	temperature	in	each	curve	reveals	that	the	amount	of	free	volume	is	
dependent	on	 the	annealing	 temperature.	The	sample	was	heated	up	 to	600°C	 to	see	 the	
glass	transition	and	crystallization	peaks.	
	
	
Nanoindentation	was	carried	out	with	a	Hysitron	Triboindenter	TI950.	All	
nanoindentations	were	done	on	the	same	specimen,	which	was	a	quarter-disk	obtained	by	
cutting	the	as-deformed	disk	along	perpendicular	planes,	each	of	which	contained	the	
cylindrical	axis.	The	indentation	procedure	consisted	of	a	loading	segment	of	20	s	at	a	rate	
of	250	μN/s,	followed	by	a	holding	segment	of	20	s	at	the	maximum	load	of	5000	µN,	and	
then	an	unloading	segment	of	20	s.	The	position	of	the	nanoindentations	is	4mm	from	what	
was	the	center	of	the	disk	before	quartering.	The	nanoindentations	took	place	at	49	points,	
forming	a	7	x	7	grid	with	the	distance	between	adjacent	points	being	6	µm.	The	whole	grid	
formed	an	area	of	36	x	36	µm2.	An	image	of	the	sample	is	shown	in	Fig.	3	with	the	position	
of	the	nanoindentation	tests	marked.	
	

	

Fig.	5.	Typical	load-depth	curves	of	the	as-deformed	Zr50Cu40Al10	BMG,	and	after	annealing	
at	200°C	and	400°C.	The	inset	shows	scanning	probe	microscope	images	of	indents.	

	

III.	DATA	ANALYSIS	

We	construct	CCDFs	from	the	nanoindentation	data	to	show	the	size	of	slip	avalanches	for	
each	 annealing	 temperature.	 The	 CCDF,	 C(S),	 of	 slip	 size,	 S,	 gives	 the	 fraction	 of	 slip	
avalanches	that	are	larger	than	size	S.	We	devised	two	methods	for	calculating	the	size	of	a	
slip	avalanche.	The	first	method	defines	a	signal	s1(t):	

𝑠! 𝑡 =
∆𝜎 𝑡
∆𝑡

∙ 𝐷 𝑡 !# 1 	
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𝜎 𝑡 =
𝐹 𝑡
𝐷 𝑡 ! # 2 	

where	𝜎(t)	is	proportional	to	the	stress	under	the	indenter	tip,	F(t)	is	the	force	applied	to	
the	 indenter	 tip,	D(t)	 is	 the	 displacement	 of	 the	 indenter	 tip,	∆𝑡	 is	 the	 reciprocal	 of	 the	
sampling	frequency	(∆𝑡	=0.0500	s),	and	w	 is	an	exponent	chosen	so	that	s1(t)	would	have	
roughly	constant	average	peak	amplitudes	throughout	the	20	seconds	of	increasing	load	(w	
=	1.4	for	our	analysis).	Since	slip	avalanches	produce	a	drop	in	the	stress	on	the	indenter	
tip,	slip	avalanches	appear	as	sharp	negative	spikes	in	s1(t).	After	using	a	small	threshold	to	
filter	 out	 the	 spikes	 due	 to	 noise,	 the	 remaining	 spikes	 are	 counted.	 The	 slip	 avalanche	
begins	 when	 s1(t)	 drops	 below	 the	 threshold,	 and	 it	 ends	 when	 the	 signal	 crosses	 back	
above	 the	 threshold.	Motivated	by	a	mean	 field	model	 [25],	we	define	 the	size	of	 the	slip	
avalanche,	S,	as	the	difference	in	stress	σ(t)	 from	the	start	of	the	slip	avalanche	to	its	end	
multiplied	by	D(ti)1.4	where	ti	is	the	start	time	of	the	slip	avalanche.	Thus	the	size	of	the	slip	
avalanche	is	approximately	equal	to	the	area	under	the	spike	in	s1(t).	Fig.	8	shows	C(S)	for	
six	different	annealing	temperatures	using	the	above	definition	of	slip	avalanche	size.	The	
minimum	 slip	 avalanche	 size	 shown	 in	 the	 plots	 of	 Fig.	 7	 is	 the	 smallest	 size	 for	 which	
power-law	 behavior	 is	 observed.	 Figures	 showing	 the	 entire	 CCDF	 for	 each	 temperature	
including	the	smallest	observed	slip	avalanche	sizes	are	included	in	the	appendix.	

An	alternate	definition	of	slip	avalanche	size	uses	only	the	displacement	of	the	indenter	tip.	
In	 nanoindentation,	 the	 displacement	 of	 the	 indenter	 tip	 is	 roughly	 proportional	 to	 the	
square	root	of	the	applied	load	[26],	as	is	apparent	in	Fig.	5.	This	trend	produces	an	overall	
feature	 in	 the	 time	 derivative	 proportional	 to	 !

!
.	 To	 better	 identify	 slip	 avalanches,	 the	

reciprocal	 square	 root	 trend	 is	 subtracted	 from	 the	 discretely	 differenced	 displacement	
signal:	

𝑠! 𝑡 =
∆𝐷 𝑡
∆𝑡 − 𝑎 +

𝑏
𝑡
.# 3 	

The	coefficients	a	and	b	are	those	of	a	least-squares	fit	to	∆!(!)
∆!
.	Large	positive	spikes	in	𝑠!(t)	

correspond	to	slip	avalanches.	Again	we	used	a	small	threshold	to	filter	out	spikes	due	to	
noise.	Slip	avalanches	were	counted	in	a	similar	manner	as	in	the	first	method:	when	s2(t)	
exceeds	the	threshold	the	slip	avalanche	begins,	and	when	it	drops	below	the	threshold	the	
slip	avalanche	ends.	The	size	of	the	slip	avalanche	is	the	total	change	in	the	displacement	of	
the	 indenter	 tip	 during	 the	 duration	 of	 the	 slip.	 In	 the	 appendix,	 these	 two	methods	 of	
defining	slip	avalanche	size	are	compared,	and	it	is	shown	that	they	give	similar	results.	

IV.	MODEL	PREDICTIONS	

In	order	to	model	the	experimental	results,	we	use	a	simple	mean	field	model	[25]	that	was	
previously	shown	to	correctly	predict	the	slip	statistics	and	slip	dynamics	of	bulk	metallic	
glasses	under	slow	compression	[7,	27].	 	The	model	assumes	that	BMGs	have	weak	spots	
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that	 slip	 when	 the	 local	 stress	 exceeds	 a	 random	 failure	 stress.	 The	 weak	 spots	 are	
elastically	coupled	and	therefore	a	slipping	weak	spot	can	trigger	other	weak	spots	to	also	
slip	 in	 a	 slip	 avalanche.	 In	 BMGs	 the	 slips	 occur	 generally	 along	 shear	 bands,	 thereby	
ensuring	 positive	 stress	 transfer	 between	 the	 weak	 spots	 that	 participate	 in	 the	 slip	
avalanches	[28].	Our	model	[25]	takes	this	positive	stress	transfer	into	account,	in	contrast	
to	other	models	like	[29,	30]	that	focus	on	other	systems	without	permanent	shear	bands.	
Our	model	[25]	also	takes	 into	account	that	BMGs	weaken	inside	 the	shear	bands,	due	to	
dilation.	This	weakening	 leads	 to	2	 types	 of	 avalanches	 (“small”	 and	 “large”	 ones)	which	
have	different	statistics	and	different	dynamics.	These	2	types	of	avalanches	have	also	been	
found	in	experiments	[7,	27].	Because	of	its	simplicity	and	because	of	the	strong	agreement	
of	the	model	predictions	[25]	with	experiments	on	BMGs	[7,	27],	this	model	is	a	convenient	
starting	point	for	a	first	analysis	of	the	experiments	in	these	materials.	

The	mean	 field	 theory	model	 [25]	 predicts	 that	 C(S),	 for	 scaling	 slip	 avalanches,	 should	
follow	 a	 power	 law	multiplied	 by	 an	 exponentially	 decaying	 cut-off	 function.	 The	 cut-off	
function	 depends	 on	 experimentally	 tunable	 parameters;	 here	 we	 examine	 annealing	
temperature	 as	 the	 tunable	 parameter,	 and	 we	 extend	 this	 model	 to	 the	 geometry	 of	
nanoindentation.	

For	 homogeneous	 applied	 stress	 F,	 and	 small	 weakening,	 the	 probability	 distribution	
function	(PDF)	of	slip	sizes	S	is	predicted	by	the	model	to	scale	approximately	as		

𝐷 𝑆,𝐹  ~ 𝑆!!  ∙  𝐺 𝑆 ∙ 𝐹! − 𝐹 !, 𝑆𝑣! ,# 4 	

as	 derived	 in	 [25,	 31].	 Here	 τ	 and	 θ	 are	 scaling	 exponents,	 FC	 is	 a	 critical	 stress,	 v	 is	 a	
measure	of	the	free	volume	in	the	material,	which	depends	on	the	annealing	temperature	T,	
and	 G	 is	 a	 scaling	 function.	 To	 first	 approximation,	 for	 annealing	 temperatures	 near	 an	
appropriate	 critical	 annealing	 temperature	 TC,	 we	 can	 write	 𝜈~(𝑇! − 𝑇)	 and	 derive	 a	
scaling	relation	for	D(S,F)	as	a	function	of	annealing	temperature.	

	

Fig.	 6.	 Illustration	of	 interaction	between	 the	 indenter	 tip	 and	 the	 surface	of	 the	 sample.	
The	 region	 immediately	 surrounding	 the	 indenter	 tip	 is	 the	 hydrostatic	 core,	 the	 region	
between	R1	and	R2	 is	 the	plastic	region,	and	beyond	R2	 is	 the	elastic	region	[26].	The	slip	
avalanches	are	expected	to	occur	in	the	plastic	region.	
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For	 nanoindentation	 experiments	 there	 are	 three	 regions	 in	 the	 sample:	 the	 hydrostatic	
core,	 the	plastic	 region,	and	 the	elastic	 region	as	shown	 in	Fig.	6	 [26].	We	expect	slips	 to	
occur	in	the	plastic	region.	We	approximate	the	stress	distribution	in	the	plastic	region	to	
decay	linearly	to	first	order	with	the	distance	r	 from	the	indenter	head,	𝐹 = 𝐹! 1− !!!!

!
	

where	 R1	 is	 the	 radius	 at	 which	 the	 plastic	 region	 begins	 and	 R	 is	 simply	 a	 constant	
describing	 how	 quickly	 the	 stress	 decays.	 Inserting	 this	 form	 into	 Equation	 4	 and	
integrating	over	the	plastic	region	in	the	half-space	gives	

𝐷 𝑆,𝑇  ~ 𝑆!!  𝐺 𝑆 ∙
𝐹! ∙ 𝑟 − 𝑅!

𝑅

!

, 𝑆 ∙ 𝑇! − 𝑇 ! 2𝜋𝑟!𝑑𝑟
!!

!!
# 5 	

where	R2	is	the	radius	at	which	the	plastic	region	ends.	If	we	make	the	change	of	variables	x	
=	r-R1,	then	we	have	

𝐷 𝑆,𝑇  ~ 𝑆!!  𝐺 𝑆 ∙
𝐹! ∙ 𝑥
𝑅

!

, 𝑆 ∙ 𝑇! − 𝑇 ! 2𝜋 𝑥 + 𝑅! !𝑑𝑥.
!!!!!

!
# 6 	

Since	we	expect	G	to	become	negligibly	small	for	x	values	near	the	upper	limit	of	the	
integral,	we	can	let	the	upper	limit	go	to	infinity.	Then	we	may	make	the	substitution	

𝑢 = 𝑆 ∙ !!∙!
!

!
	and	obtain	

𝐷 𝑆,𝑇  ~ 𝑆!!!
!
! 𝐺 𝑢, 𝑆 ∙ 𝑇! − 𝑇 ! 𝜋𝑅

𝐹!
𝑅
𝐹!

!

𝑢𝑆!! +
2𝑅𝑅!
𝐹!

𝑢𝑆!
!
! + 𝑅!!

𝑑𝑢
𝑢

!

!
# 7 	

	
The	integral	can	be	broken	up	into	the	sum	of	three	integrals,	each	of	which,	after	pulling	
out	 all	 factors	of	S,	 can	be	 rewritten	 in	 terms	of	 a	 scaling	 function.	This	 leaves	us	with	a	
scaling	relation	for	the	PDF:	

𝐷 𝑆,𝑇  ~ 𝑆!!!
!
! ∙ 𝑓! 𝑆 ∙ 𝑇! − 𝑇 ! + 𝑆!!!! ∙ 𝑓! 𝑆 ∙ 𝑇! − 𝑇 ! 	

+𝑆!!!
!
! ∙ 𝑓! 𝑆 ∙ 𝑇! − 𝑇 ! # 8 	

where	 the	 functions	 fi(x)	 are	 scaling	 functions.	 For	 small	 slip	 avalanche	 sizes	 we	 would	
expect	the	first	term	that	goes	as	𝑆!!!

!
!	to	dominate.	Exponential	cut-offs	are	contained	in	

the	 scaling	 functions	 fi(x),	 thus	 the	 maximum	 slip	 size	 Smax	 is	 related	 to	 annealing	
temperature	𝑆max ~ (𝑇! − 𝑇)!! .	

The	CCDF,	C(S,T),	is	useful	in	systems	with	low	numbers	of	slips.	It	may	be	calculated	from	
D(S,T):	
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𝐶 𝑆,𝑇 = 𝐷 𝑆!,𝑇 𝑑𝑆!
!

!!
.# 9 	

Combining	Equations	8	and	9,	and	taking	just	one	term	from	the	resulting	CCDF	we	have	

𝐶! 𝑆,𝑇  ~  𝑆!!! ∙ 𝑓! 𝑆! ∙ 𝑇! − 𝑇 ! 𝑑𝑆!
!

!!
# 10 	

where	pi	is	the	power	of	S	in	the	i-th	term.	Making	the	substitution	𝑤 = 𝑆′ 𝑇! − 𝑇 ! 	gives	

𝐶! 𝑆,𝑇  ~  
𝑤!

𝑇! − 𝑇 !" ∙ 𝑓! 𝑤
𝑑𝑤

𝑇! − 𝑇 !

! !!!! !

!!
# 11 	

	

The	factors	of	 𝑇! − 𝑇 ! 	can	be	taken	out	of	the	integral	to	give	

𝐶! 𝑆,𝑇  ~ 𝑇! − 𝑇 !!!! ! 𝑤!𝑓! 𝑤 𝑑𝑤
! !!!! !

!!
.# 12 	

We	can	now	define	a	universal	scaling	function	

𝑔! 𝑆 𝑇! − 𝑇 ! = 𝑆 𝑇! − 𝑇 ! !!!!
𝑤!𝑓! 𝑤 𝑑𝑤

! !!!! !

!!
# 13 	

which	gives	us	

𝐶! 𝑆,𝑇  ~ 𝑆!!! ∙ 𝑔! 𝑆 ∙ 𝑇! − 𝑇 ! .# 14 	

Summing	all	three	terms	gives	us	the	scaling	form	of	the	CCDF:	

𝐶 𝑆,𝑇  ~ 𝑆!!!
!
! ∙ 𝑔! 𝑆 ∙ 𝑇! − 𝑇 ! + 𝑆!! ∙ 𝑔! 𝑆 ∙ 𝑇! − 𝑇 ! 	

+𝑆!!!
!
! ∙ 𝑔! 𝑆 ∙ 𝑇! − 𝑇 ! .# 15 	

For	small	slip	avalanches	the	first	term	dominates	the	distribution,	as	is	confirmed	by	the	
data.	 	 That	 term	 is	 then	 used	 in	 Fig.	 9	 to	 collapse	 C(S)	 for	 three	 values	 of	 annealing	
temperature.		

V.	RESULTS	

The	 size	 of	 slip	 avalanches	 is	 found	 to	 increase	 as	 the	 annealing	 temperature	 increases.	
This	can	be	seen	from	the	CCDFs	shown	in	Fig.	7.	BMGs	exhibit	two	types	of	slip	avalanches:	
smaller,	“scaling”	slip	avalanches	that	are	power-law	distributed	and	larger,	“spanning”	slip	
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avalanches	that	span	a	macroscopic	fraction	of	the	indented	region	[7,	25,27].	To	show	that	
the	smaller	slip	avalanches	follow	the	predicted	scaling	form,	we	remove	the	spanning	slip	
avalanches	from	the	CCDFs	of	three	annealing	temperatures	and	perform	a	scaling	collapse.	
The	 data	 for	 annealing	 temperatures	T	 =	 200°C,	T	 =	 250°C,	 and	T	 =	 300°C	were	 chosen	
because	 they	 have	 smaller	 slip	 avalanches	 than	 the	 higher	 annealing	 temperatures,	 and	
therefore	 their	 power-law	 scaling	 regions	 are	 less	 likely	 to	 be	 distorted	 by	 finite	 size	
effects.	The	spanning	slip	avalanches	are	known	to	have	different	dynamics	[7,	8,	25,	27],	so	
we	remove	them	by	choosing	a	maximum	size	cut-off	for	each	annealing	temperature	based	
on	the	dynamics	of	the	slip	avalanches	seen	in	Fig.	8.	

	

Fig.	 7.	 Complementary	 cumulative	 distribution	 functions	 (CCDFs)	 for	 the	 slip	 avalanche	
sizes	observed	in	all	the	trials	using	the	first	method	of	analysis,	plotted	for	six	annealing	
temperatures.	Forty-nine	trials	were	analyzed	for	each	annealing	temperature	on	a	sample	
of	Zr50Cu40Al10.	The	avalanche	size	is	defined	in	the	text.	The	CCDFs	show	that	on	average	
the	avalanche	sizes	tend	to	increase	for	increasing	annealing	temperature.		
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Fig.	 8.	 Average	 value	 of	 slip	 avalanche	 durations	 as	 defined	 by	 the	 second	 method	 of	
analysis,	binned	by	size.	The	flattening	out	observed	for	annealing	temperatures		T	=	200°C	
and	T	=	250°C	 indicates	a	change	 in	slip	avalanche	dynamics.	The	mean	 field	predictions	
from	 [7,	 8,	 25]	 suggest	 that	 the	 slip	 avalanches	 in	 the	 flat	 regions	 are	 spanning	 slip	
avalanches	rather	than	scaling	slip	avalanches.	Thus	we	choose	the	size	at	which	the	curves	
flatten	 as	 the	 maximum	 slip	 size	 for	 those	 annealing	 temperatures.	 Consistent	 with	 the	
model	 predictions,	 we	 only	 obtained	 a	 scaling	 collapse	 of	 the	 CCDFs	 for	 slip	 avalanches	
smaller	than	those	maximum	sizes.	

We	collapse	the	CCDFs	of	the	scaling	slip	avalanches	using	the	first	term	from	the	scaling	
form	from	Equation	15:	

𝐶 𝑆,𝑇  ~ 𝑆!!!
!
! ∙ 𝑔! 𝑆 ∙ 𝑇! − 𝑇 ! .#[16] 	

The	 mean	 field	 theory	 values	 𝜏 = !
!
	 and	 𝜃 = 2	 of	 the	 scaling	 exponents	 are	 used	 in	 the	

collapse	 in	 Fig.	 9.	 The	 critical	 temperature	TC	was	 estimated	 from	 the	 collapse	 to	have	 a	
value	Tc	=	500◦C	(with	a	large	error	bar	due	to	the	statistical	uncertainties	of	the	data:	the	
limits	for	τ	are	1.3	to	1.7,	while	it	appears	that	θ	and	Tc	can	vary	together	over	a	large	range,	
from	θ	=	1.1,	Tc=388°C	to	at	least	as	high	as	θ	=	6,	Tc=1028°C).	This	wide	error	range	for	θ	
is	not	 surprising	as	θ	 depends	on	 the	upper	 tail	 of	 the	distribution	 that	 are	given	by	 the	
bigger	of	 the	scaling	avalanches.	Naturally	there	are	not	many	of	 those	bigger	avalanches	
observed,	so	the	statistical	fluctuations	in	the	tails	of	the	distributions	are	large.	 	Also	the	
other	terms	in	C(S)	from	Equation	12	can	affect	the	upper	tail	of	the	distribution.	

More	experimental	data	with	many	more	slip	avalanches	will	enable	us	to	narrow	down	the	
error	 bars	 on	 the	 critical	 exponents	 and	 the	 critical	 temperature	 in	 the	 future.	 It	 is	
remarkable	however	that	the	framework	of	the	simple	mean	field	model	is	consistent	with	
the	experimental	data.	Note	that,	since	the	crystallization	temperature	is	503°C,	the	highest	
possible	 values	 for	 TC	 mentioned	 above	 are	 unphysical,	 which	 constrains	 the	 physically	
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possible	range	 for	θ	 to	about	1.1	≤	θ	≤	2.	The	collapse	shows	 that	 the	data	 is	consistent	
with	the	prediction	of	an	underlying	non-equilibrium	critical	point	at	a	critical	amount	of	
free	 volume	 in	 the	 material	 that	 can	 be	 approached	 by	 increasing	 the	 annealing	
temperature.	Using	scaling	collapses	to	test	for	the	approach	to	a	non-equilibrium	critical	
point	with	associated	universal	power	law	scaling	behavior	has	proven	useful	in	many	non-
equilibrium	systems	with	avalanches.	The	method	and	its	applications	to	other	avalanching	
systems	is	reviewed	in	more	detail	for	example	in	[32].		

	

	

Fig.	9.	CCDFs	for	slip	avalanche	sizes	after	removing	the	largest	slip	avalanches.	The	inset	
shows	a	scaling	collapse	of	the	CCDFs.	The	collapse	variables	τ	and	θ	are	set	to	their	mean	
field	theory	values,	which	are	𝜏 = !

!
	and	𝜃 = 2.	The	critical	temperature	was	varied	until	the	

best	collapse	was	found,	which	is	at	TC	=	500°C.	The	glass	transition	temperature	for	this	
sample	 of	 Zr50Cu40Al10	 is	 424°C,	which	 is	 lower	 but	means	 that	 a	 critical	 temperature	 of	
500°C	is	not	unreasonable.	As	in	Fig.	8,	these	are	slip	avalanches	as	defined	by	the	second	
method	of	analysis.	

VI.	CONCLUSION	

In	 summary,	 it	 is	 shown	 that	 annealing	 a	 sample	 of	 Zr50Cu40Al10	 BMG	after	HPT	 leads	 to	
larger	 slip	 avalanches	 being	 observed	 in	 nanoindentation	 as	 the	 annealing	 temperature	
rises.	 Two	 methods	 of	 detecting	 and	 analyzing	 slip	 avalanches	 from	 nanoindentation	
experiments	have	been	suggested.	These	methods	can	be	applied	to	the	study	of	different	
materials	 in	 which	 plastic	 deformation	 progresses	 with	 slip	 avalanches.	 The	 methods	
employed	here	can	be	used	to	classify	and	distinguish	different	types	of	slip	avalanches	in	
nanoindentation	experiments	on	a	wide	range	of	materials.	

A	simple	mean	field	theory	model,	which	was	successful	 in	describing	the	propagation	of	
slip	 avalanches	 during	 uniaxial	 deformation	 of	 BMGs,	 has	 been	 adapted	 to	 the	 case	 of	
nanoindentation	 and	 has	 been	 shown	 to	 be	 consistent	 with	 experiment.	 The	 likely	
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existence	of	a	critical	point	 in	annealing	temperature	for	BMGs	that	have	undergone	HPT	
has	been	shown.	
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APPENDIX:	COMPARING	THE	ANALYSIS	METHODS	

	
Figs.	10	and	11	show	complementary	cumulative	distribution	functions	(CCDFs)	of	

slip	avalanche	sizes	for	annealing	temperatures	T=	150°C,	200°C,	250°C,	300°C,	350°C,	and	
400°C.		Each	plot	was	made	with	data	from	the	same	experiments,	but	the	methods	used	to	
detect	and	analyze	slip	avalanches	are	different;	the	two	methods	are	described	in	the	
paper.	Fig.	10	is	identical	to	Fig.	6	in	the	paper.	It	is	shown	here	for	comparison	to	Fig.	11.	
The	data	is	taken	from	294	experimental	trials,	49	trials	for	each	of	the	six	annealing	
temperatures.	
	 We	will	refer	to	the	analysis	method	used	to	produce	Fig.	10	as	the	first	method.	The	
data	was	analyzed	as	follows:	For	each	trial	the	load	(in	microNewtons)	and	the	total	
displacement	of	the	indenter	tip	(in	nanometers)	are	measured	as	a	function	of	time.	By	
dividing	the	load	by	the	square	of	the	total	displacement	we	construct	a	quantity	that	is	
expected	to	be	roughly	proportional	to	the	applied	stress.		A	sudden	drop	in	stress	marks	a	
slip	avalanche.	As	the	indenter	tip	moves	further	into	the	sample,	though,	the	average	
stress	decreases	and	the	magnitude	of	the	stress-drops	decrease	as	well.	To	detect	slip	
avalanches,	we	mark	the	points	where	the	time	derivative	of	the	stress	drops	below	a	
certain	(noise-)	threshold.	But,	since	the	magnitude	of	the	fluctuations	in	the	stress	
decreases	as	the	indenter	tip	displacement	grows,	we	rescale	the	time	derivative	of	the	
stress	by	a	factor	of	the	indenter	tip’s	displacement	raised	to	the	power	of	1.4.	That	
exponent	was	chosen	because	it	appears	to	result	in	a	steady	signal	when	multiplied	by	the	
time	derivative	of	the	stress.	The	size	of	the	slip	avalanche	is	determined	in	this	analysis	
method	by	calculating	the	magnitude	of	the	stress-drop	(that	is,	the	difference	between	the	
initial	stress	and	the	final	stress)	and	rescaling	that	by	the	total	displacement	at	the	time	of	
the	start	of	the	avalanche	raised	to	the	power	of	1.4.	The	slip	avalanches	are	detected	by	
setting	a	negative	threshold	value	for	the	rescaled	stress	derivative.	Any	time	the	rescaled	
stress	derivative	signal	drops	below	the	threshold,	the	beginning	of	a	slip	avalanche	is	
marked,	and	when	the	signal	ceases	to	be	below	the	threshold,	the	end	of	the	slip	avalanche	
is	marked.	The	threshold	value	used	in	the	CCDFs	shown	is	the	average	value	of	the	time	
derivative	of	the	stress	minus	1.7	times	its	standard	deviation.	In	order	to	filter	out	tiny	slip	
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avalanche	signals,	a	minimum	size	is	defined	and	all	slip	avalanches	with	sizes	below	the	
minimum	are	discarded.	The	minimum	slip	avalanche	size	used	in	this	method	is	600	GPa	
nm1.4	because	that’s	roughly	the	smallest	size	where	power-law	behavior	is	observed.	Fig.	
14	shows	the	CCDFs	before	the	removal	of	slip	avalanches	below	the	minimum	size.	
	 In	the	second	method	of	analysis,	instead	of	looking	for	stress-drops	in	the	stress	
signal,	we	look	for	sudden	slips	in	the	displacement	signal	itself.	An	avalanche	is	seen	in	the	
displacement	signal	by	a	sudden	jump	in	displacement.	If	we	look	at	the	time	derivative	of	
the	displacement	signal,	this	is	seen	to	be	a	positive	spike.	But	the	overall	displacement	
signal	increases	roughly	with	the	square	root	of	the	load,	and	since	the	load	is	increased	
linearly	in	time,	it	thus	increases	with	the	square	root	of	the	time.	Thus	the	time	derivative	
is	roughly	proportional	to	the	reciprocal	of	the	square	root	of	time.		In	our	method	we	fit	a	
function	a+ !

!
	to	the	time	derivative	of	the	displacement	using	a	least	squares	method	and	

then	subtract	that	fitted	function	from	the	derivative	signal.	Typical	values	of	a	are	around	-
7	and	typical	values	of	b	are	around	50.	What	remains	after	the	subtraction	is	the	time	
derivative	of	the	fluctuations	about	the	square	root	trend.	This	signal	is	then	analyzed	by	
identifying	spikes	in	a	similar	way	as	was	done	in	the	first	method.	A	threshold	is	defined	in	
a	similar	manner	as	in	the	previous	method:	the	threshold	is	equal	to	the	mean	value	plus	
1.7	times	the	standard	deviation	of	the	signal	after	subtracting	the	fit.	A	minimum	size	for	
an	avalanche	is	defined	where	the	power	law	behavior	begins	in	the	CCDF	and	all	
avalanches	smaller	than	it	are	ignored.	The	minimum	size	used	for	this	method	was	0.3nm.	
Figs.	14	and	15	show	the	CCDFs	before	the	avalanches	below	the	minimum	size	are	
removed.	
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Fig.	10:	Complementary	cumulative	distribution	functions	(CCDFs)	of	slip	avalanche	sizes	
using	first	method.	Each	of	the	CCDFs	incorporates	data	from	49	experimental	trials.	The	
data	from	a	single	nanoindentation	run	consists	of	the	load	on	the	indenter	head	as	a	
function	of	time	and	the	total	displacement	of	the	indenter	head	as	a	function	of	time.	Both	
of	these	quantities	were	sampled	at	a	rate	of	200Hz.	In	the	analysis	method	used	for	this	
figure	the	load	signal	is	divided	by	the	square	of	the	displacement	signal	in	order	to	give	a	
signal	that	is	approximately	proportional	to	the	applied	stress	as	a	function	of	time.	A	
sudden	drop	in	stress,	and	thus	a	negative	spike	in	its	time	derivative,	signals	a	slip	
avalanche.	But	the	variations	in	the	time	derivative	of	the	stress	were	much	larger	for	early	
times	and	much	smaller	for	later	times,	so	in	order	to	find	a	signal	that	was	roughly	
constant	over	the	time	of	interest,	the	discretely	differenced	stress	as	a	function	of	time	
was	multiplied	by	the	total	displacement	of	the	nanoindenter	raised	to	the	power	of	1.4.	
When	this	signal	dropped	below	the	small	negative	threshold	the	start	of	the	avalanche	was	
marked,	and	when	the	signal	came	back	above	the	threshold	the	end	of	the	avalanche	was	
marked.	The	size	of	the	avalanche	is	defined	as	the	change	in	stress	from	the	beginning	to	
the	end	of	the	avalanche	multiplied	by	the	total	displacement	at	the	beginning	of	the	
avalanche	raised	to	the	power	of	1.4.	
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Fig.	11:	CCDFs	of	slip	avalanche	sizes	using	the	second	method.	This	figure	shows	CCDFs	of	
avalanche	slip	sizes	taken	from	the	same	data	as	Fig.	13.	But	in	the	method	of	analysis	used	
for	this	figure	the	displacement	signal	is	discretely	differenced	to	get	a	signal	showing	the	
derivative	of	the	displacement	with	respect	to	time.	A	sudden	rise	in	the	displacement	
signals	a	slip	avalanche,	so	positive	spikes	in	the	time	derivative	of	the	displacement	should	
signal	a	slip	avalanche.	But	the	displacement	signal	has	an	overall	trend	that	scales	roughly	
like	the	square	root	of	the	time,	thus	the	derivative	has	a	trend	that	scales	like	the	
reciprocal	of	the	square	root.	So	a	least-squares	fit	was	done	for	the	derivative	signal	and	
the	resulting	fit	was	subtracted	off,	leaving	only	the	fluctuations	in	the	derivative	signal	
about	the	local	mean.	When	this	signal	went	above	the	small	positive	threshold	the	start	of	
the	avalanche	was	marked,	and	when	the	signal	came	back	below	the	threshold	the	end	of	
the	avalanche	was	marked.	The	size	of	the	avalanche	is	defined	as	the	change	in	
displacement	from	the	beginning	to	the	end	of	the	avalanche.	
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Fig.	12:	CCDFs	of	slip	avalanche	sizes	in	TPa	nm1.4	created	using	the	first	analysis	method	
for	annealing	temperatures	T=200°C,	T=250°C,	and	T=300°C.	Each	plot	contains	slip	
avalanches	from	a	specific	part	of	the	trial:	beginning,	middle,	or	end.	The	slip	avalanches	
were	measured	in	the	loading	segment	of	the	indentation,	which	was	20	seconds	long.	The	
windows	divide	the	loading	segment	into	thirds,	so	the	CCDF	for	the	first	time	window	
shows	only	those	slip	avalanches	that	occurred	during	the	first	third	of	the	loading	segment	
of	a	trial.	Likewise	the	second	time	window	shows	those	slip	avalanches	that	occurred	
during	the	middle	third,	and	the	third	time	window	shows	those	slip	avalanches	that	
occurred	during	the	final	third.	These	plots	indicate	that	the	slip	avalanche	sizes	aren’t	
strongly	correlated	with	what	time	during	the	loading	segment	at	which	they	occur.	
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Fig.	13:	CCDFs	of	the	slip	avalanche	size	taken	from	indentations	for	three	different	
annealing	temperatures.	The	data	is	also	separated	according	to	when	during	the	trial	the	
avalanche	occurred.	The	time	windows	correspond	to	those	defined	for	Fig.	12.	Each	graph	
shows	two	CCDFs:	one	in	which	the	slip	avalanche	size	is	calculated	using	the	first	method	
and	the	other	in	which	the	slip	avalanche	size	is	calculated	using	the	second	method.	To	
compare	the	methods	directly,	the	x-axis	in	the	second	method	was	rescaled	so	that	both	
CCDFs	started	at	the	same	size.	Hence	the	slip	avalanche	size	is	given	in	the	units	of	the	first	
method,	TPa	nm1.4.	The	CCDFs	appear	to	be	similar	in	all	nine	plots,	suggesting	that	the	two	
different	methods	for	detecting	and	measuring	avalanches	give	similar	results.	
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Fig.	14:	CCDF	of	slip	avalanche	sizes	as	defined	by	method	1	without	eliminating	the	
smallest	detections.	
	
	

	 	
Fig.	15:	CCDF	of	slip	avalanche	sizes	as	defined	by	method	2	without	eliminating	the	
smallest	detections.	
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