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Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L10 and L12 orderings
were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study
the structural and ordering energetics in this alloy by combining density functional theory (DFT)
calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and
the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe
persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc
and fcc phases observed in nanoparticles is reproduced, but the fully ordered L10 AuFe, L12 Au3Fe,
and L12 AuFe3 structures are unstable in DFT. However, a tendency to form concentration waves
at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range
of concentrations. This incipient ordering requires enrichment by Fe relative to the equiatomic
composition, which may occur in the core of a nanoparticle due to the segregation of Au to the
surface. Effects of magnetism on the chemical ordering are also discussed.

I. INTRODUCTION

The theory of phase stability in crystalline alloys usu-
ally relies on the assumption that the set of alloy con-
figurations is in one-to-one correspondence with the set
of decorations of the underlying parent lattice, which al-
lows one to reduce the problem to an Ising model on that
lattice.1,2 While this assumption is justified in many sub-
stitutional alloy systems, it becomes problematic if two
or more different parent lattices (for example, bcc and
fcc) compete with each other. In this case some con-
figurations of an Ising model for the given lattice may
correspond to dynamically unstable (i.e., non-existent)
physical configurations, complicating both the construc-
tion of an appropriate effective Hamiltonian and the pre-
diction of thermodynamic properties. This situation is
most likely to occur in systems undergoing phase separa-
tion into two phases with different crystal lattices. Due
to the failure of the standard alloy-theoretical methods,
the phase stability in such systems remains largely unex-
plored.

The equilibrium bulk phase diagram3 shows that Au-
Fe alloys phase-separate and have no equilibrium ordered
phases. However, this phase separation was not observed
in nanoparticles. After low-temperature deposition, Au-
Fe nanoparticles with 65% Fe or more were found to have
body-centered cubic (bcc) structure, while those with
53% Fe or less were face-centered cubic (fcc).4–6 After the
subsequent heat treatment, which included a recrystalliz-
ing high-temperature annealing followed by slow cooling,
all nanoparticles with 33-79% Fe were fcc.4,6

Further, evidence of ordering was found in heat-treated
fcc nanoparticles.4,6,8 In particular, nearly stoichiomet-
ric 5-nm AuFe nanoparticles had a tetragonally distorted
fcc structure, and L10 superstructure peaks were identi-
fied in the Fourier-transformed high-resolution transmis-
sion electron microscopy (HRTEM) images.4 Near AuFe3

and Au3Fe compositions, L12 phases were found.6 We
also note that L10-type AuFe phase was artificially fab-
ricated by monolayer deposition, which suggests that it
is metastable in a thin film geometry.7

Phase separation in nanoparticles may be blocked or
suppressed either thermodynamically or kinetically by
several mechanisms. (1) The free energy gain from phase
separation scales with the volume, and the cost of form-
ing an interphase boundary with the cross-section of a
nanoparticle. Therefore, phase separation may be sup-
pressed below a certain size. (2) Large surface ener-
gyq of one phase may stabilize the other phase in small
particles.9 (3) Spinodal decomposition is kinetically sup-
pressed as the particle size becomes comparable to the
Cahn-Hilliard wavelength, which determines the fastest-
growing concentration fluctuation in the bulk material.10

Mukherjee et al. have argued11 that thermodynamic
suppression of phase separation may indeed be respon-
sible for some of the experimental observations in Au-Fe
nanoparticles.
L10 and L12 phases are commonly found in compound-

forming alloys of Au (e.g., Cu-Au) and Fe (e.g., Fe-
Pt), but compound formation is not expected in Au-
Fe, since the initial electron density mismatch between
Fe and Au is too large to be overcome by the relatively
small charge transfer, according to the conventional met-
allurgical models.12 This view of an inherent phase sep-
aration tendency in Au-Fe has been challenged by the
theoretical13 and experimental14,15 reports of coexisting
phase-separation and ordering tendencies, which mani-
fest themselves through short-range order, in disordered
Au-rich Au-Fe alloys. Only Au-rich Au-Fe alloys have
been examined theoretically, and the contribution from
strain-induced interaction was neglected.13 On the other
hand, the structure of the ordered compounds is not nec-
essarily inherited from the ordering tendencies in the ran-
dom alloy, as exemplified by Ni-V and Pd-V alloys.16

In this paper we analyze the phase stability of Au-Fe
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alloys, particularly as it relates to the experimental ob-
servations for AuFe nanoparticles. Since the size of the
nanoparticles investigated in Ref. 4 is much larger than
the metallic screening length, we assume no direct in-
fluence of the surface on the ordering tendencies in the
particle core. The surface may, however, affect the order-
ing tendencies indirectly, by compressing the nanoparti-
cle due to the surface tension, or by segregating one of the
constituent elements to the surface and thereby deplet-
ing its core. Therefore, we first consider the structural
hierarchy (including fcc-bcc stability and ordering ten-
dencies) in bulk alloys, and then evaluate the influence of
the indirect surface effects on these tendencies. We focus
on the configurational ordering energetics, but also eval-
uate the possible role of different types of magnetic order.
Our approach combines direct ab initio calculations with
ab initio-based effective Hamiltonian techniques used to
navigate the configurational space.

We find, with respect to the fcc-bcc stability: (a) bulk
energetics dictates that Au1−xFex deposited at low tem-
peratures should form the bcc phase at x & 0.68, consis-
tent with experiment; (b) under reasonable assumptions,
annealing at T & 700 K should transform the alloys with
x . 0.75 to the fcc phase, consistent with experiment; (c)
the dynamic stability of both fcc and bcc lattices depends
strongly on the atomic configuration, rather than just the
concentration and temperature (as, for example, in Fe-
Pd); (d) although the energetics of fcc-bcc competition
is drastically altered in some antiferromagnetic (AFM)
structures (in particular, L10 becomes fcc-unstable in
magnetic structures with antiparallel nearest neighbors),
random deviations from perfect ferromagnetic (FM) or-
der, up to and including the paramagnetic (PM) state,
leave the L10 fcc-bcc transformation path qualitatively
unchanged; (e) immiscibility in Au-Fe alloys does not

originate from the freedom to separate into fcc and bcc
phases (as, e.g., in Fe-Ni), but, rather, both fcc and bcc
alloys would already be immiscible in a wide concentra-
tion range.

We further find, with respect to the ordering tenden-
cies: (a) the assumption of full L10 ordering in AuFe
and L12 in Au3Fe is in direct conflict with ab initio cal-
culations, which indicate that lower-energy fully ordered
fcc-based structures exist at both compositions, includ-
ing the so-called Z1 Au3Fe and W2 AuFe, and, moreover,
that some bcc-based AuFe structures are more stable
than L10 AuFe at low temperatures; (b) full L12 order-
ing is also unlikely for AuFe3, where a number of dynam-
ically unstable ordered structures are predicted by CE-
SF to have lower energy than L12, and some bcc-based
structures are also more stable than L12; (c) in nearly-

disordered AuFe3, the ordering tendencies are character-
ized by the X-point ordering vector (consistent with L12
order), suggesting that the observed order type reflects
partial ordering; (d) nearly-disordered fcc alloys at AuFe
stoichiometry do not exhibit ordering tendencies of L10
type and, moreover, are unstable with respect to spinodal
decomposition; (e) the lattice parameters of the experi-

mentally observed L10 and L12-ordered nanoparticles are
much lower than the values predicted theoretically, sug-
gesting a strong Fe enrichment of the nanoparticle core,
with an additional contraction due to surface tension ef-
fects; (f) Fe enrichment may induce L10 ordering ten-
dencies in the nearly-disordered cores of nanoparticles
with a nominal AuFe composition, and may also spin-
odally stabilize them, both effects being fully developed
by the Au1/3Fe2/3 composition and beyond; (g) addi-
tional contraction (due to surface tension or other ef-
fects) has a negligible effect on the ordering tendencies;
(h) magnetic disorder may qualitatively affect ordering;
in particular, (i) quenching of the nanoparticles annealed
above the Curie temperature may reveal W-point order-
ing tendencies, such as ordering into the CH structure;
(j) Au3Fe L12 is predicted to be FM, in contrast to earlier
calculations6 suggesting antiferromagnetism.
We have not been able to reach conclusions about the

ordering tendencies in the nearly-disordered Au-rich al-
loys, because our methodology predicts the random alloy
to be dynamically unstable at those compositions.
The rest of the paper is organized as follows. Section

II reviews the key methodology, including the ab initio

details in Sec. II A, the cluster expansion with struc-
tural filters (CE-SF) in Sec. II B, and the configuration-
dependent lattice deformation model (CLDM19) with its
simplified version (S-CLDM) in Sec. II C. Only the key
aspects of the CE and CLDM are presented in the main
text, while the technical details are given in the Ap-
pendices. Section III studies the fcc and bcc lattice
stability in Au-Fe alloys, including miscibility and the
general fcc/bcc competition (Sec. III A), the dependence
of the fcc/bcc transformations on configurational order
(Sec. III B) and on magnetic order (Sec. III C) along the
Bain path. In Sec. IV, we study the energetics of per-
fectly ordered structures, both in the fully relaxed ge-
ometry (Sec. IVA) and subject to geometric relaxation
constraints (as relevant to the CLDM construction, Sec.
IVB). In Sec. V, we analyze how disordered alloys may
develop ordering tendencies different from those found
for the fully-ordered structures. The configurational en-
ergetics of nearly-random alloys is studied in Sec. VA,
the effects of surface segregation and surface tension on
ordering in nanoparticles in Sec. VB, and the spinodal
stability of fcc alloys in Sec. VC. Sec. VI studies the ef-
fects of magnetic disorder on chemical ordering, and Sec.
VII presents further discussion and conclusions. Finally,
the Appendices summarize the technical details of CE
and CLDM, and present a proof that striction has no
effect on the ordering tendencies in a random alloy.

II. METHODOLOGY

To adequately model the phase stability in alloys,
one needs to evaluate the energetic competition between
many possible ordered structures. In Au-Fe alloys this
task is complicated by the fcc-bcc competition, since
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some ordered fcc structures may by dynamically unsta-
ble and relax without a barrier towards a bcc structure
(and vice versa). Moreover, such “mixed-lattice” alloys
might lack any clustering tendency within the given (fcc
or bcc) lattice type, yet exhibit phase separation into
fcc- and bcc-based phases, as happens, for example, in
Fe-Ni.17 We use two complementary approaches based
on ab initio calculations to determine the ordering ten-
dencies within the given lattice type, focusing primarily
on fcc alloys.
First, we apply the methodology of a cluster expan-

sion (CE) with structural filters (SF), which was previ-
ously used to predict the ground states in the mixed-
lattice Fe-(Ni,Pd,Pt) alloys.17,18 This approach fully ac-
counts for the atomic relaxations, including the changes
in the shape of the unit cell. However, as explained
below in Section II B and in Appendix A, the CE-
SF approach to Au-Fe alloys meets with difficulties
due to strong structure-dependent lattice instabilities.
Therefore, we also employ an alternative methodology,
the configuration-dependent lattice deformation model
(CLDM),19 which captures the effect of the local relax-
ations within the harmonic approximation, yet by con-
struction excludes uniform strain and thus the possibil-
ity of a fcc-bcc transformation. CLDM can accurately
describe the initial stages of ordering in second-order
transitions, including ordering to L10 and L12. We use
CLDM to analyze the phase separation and ordering ten-
dencies in fcc alloys, sorting out the contributions from
the competing chemical and strain-induced interactions.
The analysis of the long-range part of the strain-induced
interaction is facilitated by the new “simplified CLDM”
(S-CLDM) developed on top of the original CLDM.19

A. Ab initio calculations

The ab initio calculations have been performed within
the generalized-gradient approximation (GGA-PBE)20

to the density-functional theory (DFT). We have em-
ployed the scalar-relativistic approximation with the
pseudopotential projector-augmented wave method21

(PAW) as implemented in VASP.22 Using the T = 0 total
energy of a structure σ at Fe composition x, we calculate
its zero-pressure formation enthalpy as

∆H(σ) = Etot(σ)− xEtot(bcc Fe)− (1− x)Etot(fcc Au).
(1)

In principle, fcc Fe may exist in different low-spin (LS)
and high-spin (HS) states; moreover, in pure fcc Fe,
AFM-ordered and non-collinear spin configurations are
energetically preferred23 over the FM one. However, LS
correlates with small atomic volume. Since the atomic
volume of Au is larger, we expect the Au-Fe alloys to al-
ways be HS, except possibly at compositions very close to
pure Fe. (Note that even pure fcc Fe, which is stabilized
at high T , better correlates with disordered HS than with
LS, and pure bcc Fe is always HS. Fe exhibits the LS state

only when it is stabilized in the lower-lattice-parameter
fcc structure.) Similarly, the preference for AFM order-
ing decreases with increasing lattice constant.23 Indeed,
we find that our test calculations converge to FM HS
configurations, even if started with a LS initial mag-
netization (but with the volume near the expected HS
value). We therefore limit our discussion to HS con-
figurations. Special care has been taken to avoid nu-
merical artifacts in the calculations of complex magnetic
structures,18 such as using small relaxation steps and an
appropriate initial volume to avoid abrupt changes in the
magnetic moments, and turning off VASP symmetriza-
tion in computationally problematic cases. Unless speci-
fied otherwise, the calculations have been performed for
the FM state, as further justified in Sec. VI.

Structures used to construct CE-SF have been fully
relaxed24 using highly converged numerical settings;25,26

the Bain path calculations used similar settings at fixed
geometry. For the CLDM construction, computational
details were similar to Ref. 19. The CLDM input struc-
tures were first calculated with the ideal fcc positions and
cell shape for the following lattice parameters: 3.810 Å
for 75% Fe, 3.862 Å for 66.7% Fe, 3.953, 3.901, 3.8 and
3.7 Å for 50% Fe; the corresponding formation enthalpies
(with respect to equilibrium fcc Au and bcc Fe) are re-
ferred to as ∆Hchem. The local (cell-internal) relaxations
have then been allowed, while keeping the cell shape and
volume fixed, resulting in ∆Hfixed cell. Note that we used
four different lattice parameters for the Au0.5Fe0.5 sys-
tem in order to examine the volume dependence. The
first value of 3.953 Å for the Au0.5Fe0.5 system is the
equilibrium lattice parameter of an undistorted 16-atom
special quasi-random structure57 (SQS). The atomic vol-
umes of this SQS and of pure Au and Fe were then fitted
to a quadratic function, which was used to set the atomic
volumes for AuFe2 and AuFe3 systems. For Au0.75Fe0.25
we used a = 4.08 Å, which was obtained by minimizing
the mean-squared volume relaxation energy for several
input structures, as explained in Ref. 19. This value is
very similar to the above-mentioned quadratic fit.

For the self-consistent calculations of the paramagnetic
energy and Curie temperatures, we use the generalized-
gradient approximation (GGA-PBE) and the coherent
potential approximation (CPA) within the tight-binding
linear muffin-tin orbital formalism in the atomic sphere
approximation. The atoms are kept at the ideal fcc posi-
tions, and the equilibrium volume is used at each con-
centration. Full charge and CPA self-consistency are
obtained for the total energy calculations. The para-
magnetic state is represented by employing the disor-
dered local moment (DLM) approximation, in which the
Au1−xFex alloy is represented by an auxiliary three-

component Au1−xFe
↑
x/2Fe

↓
x/2 alloy, where Fe↑ and Fe↓

denote Fe atoms with local moments aligned parallel and
antiparallel to the spin quantization axis. The details of
our implementation of CPA and DLM are described in
Refs. 27 and 28. Equal sphere radii were used for Fe and
Au; with this choice the sphere charges are approximately
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0.1e. We have checked that charge screening corrections
for the Madelung potentials and total energy have a very
small effect on the formation enthalpies and equilibrium
lattice parameters. The numerical data reported below
are without these corrections. From the difference in the
formation enthalpies of the FM and paramagnetic (PM)
states, the mean-field estimate of the Curie temperature
is calculated as

TC = (2/3)(∆HPM −∆HFM)/x. (2)

B. Cluster expansion with structural filters

The CE method2 maps the formation enthalpies (1) of
ordered structures onto an effective Ising-like Hamilto-
nian

∆HCE(σ) = J0 +
∑

f JfDf Π̄f (σ). (3)

Here the actual geometrically relaxed configuration of
Au and Fe atoms is mapped onto a configuration σ of
Ising pseudo-spins occupying the sites of an ideal par-
ent (fcc or bcc) lattice, f are the inequivalent geometric
clusters of sites of the ideal lattice (such as pairs or three-
body clusters of different size, etc., as well as the point
cluster), the effective cluster interactions (ECIs) J0 and
{Jf} are the coefficients of the generalized Ising Hamil-
tonian, while Df is the number per site and Π̄f (σ) the
correlation function in configuration σ for cluster type f .
Other physical quantities (e.g., the atomic volume) can
be cluster-expanded instead of ∆H if desired. As long
as the mapping between the relaxed geometries and the
sites of the ideal lattice is unique, the infinite expansion
(3) is formally exact and unique.2 It has been recently
argued31 that, in general, the expansion (3) does not
formally converge. Nevertheless, the practical applica-
tions of a CE truncated to a finite number of terms have
shown a surprising accuracy in predicting the DFT en-
ergies of new structures based on the parameters fitted
to DFT energies of some “input” structures, particularly
when using advanced techniques for selecting an “opti-
mal” truncation for the expansion (3).32–34

Our CEs are constructed using the ATAT package,32

separately for fcc- and bcc-based structures, as further
detailed in Appendix A. The values of the ECIs are fitted
to the energies of an input set of structures σ calculated in
DFT. The energy of the structural relaxation is absorbed
into the values of the ECIs.
The cornerstone of the CE methodology is the assump-

tion that the relevant atomic configurations of the alloy
(with the actual relaxed geometries) can be mapped one-
to-one to the configurations of the Ising model defined on
the underlying ideal lattice (such as fcc or bcc). However,
this assumption is violated in Fe-Au alloys. The prob-
lems are two-fold: (1) Many structures are dynamically
unstable. Some starting fcc configurations can relax all
the way to nearly perfect bcc positions, and vice versa.

This violates the uniqueness of the mapping: For exam-
ple, even the simplest Bain-path transformation can be
performed along different directions, resulting in three
distinct mappings between fcc and bcc atomic positions.
(2) Different initial structures with the same lattice type

sometimes relax to the same structure. We will call such
structures unmappable. In a wide concentration range,
the lowest-energy structures turn out to be unmappable.
They are, in fact, “hybrid” superlattices (SL) with alter-
nating layers of pure Fe and Au, which are close to their
natural bcc and fcc geometries. For example, the (001),
(011), and (111) bcc A3B3 SLs all relax to the same hy-
brid SL, which has the lowest DFT formation enthalpy
among all structures with up to 6 atoms per unit cell.
Several methods have been suggested to extend the

CE approach to mixed fcc/bcc alloys. One approach
proposed by Liu et al.35 is to fix the cell shape and re-
lax only the cell-internal coordinates. Another strategy,
based on the concept of geometric filtering, was proposed
in the earlier studies of Fe-(Ni,Pd,Pt) alloys.17,18 For each
structure σ, a “score” s(α)(σ) of its proximity to the un-
derlying lattice type α (fcc or bcc) is defined [see Eq.
(A1)], and the scaled ratio r(σ) of the fcc and bcc scores
[Eq. (A2)] is used as a structural filter (SF) to classify
the structure as fcc-like or bcc-like.
Here we follow the CE-SF prescription, constructing

separate fcc and bcc CEs for the FM HS Au-Fe alloys,
each including only structures that retain the given lat-
tice type after relaxation. However, due to the problem
(2) mentioned two paragraphs above, the structural fil-
tering alone is not sufficient to make the CEs meaningful
for Au-Fe alloys, and we have also excluded all unmap-
pable structures from the input sets. Further details are
included in Appendix A.

C. CLDM and S-CLDM

The ordering tendencies in a (nearly) random alloy at
constant pressure can be considered as the coefficients
of the second-order expansion of the Gibbs free energy
with respect to small deviations from homogeneity. In
view of the large size mismatch in Au-Fe alloys, it is im-
perative to include the contribution of structural relax-
ations. The displacements of atoms under structural re-
laxation can be represented as a superposition of macro-
scopic strain (change in volume and shape of the unit
cell) and local displacements. While local displacements
contribute to the second-order expansion of the Gibbs
free energy, homogeneous strain does not, as explained
in Appendix D. Therefore, in the study of the ordering
tendencies we need to consider only local relaxations in-
duced by ordering, while keeping the macroscopic strain
(cell shape and volume) fixed. In other words, the ener-
getics of disordered (and the approximate energetics of
weakly-ordered) alloys is given by

∆Hfixed cell(σ) = ∆Hchem(σ) + Erel(σ), (4)
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where ∆Hchem represents the “chemical” formation en-
thalpy computed with all atoms kept at ideal fcc po-
sitions, and Erel is the energy gained by local atomic
relaxations at constant uniform strain, i.e., for periodic
structures, at fixed shape and volume of the unit cell. We
construct a CE (referred to as “chem-CE”) for the chem-
ical term ∆Hchem, which depends only on the local envi-
ronment. However, we want to avoid cluster-expanding
Erel, because strain-induced interaction is long-ranged
and singular at large distances.
To properly describe the strain-induced interaction,

we employ the configuration-dependent lattice deforma-
tion model (CLDM),19 which generalizes the Kanzaki-
Krivoglaz-Khachaturyan model36–39 to the case of a
concentrated alloy. The many-body, long-range strain-
induced interaction is described in the harmonic approx-
imation by the relaxation energy

Erel(σ) = −1

2

∑

ij

Fi(σ)Â
−1
ij (σ)Fj(σ), (5)

where F(σ) and Â(σ) are the configuration-dependent
Kanzaki forces and force constants, and the summation
is over the lattice sites.
The CLDM is constructed for a fixed concentration

and describes the relaxation energy under the assump-
tion that the crystal lattice remains fully coherent. The
parametric dependence of the effective Hamiltonian on
the average composition is a general feature of coherent
phase transformations.19

Both F(σ) and Â(σ) are represented by separate many-
body cluster expansions. Note that, even though both
these CEs are short-range, the inversion of the force con-
stant matrix leads to a long-range expression (5), prop-
erly capturing this feature of the strain-induced interac-
tion. F(σ) is fitted directly to the results of DFT calcula-
tions for interatomic forces in structure σ at the ideal fcc
positions. Specifically, the force acting at site i is taken
to depend on the identity (and the relative positions) of
the atom at site i and some of its neighbors, as further
detailed in Appendix B.
The force constants are determined using linear regres-

sion for the set of equations

δF(σ,u) = Â(σ)u, (6)

where δF(σ,u) are the changes in the DFT forces aris-
ing due to small atomic displacements u. The sample
set of δF(σ,u) was calculated using the VASP code,
as described in Ref. 19. For the force constants we
used a simple parametrization, in which only central
(bond-stretching) interactions depend on the configura-
tion, while the non-central interactions are configuration-
independent.
We construct a separate CLDM for each given compo-

sition and lattice parameter. We have considered com-
positions of 25, 50, 66.7 and 75% Fe. In addition to
the lattice parameters designed to represent equilibrium
volumes, several additional lattice parameter values have

been taken for the Fe0.5Au0.5 system in order to examine
the volume dependence, as discussed above in Sec. II A.
In order to reduce systematic errors in chem-CE, the val-
ues of ∆Hchem have been calculated for the same set of
input structures (covering all of the above compositions)
at each lattice parameter. We have later discovered that
CLDM predicts random alloys at 25% Fe to be dynami-
cally unstable, which makes CLDM approach inapplica-
ble at that composition. The parameters of the cluster
expansions for the Kanzaki forces and force constants at
other compositions, as well as the details of chem-CE
construction, are presented in Appendix B.
Ordering tendencies in nearly-random alloys can be

characterized by considering an ensemble in which the
average occupation σ̄i at site i differs only slightly from
the average over all sites σ0, i.e., σ̄i = σ0 + δi, where all
δi are small. The effective pairwise interaction potential
is then defined as the second derivative of the ensemble
average of the energy:

Jeff
ij =

∂2〈E〉
∂δi∂δj

. (7)

Its Fourier transform gives Jeff(k), which within CLDM
can be readily decomposed into chemical and strain-
induced contributions, representing the respective terms
in Eq. (4):

Jeff(k) = Jchem(k) + JSI(k). (8)

Note that Jchem reflects purely chemical trends, even
though the “chemical” term ∆Hchem in Eq. (4) includes
the “volume deformation energy,”40 which is the elastic
energy required to bring the atoms of the constituent el-
ements to the common lattice parameter, prior to any
further relaxation. This is because the volume defor-
mation energy is configuration-independent at the given
composition. Similarly, JSI captures all strain-induced
interactions pertaining to deviations from the random
alloy.
In order to compute the strain-induced term JSI(k)

from CLDM, Ref. 19 employed an additional fitting of
Erel computed from Eq. (5) for a few hundred structures
to a multiparametric real-space many-body CE. This CE
for Erel was added to the chem-CE, whereupon the sec-
ond derivative in Eq. (7) leads to Eq. (B2) in Appendix
B. Although this procedure allows one to retain a large
number of terms in the CE, it still misses the true long-
range character of the strain-induced interaction and its
singularity at the Γ-point. To remedy this deficiency,
we have developed another method of extracting Jeff(k)
from CLDM. The idea is to find a simplified form of
CLDM (S-CLDM), with configuration-independent force
constants, that would approximately reproduce the full
Erel predicted by CLDM, while also allowing a simple
calculation of Jeff(k) without the additional CE expan-
sion. Although the existence of such a simplified form
is not guaranteed a priori, we have found that in Au-Fe
alloys it can be constructed. This S-CLDM captures the
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dominant part of the full CLDM, while the remainder
of Erel, only a few meV/atom in magnitude, can be fit-
ted to a separate “residual” CE. The details are given in
Appendix B.

III. FCC-BCC LATTICE STABILITY

In this section we analyze the general energetics of fcc
and bcc alloys, without focusing on the specific iden-
tity of the ordered phases. Our purpose is to deter-
mine whether the bulk ordering and phase competition
tendencies, combined with the single assumption of the
suppression of phase separation and spinodal decomposi-

tion are sufficient to explain the experimental observa-
tions of (a) the bcc phase in as-deposited nanoparticles
with 65% Fe or more and fcc phase with 53% Fe or less,5

and (b) transformation to the fcc phase after annealing
of the nanoparticles with 79% Fe.6 Further, we analyze
(c) whether the stability of fcc vs bcc lattice type is de-
termined primarily by temperature and concentration,
regardless of the atomic configuration and magnetic or-
dering. Finally, while not aiming to settle whether such
a suppression of phase separation could be of a thermo-
dynamic or a kinetic origin, we would like to limit its
possible nature, asking (d) whether inhibiting the decom-
position into dissimilar bcc and fcc phases is sufficient to
observe miscibility and formation of ordered phases. For
example, Fe-Ni and Fe-Pd alloys have been shown17,18

to exhibit a strong tendency to form ordered compounds
if restricted to the fcc lattice, and the wide miscibility
gap seen in these alloys at Fe-rich compositions is solely
due to the freedom to precipitate out the bcc phase. If
the Au-Fe alloys exhibit similar energetics, then inhibit-
ing the separation into fcc and bcc phases (for example,
due to high interface energy penalty) could be sufficient
to stabilize ordered phases in Au-Fe nanoparticles; oth-
erwise, there is an inherent tendency for a compositional
disproportionation even within the same (all-fcc or all-
bcc) lattice system.

A. Miscibility and fcc/bcc competition

Fig. 1 shows the formation enthalpies ∆H of fcc-based
(black) and bcc-based (red) structures at T = 0, calcu-
lated in DFT and fitted to the CE-SF. Clearly, there is
a thermodynamic driving force toward phase separation,
even disregarding the competition between fcc and bcc
lattices. Indeed, the energies of all periodic structures
are larger (by 51 meV/atom or more at x = 0.5) than
the average of pure Fe and Au energies for the same lat-
tice type. Within the classical Miedema model,12 this
tendency toward phase separation originates from the
relatively small charge-transfer energy gain, implied by
the small difference in the work functions (or Allen elec-
tronegativities) of Fe and Au, which is too small to over-
come the electron density mismatch. This argument ap-

plies separately to fcc and bcc alloys. Moreover, the
Miedema model disregards the positive contribution to
∆H from the elastic strain due to the large size mismatch
between Fe and Au, which should further increase the
miscibility gap. Thus, both chemical and elastic terms
favor phase separation in bulk fcc Au-Fe alloys, even if
the precipitation of the bcc phase is inhibited; this is
in contrast to the ordering tendency exhibited by fcc-
restricted Fe-Ni and Fe-Pd alloys.
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FIG. 1. (Color online) Formation enthalpies of ferromagnetic,
fully relaxed fcc (black) and bcc (red) ordered Au-Fe struc-
tures (only those with up to 5 atoms per cell are shown).
Open symbols: DFT results; crosses or pluses: CE predic-
tions; lines: CE predictions for random alloys (see legend).
Diamonds (purple): unmappable structures (see text). Dot-
ted lines: asymptotic tangents estimated for dilute alloys (see
Appendix E).

When the experimental deposition is performed at low
temperature (as in Ref. 4), the kinetic barrier to atomic
ordering and spinodal decomposition is high, and the Fe
and Au atoms within the nanoparticle structure likely
stay disordered, nearly random. The solid (black) and
dashed (red) lines in Fig. 1 show the T = 0 formation en-
thalpies of the random fcc and bcc alloys predicted by the
cluster expansions. The concave-down curves do not di-
rectly indicate spinodal instability of the random alloys,
because coherent spinodal decomposition may be blocked
by the coherency strain energy (see further discussion in
Sec. VC). Note that the CE predictions for dilute alloys
should be treated as extrapolations. Further discussion
can be found in Appendix E, where the enthalpies of dis-
solution of Fe in fcc Au and of Au in bcc Fe are calculated
using large supercells. In both cases, the corresponding
slopes of the formation enthalpies, which are shown by
the dotted lines in Fig. 1, agree reasonably well with the
random-alloy lines predicted by the CEs.
The crossing of the solid and dashed lines in Fig. 1 in-

dicates that, at low T , the random bcc alloy is preferred
over fcc if the concentration of Fe exceeds 68%. This is
a relatively crude estimate due to the finite CE accuracy
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(see Table IV in Appendix A). For example, a different
fcc CE with the same set of inputs and a nearly iden-
tical cross-validation score, but with a larger number of
three-body ECIs, moves the fcc/bcc crossing to 63% Fe.
Experimentally, as-deposited Au-Fe nanoparticles (pre-
pared by inert gas condensation at 143 K) are observed
in the fcc phase at and below 53% Fe, and in the bcc
phase at and above 65% Fe,5 which agrees with the CE
predictions qualitatively and, within the CE accuracy,
quantitatively.
The observed bcc lattice parameter was anomalously

large, which could be due to the large concentration of
vacancies.5 Here we disregard the effect of vacancies both
on the lattice parameter and on the phase stability, even
though they may modify the stability range of the as-
deposited bcc phase. In our calculations the lattice pa-
rameter of the bcc structures is close to the Vegard law
predictions, much smaller compared to the experimental
values.
Upon heating, nanoparticles may undergo a diffusion-

less martensitic transformation from the bcc to fcc phase.
The martensitic temperature Tmart may be defined as one
where the Gibbs free energies of random single-phase fcc
and bcc alloys are equal. We do not attempt to calcu-
late Tmart from first principles, because the vibrational
and magnetic contributions are very difficult to capture
accurately in Fe alloys.41 However, a crude estimate can
be made by combining our results at T = 0 with the
data from the experimental phase diagram. This is il-
lustrated in Fig. 2, where we redraw the experimental
phase diagram based on data from Ref. 3. Point A (red
dot) marks the concentration x0 where Tmart(x0) = 0,
according to the CE estimate illustrated in Fig. 1. At
Fe-rich compositions Tmart(x) must lie within the two-
phase α + γ region CDE. Therefore, assuming that the
curvature d2Tmart(x)/dx

2 does not change sign as a func-
tion of x, the Tmart(x) curve must lie somewhere within
the hashed (red) region ABCDEA in Fig. 2. Clearly, at
the annealing temperature of 873 K the fcc random alloy
is predicted to be stable at all concentrations (33-79% Fe)
studied in Refs.4,6, in agreement with the observation of
the fcc structure in all annealed nanoparticles.

B. Configurational dependence of fcc/bcc
transformations

We found that about one third of the structures ini-
tially at fcc positions attain lower energy by relaxing to-
wards bcc. Surprisingly, different ordered bcc structures
at the same composition may exhibit an opposite trans-
formation towards fcc. This is in contrast to what was
found for the Fe-Pd system,18 where the fcc-bcc instabil-
ities of ordered alloy structures strongly correlate with
the alloy composition.
As mentioned above, in some cases two or more initial

structures of the same lattice type relax toward the same
final structure. These unmappable structures are shown

FIG. 2. (Color online) Phase diagram of bulk Au-Fe based
on the experimental data from Ref. 3. Shaded areas: single-
phase regions (blue: bcc; gray: fcc; yellow: liquid). Point A:
predicted intersection of the bcc and fcc random-alloy forma-
tion enthalpies from Fig. 1. Point C: eutectoid point. CDE
(green): two-phase (α+γ) region. Point B lies directly above
point A on the continuation of the DC line. The marten-
sitic transformation line Tmart(x), which shows equilibrium
between random single-phase fcc and bcc alloys, is predicted
to lie inside the hashed (red) area ABCDEA. Labels (”fcc”
and ”bcc”) indicate the regions of relative stability of these
random alloys.

in Fig. 1 by diamonds, and they include hybrid bcc/fcc
SLs in a wide range of concentrations (33-67% Fe). Such
SLs have the lowest formation enthalpy, reflecting the
tendency to phase separation even if the lattice remains
coherently strained.

In Fig. 3, we illustrate the proximity of final atomic
positions42 of different fully relaxed structures to the fcc
and bcc geometries, as measured by the scores defined by
Eqs. (A1) and (A2). We see that at nearly all composi-
tions there are both bcc-unstable and fcc-unstable struc-
tures. The instabilities of ordered structures in Au-Fe
seem to correlate with the direction of ordering vectors.
For example, we found that fcc (110) SLs, i.e., struc-
tures composed of (110)-oriented atomic planes of pure
Fe and pure Au, all relax to bcc, whether they are AuFe3,
Au2Fe2, or Au3Fe SLs, whereas (001), (201) or (311)
SLs retain the original fcc lattice at all these composi-
tions. The typical fcc→bcc transformation route during
DFT relaxation, which was common to all (110) SLs, is
a tetragonal collapse along the [001] direction. In this
regard, the stability of the tetragonal (001) SLs appears
surprising. In a few cases the relaxation history has been
much more complex: for example, one Au3Fe2 structure
has switched several times between fcc-like and bcc-like
geometries. One of the structures had two local minima,
both belonging to the fcc lattice type.

While our CEs predict the formation enthalpies of the
random alloys, they give no information about the dy-
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FIG. 3. Final scaled ratio of fcc/bcc scores after geometry relaxation for structures initially at (a) ideal fcc and (b) ideal bcc
positions. The shaded areas highlight structures that relax to a different type of lattice geometry.

namical stability with respect to the fcc-bcc transforma-
tion. DFT calculations for SQSs suggest that the fcc
random alloy may become dynamically unstable with re-
spect to a martensitic transformation at high Fe content
and low temperatures. For example, at Au1/3Fe2/3 com-
position both fcc-based SQSs that we have considered
relaxed without barrier towards bcc-like geometries. (In
contrast, both bcc-based SQSs remained bcc, and their
formation enthalpies agree to 11 and 23 meV/atom with
the CE prediction for the random bcc alloy.) Dynami-
cal instability of the random fcc alloy would imply that
random nanoparticles, even if stabilized in fcc during the
anneal, would tend to transform back to the bcc geom-
etry upon cooling. Based on these results, it could be
argued that some degree of order has to develop during
the anneal for the fcc geometry to remain stable against
martensitic transformation to bcc.

However, we do not find any dynamical instabilities
in CLDM simulations at the Au1/3Fe2/3 composition.
The likely reason for this apparent contradiction is that
an fcc SQS does not represent the behavior of the ran-
dom alloy along the fcc-bcc transformation path, because
the nearest-neighbor shells, for which the quasi-random
correlations only hold, change during the transforma-
tion. As a result, the SQS structures lose their “quasi-
randomness” after the martensitic transformation. The
deficiency of SQS in representing the fcc-bcc transforma-
tion is apparent from the fact that the formation ener-
gies of the fcc SQSs that have relaxed to bcc (98 and 96
meV/atom) are much lower compared to the random bcc
alloy predicted by the CE (160 meV/atom). On the other
hand, the absence of unstable phonon modes predicted by
CLDM does not guarantee that the fcc structure is stable

with respect to a homogeneous strain deformation.

C. Magnetic effects and fcc-bcc transformation
path

It is possible that the temperatures at which the
nanoparticles are annealed4,6 could be above their Curie
temperatures. Furthermore, it was suggested6 that L10
AuFe and L12 Au3Fe could favor AFM ordering. As in
the case of pure Fe,58 the stability of the Au-Fe alloy
with respect to the fcc-bcc transformation could depend
strongly on the magnetic contribution. Therefore, here
we consider the effect of magnetic ordering on the fcc-bcc
transformation. Further analysis of the effects of mag-
netism on the ordering tendencies is postponed till Sec.
VI.
We limit ourselves to the case of the AuFe L10 or-

dered structure, which has been reported most often in
Au-Fe.4,6–8 We consider the change in the energy of L10
along the fcc-bcc transformation path for several types
of magnetic order, including an approximate model for
the PM state. In order to approximate the energy of
the PM L10 phase, we average the energies of differ-
ent spin orderings. These energies are calculated at the
atomic positions maintaining the symmetry of the PM
state, under the assumption that spin fluctuations occur
on a shorter time scale compared to ionic displacements,
as in the Born-Oppenheimer approximation for the elec-
tronic degrees of freedom. Conveniently, in the case of
L10 ordering such “average” atomic positions are fully
determined by the total volume V and the c/a ratio. In
turn, the equilibrium V and c/a values are determined
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by the condition of the vanishing diagonal stress compo-
nents σxx = σyy and σzz . We then analyzed how the
total energy E and σxx, σzz depend on the geometry in
different spin states. The dependence on V was found to
be insignificant, but the variation with c/a is of great in-
terest. The results presented below were obtained for the
volume fixed at its equilibrium value for the FM state.

It is well known that by changing c/a one may con-
vert an fcc geometry (c/a = 1) into a bcc geometry

(c/a = 1/
√
2) along the so-called Bain path.43 This is

indeed the mode of collapse of many fcc-unstable struc-
tures in our DFT calculations. Plotted along the Bain
path, the energy of pure Au has a global minimum at
fcc, a maximum at bcc, and a secondary bct minimum
at a slightly smaller c/a value,44,45 whereas the energy
of pure Fe, in the FM HS state at T = 0, has a global
minimum at bcc, a maximum at fcc, and a secondary
minimum at a slightly larger c/a. (The latter minimum
is sometimes referred to as “fct” geometry, to stress its
proximity to fcc, despite its crystallographic equivalence
to bct). It has been demonstrated44 that the secondary
minima in the Bain paths of most elemental metals are, in
fact, saddle points, which are unstable under orthorhom-
bic distortions. This instability is not generic for the bct
and fct geometries and only reflects the energetics of the
common pure elements. Indeed, the bct geometry was
argued to correspond to the structure of Pa and of β-
Hg, whereas In is observed in a structure similar to the
fct geometry.44 Thus, it is natural to expect that Au-Fe
alloys may similarly have two energy minima along the
Bain path, and that the higher-energy minimum may be
dynamically unstable for some structures and stable for
others.

Fig. 4 shows E and σxx, σzz along the Bain path of
L10 AuFe, at a constant volume, for three different spin
orderings: the FM state and two AFM orderings (C-type
and G-type) illustrated in the insets in Fig. 4(a-c). The
ordering vectors are (1, 0, 0) for the C-type and (1, 0, 1/2)
for the G-type state. These vectors are given in units
of 2π/a (or 2π/c for the z component); the notation is
similar to Ref. 46.

The Bain energy profile of the FM L10 phase [Fig. 4(a)]
is similar to that of Au,44,45 with a global minimum close
to the ideal fcc c/a ratio. Surprisingly, the addition of
bcc-stable Fe has raised the relative energy of the bct
minimum instead of lowering it; in pure Au, bct is only 20
meV/atom above the global fcc minimum.44) However,
the Bain-path profiles for both AFM phases show a single
deep minimum near the bcc value of c/a and no minimum
near fcc. The absence of a local fcc-like minimum in the
AFM-ordered L10 phases is particularly clear from the
plots of σxx and σzz , which intersect at a single point,
near the bcc c/a, for both AFM orderings. Due to the
relatively small elastic anisotropy, the volume changes
shift the plots of σxx and σzz almost rigidly up or down,
and thus do not help achieving σxx = σzz = 0 around
the fcc c/a. We conclude that both AFM orderings of
the L10 phase shown in Fig. 4 are dynamically unstable

in the fcc-like geometry.

Although both C-type and G-type orderings have an-
tiparallel nearest neighbors, Fig. 4 shows that their en-
ergies are very different. There are two reasons for
that. First, the magnetic interactions from more distant
neighbors contribute substantially to the AFM energies
(which is not the case in the FM and PM cases, see Sec.
VI). We explicitly fitted the magnetic interactions to a
generalized Ising model at the fcc positions and found
that the FM coupling to third-nearest and AFM cou-
pling to fourth-nearest fcc neighbors are both ∼ 15% of
the nearest-neighbor coupling, while involving twice as
many Fe atoms. While these opposite-sign contributions
largely cancel out in both FM and PM states, they add
up in the AFM states, raising and lowering the energy of
the C-type and G-type orderings, respectively. Second,
as the c/a ratio is decreased toward its bcc value, the
tetragonal L10 structure becomes cubic B2 with the Fe
sites forming a simple cubic sublattice. In this structure,
all nearest-neighbor pairs are antiparallel if the ordering
is G-type, but in the C-type ordering only four of the
six nearest-neighbor pairs are antiparallel. This has an
important symmetry implication: the FM and G-type or-
derings have full cubic symmetry at the bcc value of the
c/a ratio, and, therefore, they must have either a maxi-
mum (the FM case) or a minimum47 (the G-type AFM
case) at the bcc positions. In contrast, the symmetry
of the C-type AFM phase remains tetragonal, and the
minimum is achieved at a smaller c/a ratio.

The energy of the PM state can be approximated by
averaging the energies of appropriately chosen magnet-
ically ordered states. Any reasonable spin averaging
should respect the cubic symmetry of the PM phase at
bcc positions. As mentioned above, the FM and G-type
orderings already respect this symmetry, and the sim-
plest approximation for the PM energy can be obtained
by taking their average: EPM ≈ (EFM + EG)/2. This
estimate (Model 1) is displayed by a gray line in Fig.
5. Model 1 averages out any linear function of nearest-
neighbor spin correlators, which means it should give the
correct PM energy if the exchange interaction is domi-
nated by nearest-neighbor Heisenberg exchange.

An alternative estimate for the PM energy can be ob-
tained by including C-type ordering in the average. Since
it is tetragonal, it should be included along with all of its
images obtained by applying cubic symmetry operations
at the bcc positions. The rotation around one or the
other of the two in-plane cubic axes of the bcc structure
produces equivalent spin orderings C± characterized by
the ordering vectors (1/2,±1/2,1/2). At any c/a ratio,
the C± structures are related by a 90◦ rotation around
the z axis, and their Bain paths (not shown in Fig. 4)
are identical with a minimum near fcc but no minimum
near bcc. A straightforward enumeration shows that the
estimate EPM ≈ (EFM+EC+2EC±

)/4 averages out any
linear function of pairwise spin correlators for four near-
est coordination spheres along the entire Bain path. This
estimate (Model 2) is shown by the black line in Fig. 5.
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FIG. 4. (Color online) Total energy (a-c) and stress tensor components (d-f) as a function of the c/a ratio plotted along
the volume-conserving Bain path of L10 AuFe with FM (a,d), C-type AFM (b,e) and G-type AFM (c,f) spin orderings. The
volume of the equilibrium FM phase is used throughout, and it is also taken as the energy reference. The stress components
are σxx = σyy (light blue dots) and σzz (black dots). Insets in panels (a-c) show structural and magnetic order at the bcc and
fcc values of the c/a ratios. Dashed lines are guides for the eye.

Models 1 and 2 give somewhat different estimates of
the PM energy but agree in their main features: the PM
energy profile along the Bain path is qualitatively simi-
lar to the FM state, having a maximum at bcc and two
minima with c/a somewhat below the fcc and bcc values,
of which the global minimum corresponds to the fcc-like
geometry. On the other hand, magnetic disorder substan-
tially decreases the c/a ratio and increases the energy of
the fcc-like minimum, while having a smaller effect on the
bcc-like minimum. As a result, both the energy difference
and the barrier separating the two minima along the Bain
path decrease. Note that this trend is opposite to what is
observed in pure Fe, where ferromagnetism stabilizes the
bcc phase relative to fcc. The reason is that bcc Fe and
L10 AuFe are both ferromagnetic, whereas the fcc Fe is
magnetically frustrated, and its energy is, therefore, less
sensitive to magnetic ordering.23,48

To conclude this section, random deviations from FM
order may decrease the bcc-fcc energy difference and the
c/a ratio of the fcc-like L10 phase, but otherwise they
do not qualitatively change the fcc-bcc transformation
path. This does not mean that the magnetostructural
coupling is intrinsically weak, because, as seen in Fig. 4,
enforcing AFM order with antiparallel nearest neighbors
drastically changes the fcc-bcc energetics.
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FIG. 5. Energy as a function of the c/a ratio, along
the volume-conserving Bain path, for the paramagnetic L10
AuFe. Models 1 (gray line) and 2 (black line) average over
different magnetic states (see text). The volume of the equi-
librium FM phase is used throughout, and it is also taken as
the energy reference.

IV. ENERGETICS OF FULLY ORDERED
ALLOYS

A. Fully relaxed structures

In this section we analyze the energetics of fully or-
dered structures using the CE-SF approach, imposing no
restrictions on the geometric relaxation. Table I lists
the formation enthalpies for several structures, to be dis-
cussed below, in the first two ∆H columns.

Before proceeding, we emphasize the key drawback of
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the CE-SF method. Despite the fcc-bcc filtering of the
input structures, the predictions of, say, an fcc CE-SF
include not only fcc-stable structures, but also the hy-
pothetical structures that are, in reality, fcc-unstable at
T = 0. Such predictions could perhaps give reasonable
approximations for the fcc energy of an ordered region
under some fcc-stabilizing conditions, such as elevated
temperature or coherency strain, but they should be
treated as unreliable extrapolations. Moreover, the CE-
SF does not tell us whether a given structure is fcc-stable;
this needs to be checked by a DFT calculation. However,
if the lowest-energy structure predicted by the fcc CE-SF
is fcc-unstable, then there must be an infinite number
of fcc-unstable structures below the lowest-energy fcc-
stable structure. In this case it becomes impossible to
unambiguously identify the lowest-energy fully relaxed
fcc-stable structure. In such cases a CE constructed at
the fixed cell shape may be preferable.35 If the assumed
structure is stabilized by the phonon entropy, more ac-
curate estimates of the fcc-stabilized energies could also
be obtained using ab initio molecular dynamics.49

FIG. 6. (Color online) The low-energy ordered Au-Fe struc-
tures, as determined by different approaches (cf. Table I).
The conventional cells are shown in most cases, except W2 is
displayed within a non-periodic 2× 2× 1 fcc unit for clarity.

Experimental data indicate L12 ordering at the AuFe3
composition.6 The L12 structure has the lowest energy
among all structures with up to 6 atoms per unit cell
that are confirmed by DFT to be fcc-stable. There are

more complicated fcc-stable structures slightly lower in
energy, confirmed by DFT, which can be viewed as de-
fective L12 with a periodic arrangement of antiphase
boundaries. One such structure is L1∗2 with 8 atoms per
unit cell, which is 0.5 meV/atom below L12. The fcc
CE-SF also predicts lower-energy structures that are fcc-
unstable. This problem underscores the basic limitation
of the CE-SF method. However, if we assume that the
fcc-bcc transformation is blocked, there is no direct dis-
agreement with experiment, except that the calculations
suggest the possibility of the proliferation of antiphase
boundaries in the L12 phase.
On the other hand, in AuFe and Au3Fe the energet-

ics of fully ordered structures is in conflict with exper-
imental observations of L10 and L12 structures:4,6 We
found a number of fcc-stable structures that have lower
energies compared to L10 and L12, respectively. For
AuFe, the (311) Au2Fe2 SL (known as the W2 struc-
ture) has the lowest formation enthalpy among the DFT-
confirmed fcc-stable structures, 38 meV/atom lower than
L10. Other structures, including the (001) and (111)
Au2Fe2 SLs (known as Z2 and V2) are also fcc-stable
and have ∆H below that of L10. While the CE-SF pre-
dicts a large number of structures with even lower en-
ergies, those directly checked in DFT turned out to be
fcc-unstable. At the Au3Fe composition the lowest DFT-
confirmed fcc-stable structure with up to 6 atoms/cell is
the (001) Au3Fe SL (known as Z1), which is more than
100 meV/atom lower than L12. We also found several
DFT-confirmed structures with 8 atoms/cell below Z1.
These structures are Au6Fe2 superlattices with various
stacking directions, such as [011], [131], [001]. All of them
relax strongly towards bcc geometry.
Summarizing the results of this section, among the

three experimentally suggested L10 (AuFe) and L12
(Au3Fe and AuFe3) structures, only L12 ordering in
AuFe3 is not in direct conflict with GGA energetics of
fully ordered fcc-stable structures at T = 0. Neither L12
Au3Fe nor L10 AuFe has the lowest energy among the
fcc-stable structures at the respective compositions, or is
even close to being the lowest.

B. Effects of restricting geometric relaxation

It is instructive to compare the contributions to the for-
mation enthalpies of the most stable fully ordered struc-
tures from the chemical interaction, local relaxations, and
uniform strain. In particular, since the CLDM method
neglects the uniform strain contribution, as it is justified
in Appendix D for nearly disordered alloys treated in
later sections, one may ask how accurate its predictions
would be for the lowest-energy fully ordered structures.
It is also useful to compare the numerical and systematic
errors of different methods.
Table I lists several structures that have been fully re-

laxed, relaxed with a fixed unit cell (i.e., only allowing in-
ternal relaxations), or not relaxed at all (i.e., with atoms
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TABLE I. Formation enthalpies of the low-energy ordered Au-Fe structures as determined by different approaches. The fcc
structures listed here are illustrated in Fig. 6. The lattice parameters of the “fixed cell” and “unrelaxed” structures are chosen
as discussed in Sec. II A. The S-CLDM+ column includes the contribution from the residual CE, and S-CLDM does not (see
Appendix C for details).

Composition Structure Lattice Formation enthalpy ∆H (meV/atom) Reason
type Fully relaxed Fixed cell (∆Hfixed cell) Unrelaxed (∆Hchem) to expect

GGA CE-SF GGA CLDM S-CLDM S-CLDM+ GGA CE lowest ∆H
Au3Fe L12 fcc 192.4 150.7 193.9 191.6 191.6 189.2 193.9 191.6 Experiment

Z1 fcc 69.9 79.6 70.8 69.2 87.8 69.7 130.6 132.2 CE-SF
AuFe L10 fcc 166.1 165.1 166.6 166.1 166.1 164.5 166.6 166.1 Experiment

W2 fcc 127.2 135.7 155.6 161.1 158.2 158.7 190.2 185.5 CE-SF
(001) Au4Fe4 SL fcc unstable 125.4 76.2 119.3 127.8 115.0 298.6 300.4 CLDM

L1∗0 fcc 154.0 160.3 155.3 154.4 154.4 153.7 155.3 154.4 CE (∆Hchem)
CH (“40”) fcc 173.5 155.6 176.3 174.5 174.5 174.7 176.3 174.5 SCE (Sec. VI)

AuFe3 L12 fcc 134.5 144.2 138.7 138.7 138.7 138.8 138.7 138.7 Experiment
L1∗2 fcc 134.0 141.9 137.6 138.2 139.9 137.4 139.5 139.9 CE-SF,CLDM

fixed at the ideal fcc positions). The formation enthalpies
calculated from DFT are compared to the predictions of
the different models. Table I includes both structures
suggested by experiments and candidate structures pre-
dicted as ground states by CE-SF, S-CLDM, or chem-
CE using direct enumeration of orderings with relatively
small unit cells.

It is clear that structural relaxations change the en-
ergetic hierarchy. For example, the lowest-energy unre-

laxed structure at the AuFe composition, among those
with up to 8 atoms per unit cell, is the tetragonal struc-
ture labeled as L1∗0 in Fig. 6. In contrast, CLDM (com-
bined with chem-CE, as discussed above) predicts that
the lowest-energy fixed-cell structures at AuFe composi-
tion either are or resemble long-period (001) SLs.

The most stable structure predicted by CLDM, among
about 10000 enumerated, is the A4B4 (001) SL, which
consists of alternating 4-monolayer-thick slabs of Fe and
Au stacked along the [001] direction. (This structure
has one of the highest energies without the relaxation.)
A DFT calculation with a fixed unit cell gives an even
lower formation enthalpy for this structure, by as much
as 43 meV/atom. This underestimation of the relax-
ation energy in CLDM is due to the collapse of the thick
Fe regions in this SL towards bcc geometry. Under the
fixed-cell constraint this collapse is incomplete, and the
structure as a whole formally passes our fcc filter, but
the fully-relaxed structure is filtered out as having re-
laxed away from fcc. (Even then it is not quite bcc-like:
the interlayer spacings suggest nearly perfect fcc lattice
within the Au4 layers and distorted bcc in AuFe4Au.)

The shorter-period (001) SLs, such as Au2Fe2 (Z2) or
Au1Fe1 (L10), do not undergo such a drastic collapse of
the Fe regions, and their DFT formation enthalpies are
similar to CLDM predictions. Similar to the fcc CE-SF,
the CLDM predicts that the lowest-energy structure at
the AuFe3 composition is the L1∗2 structure.

CLDM makes two assumptions: zero uniform strain
and the harmonic approximation. The former is justi-
fied for nearly random alloys (see Appendix D), as well

as for ordered structures with cubic symmetry, like L12.
Otherwise the neglect of uniform strain is an approxi-
mation. Comparing the “fully relaxed” and “fixed cell”
GGA columns in Table I, we see that the zero-strain ap-
proximation works well for low-period tetragonal Z1, L10,
L1∗0, and CH, but fails for the orthorhombic W2 struc-
ture. The harmonic approximation works well in all cases
with the exception of the (001) Au4Fe4 SL, which was ex-
plained above.

V. ORDERING FROM DISORDERED ALLOYS

We turn to the physics of the early ordering stages. We
found in Sec. IVA that GGA energetics of fully ordered
structures conflicts with the experimental observation of
L10 ordering in AuFe nanoparticles. However, if the or-
dering observed in slowly cooled nanoparticles is incom-
plete, it may rather reflect the ordering tendencies in the
random alloy. Since ordering does not involve long-range
diffusion, we assume that the key mechanisms are still
thermodynamic, rather than kinetic, in nature.
The preferred ordering vectors in the random alloy

can be different from those characterizing the fully or-
dered structures observed at low temperatures, as has
been shown, for example, for Ni-V and Pd-V.16

A. Energetics of nearly-random alloys

As shown in Appendix D, if the alloy deviates only
slightly from the disordered state, the neglect of the
uniform strain in CLDM is justified to the leading or-
der in the order parameter. The L10 and L12 ordering
phase transitions are allowed by the Lifshitz criteria to
be second-order, although they are usually weakly first-
order. For the nanoparticles, we have assumed that the
phase separation is blocked, which means the ordering
develops continuously. Thus, to understand the driving
forces for ordering in the core of a Au-Fe nanoparticle,
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we use CLDM to evaluate the ordering tendencies in a
random fcc Au-Fe alloy, as a function of volume and con-
centration. Note that the CE-SF method is poorly suited
to study the energetics in nearly-disordered Au-Fe alloys
due its relatively large prediction error (see Table IV)
and the unreliable predictions of fcc-unstable structures.
The black lines in Fig. 7 show the effective potential

Jeff(k), calculated at the equilibrium volume for several
concentrations, using either the real-space CE fit of the
CLDM (which is accurate away from the Γ-point) or the
S-CLDM with the residual CE (which captures the elas-
tic singularity at Γ). The two curves are almost identical
far from the Γ point, while we expect S-CLDM to work
better in its vicinity. The dotted red line shows the con-
tribution from the residual CE, which is relatively small,
as expected from the discussion in Appendix C (see Fig.
10).
In AuFe3, the reported L12 ordering is characterized

by ordering vectors at the three inequivalent X-points.
Indeed, the black line in Fig. 7(a) shows that Jeff(k) is
minimal and almost flat on the face of the Brillouin zone
containing the X point, revealing ordering tendencies at
the corresponding wave vectors. While this result does
not conclusively point to L12 ordering, it is possible that
the X point can be preferred either kinetically or due to
higher-order interaction effects.
The L10 ordering reported for the equiatomic AuFe al-

loy is characterized by one X-point ordering vector. How-
ever, Fig. 7(c) indicates that Jeff(X) is close to zero at this
composition, indicating the absence of a thermodynamic
driving force for X-point ordering in AuFe. The global
minimum of the total Jeff(k) is reached close to the zone
center on the ΓX line. There is also a secondary min-
imum approximately half-way between Γ and X. These
features are consistent with our findings for the fully or-
dered structures discussed in Sec. IVA.
We conclude that the calculated ordering tendencies

are consistent with partial L12 ordering in AuFe3
6 but

not with L10 ordering in AuFe.4,6 A similar analysis could
not be performed for Au3Fe, because the CLDM predicts
the random alloy to be dynamically unstable at this com-
position, indicating the presence of large anharmonic dis-
tortions.

B. Effects of surface segregation and surface
tension on ordering in nanoparticles

The blue and green lines in Fig. 7 show the Jchem(k)
and JSI(k) contributions to the effective potential Jeff(k)
[see Eq. (8)]. There is a strong competition between or-
dering and phase separation tendencies introduced by the
“chemical” and strain-induced interactions; they have
opposite signs throughout most of the Brillouin zone.
Due to this competition, the ordering tendencies may be
sensitive to pressure and alloy composition.
Among all the transition metals, Au is one of the

strongest surfactants when alloyed with fcc Fe.52 A strong
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FIG. 7. (Color online) Total effective potential Jeff (k)
(black) and the individual chemical (green) and relaxation-
induced (blue) contributions, plotted along the special direc-
tions in the Brillouin zone, at the following concentrations
of Au1−xFex: (a) x = 0.75, (b) x = 0.666, (c) x = 0.5.
Thick green line: Jchem(k). Dashed blue line: JSI(k) from the
CLDM-based CE (Appendix B). Solid blue line: JSI(k) from
S-CLDM (first term in Eq. (C1)). Dotted red line: Jres(k)
from Eq. (C1). Dashed black and solid thick black lines: to-
tal Jeff (k) with JSI(k) from the CLDM-based CE and from
S-CLDM, respectively.

enrichment of the nanoparticle surface by Au, and of its
core by Fe, may therefore be expected. Comparison of
the three panels of Fig. 7 shows that enrichment by Fe
beyond the equiatomic composition gradually stabilizes
the X-point ordering. The minimum along the Γ−X line
shifts from the vicinity of Γ in AuFe to an almost flat
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section near X in AuFe2, and further to a clear minimum
at X in AuFe3. A similar trend is seen along other di-
rections leading to the X-point. Thus, X-point ordering
may become preferred at x & 2/3, similar to the x = 0.75
case considered above. The enrichment of the nanopar-
ticle core by Fe could, therefore, explain the observation
of L10-type ordering in AuFe nanoparticles.4

Such enrichment is also suggested by unexpectedly
small measured lattice parameters of L12 and L10. Ta-
ble II compares them with calculations for fully ordered
L12 and L10 and random alloys; the latter are estimated
from a separate CE of the atomic volume of fcc-based
structures (V-CE). The experimental lattice constants
are systematically smaller than the GGA values, by as
much as 5-8% in AuFe, which is much more than is typ-
ical for GGA.53 The experimental value for L10 AuFe is
also smaller than expected from the comparison with sim-
ilar alloys. For example, L10-ordered FePt has a = 3.85
Å, and the lattice parameter of Au is 0.15 Å larger than
Pt; a Vegard-law estimate then gives 3.9–3.95 Å for AuFe
even before accounting for the positive deviation from the
Vegard law, which is expected for phase-separating alloys
and confirmed by calculations.

The observed reduction of the lattice parameter is not
fully explained by Fe enrichment, because this would re-
quire the nanoparticle core to contain more than 75%
Fe. At this composition the minority Fe atoms in the Au
layer of the L10 structure reduce the L10 order parame-
ter to less than 0.5, which is at odds with the excellent
matching between the experimental c/a ratio and the
DFT result for the fully ordered L10 (Table II). Surface
tension is another possible source of lattice contraction.
Given the typical surface energy of order 1 eV/atom, the
excess pressure due to the surface curvature is only a
few kilobars for a 10 nm radius, which should reduce the
lattice constant by much less than a percent.

Additional compressive surface stress, unrelated to
curvature, may develop in metals at the end of the d-
series54 due to the spill-out of the s electrons into the
vacuum and the resulting stronger bonding of the d elec-
trons. In gold this stress is particularly strong due to rel-
ativistic effects,54 which was argued to be the cause of the
surface reconstruction. It may be energetically more fa-
vorable to relieve this stress by contracting the nanoparti-
cle core, rather than by reconstructing the surface. While
we did not attempt to further quantify the contribu-
tions of the surface segregation and surface-induced stress
mechanisms, the substantial observed contraction of the
nanoparticle core suggests that both Fe enrichment and
surface-induced stress may be contributing.

Fig. 8 shows the dependence of Jeff(k) in the
equiatomic alloy on the lattice parameter a used to con-
struct the CLDM, which is subsequently approximated
by S-CLDM. As shown in Appendix D, calculations at
fixed a produce Jeff(k) that is appropriate for isobaric
conditions in the core of a nanoparticle. Non-zero pres-
sure could be due to surface tension or coherency stress
from surface segregation. It is clear that within a fairly

large range of the lattice parameter (3.7-3.95 Å) the min-
imum of Jeff(k) is reached at the same point on the ΓX
line, and there is no significant trend toward the stabi-
lization of the X-point ordering. Thus, Fe enrichment of
the nanoparticle core appears to be critical for the L10
order to develop.
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FIG. 8. (Color online) Total effective potential Jeff(k) in AuFe
from S-CLDM (Eq. (C1)) at different volumes. Black, red,
green, and blue lines (labeled 1, 2, 3, 4): a = 3.953 Å (equi-
librium at zero pressure); 3.901 Å; 3.8 Å; 3.7 Å.

To conclude this section, L10-type ordering in nomi-
nally equiatomic AuFe nanoparticles4 may be caused by
strong Fe enrichment of the nanoparticle core, which pro-
motes X-point ordering tendencies; indeed, such enrich-
ment is expected theoretically and indirectly evidenced
experimentally.

C. Spinodal stability of fcc alloys

As mentioned in Sec. IVA, the (001) Au2Fe2 SL
(known as Z2) is fcc-stable and has ∆H below that of
L10, which is a (001) Au1Fe1 SL. This tendency is also
seen for other SL directions in both fcc and bcc struc-
tures: Au2Fe2 SLs tend to have lower energy than the
corresponding Au1Fe1 SLs. The (001) Au4Fe4 SL com-
bining fcc-like and bcc-like regions has an even lower en-
ergy (Sec. IVB). This suggests that the Au-Fe system
may be unstable with respect to spinodal decomposition.
The driving force for such decomposition is suggested by
the downward curvature of the ∆H(x) line for the ran-
dom alloy in Fig. 1, which at low temperatures approxi-
mates the second derivative of the free energy. However,
since the spinodal decomposition produces a coherently
strained two-phase mixture, the positive contribution of
the coherency strain needs to be added to this second
derivative.
We estimate the coherency strain contribution as-

suming the random alloy is elastically isotropic, with
composition-independent Young’s modulus E and Pois-
son’s ratio ν. The concentration dependence of the lat-
tice parameter of the random alloy a(x) was obtained
from the V-CE. Let the alloy be decomposed into pla-
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TABLE II. Theoretical and experimental lattice parameters of L12 and L10 structures and random alloys. Calculations are
from GGA, with V-CE for random alloys.

Ordering Composition
Theory Experiment

Reference
a (Å) c/a a (Å) c/a

Au3Fe L12 Fe0.25Au0.75 4.083 1
Fe0.33Au0.67 3.71 1 Ref. 6

Random Fe0.25Au0.75 4.071 1
Fe0.33Au0.67 4.030 1

AuFe L10 Fe0.5Au0.5 3.965 0.980
Fe0.511Au0.504 3.67 0.981 Ref. 4
Fe0.53Au0.47 3.67 0.981 Ref. 6 (HRTEM)
Fe0.53Au0.47 3.74 0.962 Ref. 6 (SAED)

Random Fe0.5Au0.5 3.939 1
AuFe3 L12 Fe0.75Au0.25 3.776 1

Fe0.79Au0.21 3.65 1 Ref. 6
Random Fe0.75Au0.25 3.786 1

nar regions of equal volumes with compositions xi =
x0 ± δx. To the lowest order, the second derivative
F ′′ = ∂2F/∂(δx)2 is

F ′′ = F ′′
0 +

2EV

1− ν

(

d ln a

dx

)2

, (9)

where F ′′
0 excludes the coherency strain contribution.

We find that in a wide composition range the coherency
strain nearly cancels the negative curvature of the in-
coherent formation enthalpy, i.e., the driving force for
spinodal decomposition is eliminated already at T = 0.
Taking E = 1.8 Mbar and ν = 0.27,59 we find that the
random alloy remains spinodally stable everywhere, with
the smallest F ′′ around 70% Fe. A smaller value E = 1.4
Mbar, obtained by averaging the elastic moduli of the
12-atom Au4Fe8 SQS,57 leads to a wide marginally un-
stable region. The above is a crude estimate, which is also
sensitive to CE details, and we expect S-CLDM should
provide a more reliable estimate by fully capturing the
harmonic part of the strain-induced contribution at the
concentrations when it is available. Nevertheless, it pro-
vides an insight into the spinodal stability at the Au-rich
compositions, where the random alloy is dynamically un-
stable and CLDM can not be used. The CE-based esti-
mates become more robust at xFe . 0.25 and indicate the
lack of any spinodal instability at these compositions.
In S-CLDM the spinodal instability corresponds to a

negative value of Jeff at the Γ-point. From Fig. 7, we see
that both the chemical and the elastic contributions to
Jeff increase manifold as k → Γ and indeed largely can-
cel each other. At the equiatomic AuFe composition the
negative elastic contribution prevails, although the mini-
mum Jeff(k) value corresponds to long-period SLs rather
than the fully decomposed alloy, which would be favored
if Jeff(k) had its global minimum at Γ. Increasing the Fe
content in the random alloy rapidly removes the spinodal
instability, and the AuFe2 alloys are clearly stable.
In summary, Au-Fe alloys are spinodally unstable at

equiatomic composition, but become stable at least for
xFe . 0.25 and xFe & 2/3. Even in the nominally

equiatomic nanoparticles the strong surface segregation
of Au and the enrichment of the core by Fe (discussed
in Sec. VB) are likely to spinodally stabilize both the
nanoparticle core and the Au-rich surface. Moreover,
even at x = 0.5 the spinodal instability is weaker than the
ordering instability at the finite k vector where Jeff(k)
has its global minimum.

VI. EFFECTS OF MAGNETISM ON
CHEMICAL ORDERING

The results presented above were obtained under the
assumption that the alloys are always ferromagnetically
ordered. We now consider the validity of this assumption
and the consequences of relaxing it.
Fig. 9 shows the formation enthalpies of the FM and

PM states calculated using CPA. It shows that the mag-
netic coupling in disordered fcc Au-Fe alloys is strongly
ferromagnetic as long as the concentration of Au it not
too small. The increase in the lattice parameter due to
the Au size effect removes the magnetic frustration char-
acteristic for pure fcc Fe. At the 50% concentration the
energy difference Emag between the PM and FM states is
80 meV/atom, and the mean-field Curie temperature TC

of 1240 K is comparable to the FePt and FePd alloys.60

Measurements in Au-Fe films55 have found the Curie
temperature in the 550–600 K range at the 50% concen-
tration. However, the magnetic moment of Fe in those
films (2.2µB) was smaller compared to 2.9µB found in
an earlier study.56 The local moment in our calculations
is close to the latter value, which is also characteristic
for FePt and FePd. This discrepancy in the local mo-
ment and TC suggests that the films studied in Ref. 55
could have been highly defective and far from the ideal
fcc structure.
To assess the effects of magnetic disorder on the or-

dering tendencies, we chose several ordered equiatomic
structures and constructed a separate quasi-binary
(Ising) spin-cluster expansion (SCE) for each of them.
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FIG. 9. (Color online) Solid lines: formation enthalpy of the
random Au1−xFex alloy in the ferromagnetic (FM) and para-
magnetic (PM) states from the coherent potential approxi-
mation (CPA) calculations (with disordered local moments
(DLM) for the PM state). Dashed line: the mean-field Curie
temperature (right axis).

The choice of the SCE interaction parameters in each
structure was restricted only by crystallographic and
time-reversal symmetry. The nearest-neighbor exchange
couplings are universally ferromagnetic and dominant in
all structures, other couplings being smaller by at least
a factor of 5.
Three SCE versions (indexed by label n = 0, 1, or

2) were constructed for each structure σ, with the fixed
unit cell, and with the cell-internal atomic positions: (0)
kept at the ideal fcc lattice, (1) relaxed in the FM state
and then used for all other spin configurations, and (2)
relaxed independently for each magnetic configuration.

An estimate E
(n)
PM(σ) for the PM energy was obtained

from each SCE by setting all spin correlators to zero. We
have also considered one 16-atom SQS,57 but, instead of
building a SCE, we simply averaged its energy over three
randomly assigned magnetic configurations.

The unrelaxed magnetic energy Emag = E
(0)
PM − E

(0)
FM

represents the magnetic contribution to ∆Hchem of the
PM state. We can further define two estimates of the
relaxation energy in the PM state, E

(n)
rel = E

(n)
PM − E

(0)
PM

(n = 1, 2), which can be compared with the FM state.
The results are listed in Table III, and we can now es-
timate the effect of magnetic disorder on JSI(k) and
Jchem(k).

TABLE III. Magnetic energy Emag and the relaxation ener-
gies for the FM and PM states (the latter evaluated in two
ways: see text). Energies are in meV/atom; a = 3.9 Å.

Structure
Superlattice

Emag
Erel

direction FM PM (1) PM (2)
L10 AB (001) 84.8 0 0 13.0
L11 AB (111) 77.4 0 0 15.3
Y2 A2B2 (011) 83.2 45.3 53.3 61.4
CH A2B2 (012) 46.3 0 0 10.1
W2 A2B2 (113) 73.3 36.5 34.5 44.7
“101” A2B2AB (135) 61.5 11.4 11.6 21.8
SQS-16 86.6 62.2 60.2 75.6

First, we observe that Erel is similar in the FM and
PM states for all structures listed in Table III. Allow-
ing the lattice to relax for each magnetic configuration
increases the relaxation energy by 8-16 meV/atom for
all structures, including those that do not relax at all in
the FM configuration. Thus, magnetic disorder has little
effect on JSI(k).

Emag for the unrelaxed SQS-16 (87 meV/atom) is simi-
lar to the CPA value (80 meV/atom), confirming our esti-
mate of the Curie temperature in the random alloy. Emag

in the L10 structure is almost identical to the SQS, and it
is also quite similar for most other structures. A notable
exception is the W-point-ordered (012) A2B2 SL (known
as the CH structure, or structure “40” in the notation of
Ref. 61), where Emag is reduced to 46 meV/atom. This
suggests that in the PM state Jchem(k), and thus Jeff(k),
should be significantly lowered near the W point. A pref-
erence for W-point ordering was also found in an earlier
CPA-based study13 for PM Au-rich Au-Fe alloys. (CPA
describes Jchem while disregarding JSI.)

The CH structure is illustrated in Fig. 6. It is a super-
position of two W-point concentration waves:

σi =
1

2
(1 + i) exp(iQ1Ri) +

1

2
(1− i) exp(iQ2Ri), (10)

where one can take Q1 = 2π(1/2, 1, 0)/a and Q2 =
2π(1/2, 0, 1)/a. Similar to L10 and L12, it is one of
only nine fcc structures18 that, according to the Lif-
shitz criteria, may order through a second-order tran-
sition. Its energy in the fully relaxed FM state (Table I)
is 10 meV/atom above L10 and 50 meV/atom above W2,
which is the lowest-energy identified AuFe fcc structure.
(Confusingly, W2 has no relation to the W point).

For the PM state, approximating the interaction as
purely pairwise, we estimate that a 40 meV/atom re-
duction in the energy of CH translates into a 80 meV
reduction of Jchem(W). Thus, at high temperatures W-
point ordering could compete with the ordering tenden-
cies identified in the previous sections, and could poten-
tially be observed if the samples were quickly quenched.

In Sec. III C, we demonstrated that two specific AFM
orderings with antiparallel nearest neighbors render the
L10 phase dynamically unstable in the fcc geometry. An
exhaustive enumeration of all periodic structures with
up to 16 atoms per unit cell with the SCE version (0)
showed that FM state is the magnetic ground state
for L10. Even allowing cell-shape relaxation, i.e., let-
ting the fcc-unstable structures reach their optimal ge-
ometry, does not reveal possible competing spin orders.
We have also calculated the energy of AFM L12 Au3Fe
(with all nearest Fe spins anti-aligned, corresponding to
rocksalt-type spin ordering), and found that its energy
is 1.9 meV/atom (7.6 meV/Fe) higher compared to the
FM ordering. These results are in contrast with ear-
lier calculations6 suggesting that an AFM state is closely
competitive in L10 AuFe and favorable in L12 Au3Fe.
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VII. DISCUSSION AND CONCLUSIONS

It is not unusual for ordering tendencies in nearly-
random alloys to differ from ground-state ordering at the
same composition, as in Ni-V and Pd-V systems.16 How-
ever, our finding that the experimentally observed order-
ing strongly contradicts the DFT results for fully ordered
structures (cf. Table I) but is consistent with weak or-
dering tendencies (provided additional Fe-enrichment of
the nanoparticle core, in the case of AuFe) is still surpris-
ing. First, in all the previously reported cases where the
ordering tendencies in the fully- and “weakly”-ordered al-
loys were inconsistent, the “weak” ordering was the case
of a short-range order. In the case of Au-Fe, the experi-
mental procedures employed in observing the ordering in
Au-Fe nanoparticles suggest it be classified as long-range
(even though formally, there is no distinction between
short and long-range order in finite-size nanoparticles).
Second, the quantitative size of the energy penalty of
forming fully ordered L12 and L10 compared to alterna-
tive orderings (Table I) is surprising. It has recently been
demonstrated51 that the semi-local density functionals,
such as GGA-PBE, do not always capture correctly the
energetic hierarchy of metal alloy structures; in particu-
lar, some conflicts between the DFT predictions and ex-
periment known for Cu-Au alloys50 disappear if the more
accurate, non-local hybrid HSE functional is used.51) The
largest (among nine structures in three alloy systems) hy-
brid correction to PBE ∆H has been reported for CuAu
L10 and constitutes 35meV/atom.51 It is possible that in
Au-Fe, the energy of L10 and L12 structures would be
lowered by similar corrections. The ordering energetics
of the alloys containing 5d metals may also be affected
by the spin-orbit coupling.62–64 Due to a need of high
k-mesh sampling and the slow convergence of our PBE
calculations in the magnetic Au-Fe alloys, we did not
attempt repeating them with the computationally much
more demanding hybrid functional or spin-orbit methods.
However, both the hybrid and the spin-orbit corrections
to ∆H values of different structures of the same alloy are
usually of the same sign and, for similar compositions,
of somewhat comparable magnitude, and thus the struc-
tural hierarchy at a particular composition is affected to
a lesser degree. Thus, we expect that the key qualitative
findings of this study would not be affected by non-local
and spin-orbit corrections.

In conclusion, by using ab initio-based effective Hamil-
tonian techniques combined with direct density func-
tional theory (DFT) calculations, we find that the phase
separation tendency in Au-Fe is inherent (rather than
caused by the freedom to form distinct fcc- and bcc-based
phases), and that the temperature- and composition-
dependent trends such as the formation of the bcc phase
in low-temperature deposition and the transformation
into the fcc phase with annealing are consistent with
DFT. In Fe-rich nanoparticles, the absence of the inverse
transformation might be an additional evidence of order-
ing during anneal. On the other hand, our DFT results

contradict the assumption of developing fully ordered L10
AuFe, L12 Au3Fe or L12 AuFe3 phases: we find more
stable (lower energy) structures at each of these three
compositions. By analyzing the ordering tendencies in
a nearly-random alloy, we find that they are consistent
with incipient L12 order at AuFe3 composition, thus be-
ing substantially different from those in fully ordered al-
loys. However, AuFe does not exhibit L10-type ordering
tendencies even if assumed nearly-random, and instead is
prone to a spinodal decomposition. We argue that the ex-
perimental lattice constant of nominally AuFe nanopar-
ticles is too low, evidencing a substantial enrichment of
nanoparticle core by Fe. Once the Fe enrichment is taken
into account, the ordering tendencies become consistent
with incipient L10 order and the spinodal instability is re-
moved. Finally, we demonstrate that the effect of surface
tension on ordering tendencies is negligible, while chang-
ing the magnetic ordering may affect both the structural
hierarchy and the fcc-bcc transformation pathway. The
magnetic ordering is expected to occur at a fairly high
temperature, and the ground states of both L10 AuFe
and L12 Au3Fe are predicted to be ferromagnetic.
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Appendix A: CE details

We construct bulk fcc and bcc CEs using the ATAT
package,32 separately for fcc- and bcc-based structures.
The number and type of ECIs [i.e. the terms to be kept
in the expansion given by Eq. (3)] is chosen so as to
minimize the error in the predicted ∆H for structures
that were not used for fitting ECI values. The latter
error is estimated by the leave-one-out cross-validation
(CV) error as calculated by ATAT.32

The CE approach is often modified by treating the
strain-induced term separately. We use this idea in Sec.
II C for the CLDM construction, but do not employ this
approach in the CE-SF study (in part, due to the dy-
namic instability of fcc Fe at T = 0, leading to some prac-
tical issues). We do, however, account for the coherency
strain contribution, in Sec. VC, when we discuss the im-
plications of the CE-SF results for the spinodal stability
of coherent alloys.

For structural filtering, we start with the procedure
of Refs. 17 and 18. Specifically, for each structure σ, a
degree s(α)(σ) of its proximity to the underlying lattice
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type α (α= fcc or bcc) is defined as

s(α)(σ)−1 =
1

N 0

∑

i<N0

∑

j 6=i

[dij(σ)− dij(α)]
2e−ηdij(α),

(A1)
where the first sum is over the N0 atoms in the unit cell
of the periodic structure σ while the second sum is over
all atoms j in the lattice (in practice limited to a finite
portion of the lattice by the cutoff η ∼ 1). The corre-
spondence between the dimensionless (volume-rescaled)
interatomic distances dij in the relaxed structure σ and
those in a perfect lattice α is defined by sorting the
distances {dij(σ)} in increasing order. If, for example,
sfcc(σ) ≫ sbcc(σ) for a given relaxed structure σ, one
may conclude that the structure has relaxed to an fcc-
like geometry. Such sfcc vs sbcc comparison is visualized
by plotting

r(σ) =
2

π
arctan

[

log
(

sfcc(σ)/sbcc(σ)
)]

, (A2)

which changes from 1 for ideal fcc to −1 for ideal bcc
structure.
We did not employ the HS/LS filtering used in Refs.

17 and 18, because we expect the Au-Fe alloys to remain
in the HS state, as discussed in Sec. II A. For the CE-SF
studies, we restrict consideration to HS structures with
FM spin order, and analyze the effects of spin ordering
separately in Sec. III C and VI.
As initial inputs, we took all possible structures up to

6 atoms per unit cell for both lattices. Those that trans-
form to a different lattice type after the relaxation, i.e.,
for which r(σ) changes sign, were excluded from the in-
put sets. In addition, as discussed in Section III B, two
or more initial structures of the same lattice type some-
times relax to the same “unmappable” final structure, as
confirmed by their final total energy, volume, and both
fcc and bcc scores being equal up to a small tolerance
(0.2 meV/atom, 0.1%, and 0.01, respectively). We have
examined several of the lowest-energy structures among
them and found that they are hybrid bcc/fcc SLs with
alternating layers of bcc-like Fe and fcc-like Au. These
structures can not be unambiguously assigned to a spe-
cific configuration of the Ising model. Therefore, all un-
mappable structures have been excluded from the input
sets. This exclusion results in a considerable reduction
of the CV scores, especially in the bcc case.
Table IV lists the total numbers of structures that were

calculated in DFT, excluded, and retained as inputs for
the respective bcc and fcc CE-SFs. The table also in-
cludes the number of effective cluster interactions (ECIs)
and the resulting accuracy of the CE-SF predictions as-
sessed by the CV score.

Appendix B: Construction of the CLDM

The “chemical” ∆Hchem values are calculated for a set
of 311 structures at each lattice parameter. This set has

Lattice DFT input structures Number of ECIs CV
Total Excluded Used Pairs 3-body 4-body (meV)

fcc 137 51 86 6 1 0 18.8
bcc 137 79 58 13 1 0 13

TABLE IV. Parameters of the cluster expansions with struc-
tural filters based on the energies of fully relaxed structures.

been chosen to systematically contain structures at each
of the following concentrations: 25, 50, 66.7 and 75% Fe.
Specifically, it includes all structures with up to 8 atoms
per unit cell for 25%, 50% and 75% Fe and up to 9 atoms
per unit cell for 66.7% Fe. The calculated energies have
been used to construct real-space cluster expansions for
each of the lattice parameters by means of the ATAT
code.32 We used the same number and type of clusters
for each expansion to reduce systematic errors. The basis
sets and overall quality of these expansions are displayed
in Table V.

TABLE V. Parameters of the CE used in the calculations.
The fourth column lists the number of 2-body, 3-body and
4-body ECIs in the basis set. The CV and misfit are given
in meV/atom. Rows marked C: CE for the ∆Hchem; R: CE
refits of ∆Hrel from CLDM; Res: CE fits for the residual
errors of S-CLDM.

Alloy Term Inputs ECIs CV Misfit

Au3Fe
C 309 5,20,85 3.3 1.5
R

323 21,23,35
3.6 2.8

Res 3.8 2.9

AuFe 3.953
C 311 5,20,85 4.0 1.8
R

1914 39,50,35
1.8 1.7

Res 1.7 1.6

AuFe 3.901
C 311 5,20,85 4.3 1.8
R

1936 39,50,35
1.9 1.8

Res 1.6 1.5

AuFe 3.8
C 311 5,20,85 6.1 2.0
R

1936 39,50,35
2.3 2.1

Res 1.8 1.7

AuFe 3.7
C 311 5,20,85 7.0 2.0
R

1936 39,50,35
3.0 2.8

Res 2.2 2.0

AuFe2

C 311 5,20,85 4.6 1.9
R

980 39,50,35
1.5 1.3

Res 1.2 1.0

AuFe3

C 311 5,20,85 6.0 2.0
R

440 39,50,35
1.7 0.9

Res 1.2 0.7

For the Kanzaki forces Fi we use the expansion:19

Fi =
∑

j=nn(i)

(

f1 + f̄1σi

)

σj eji

+
∑

jk

[(ft + σif̄t)ηijk + (fl + σif̄l)ζijk ]σjσke
i
jk, (B1)

where σi = 1 for Au and −1 for Fe. In the first sum eji
is the unit vector pointing from site j toward site i. The
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second sum corresponds to coplanar forces from two-site
clusters P = {j, k}, where eijk is a unit vector pointing
from the midpoint between j and k towards i, and ηijk
and ζijk are projectors selecting specific cluster shapes.
Namely, ηijk = 1 only if i, j and k make a triangle of
nearest neighbors; ζijk = 1 only if i, j, k form a two-link
straight chain of nearest neighbors with i at an end.
Table VI shows two fitted sets of the Kanzaki force

parameters, separated by a horizontal line. The first set
contains only the two nearest-neighbor terms f1 and f̄1,
and the second set includes all parameters appearing in
Eq. (B1). Similar to the Cu-Au and Fe-Pt systems con-
sidered previously,19 the simpler two-parameter expan-
sion already provides a reasonably good fit, while the
additional parameters further improve its quality. The
parameters f1 and f̄1 remain dominant in the extended
fit.

TABLE VI. Parameters of the cluster expansion for the Kan-
zaki forces (meV/Å). The terms are defined in Ref. 19. The
horizontal line separates two different fittings.

xAu 1/2 1/2 1/2 1/2 1/3 1/4
a, Å 3.953 3.901 3.8 3.7 3.862 3.811
f1 252 295 398 536 310 333
f̄1 85 100 135 182 108 119
f1 255 298 401 538 309 351
f̄1 80 94 129 174 128 171
f2 12.3 13.9 18 24 21.7 26.1
f̄2 −6.1 −6.8 −9 −10 −9.3 −9.0
f3 0.2 0.9 2.5 4.5 −2.3 −3.8
f̄3 0.4 0.2 −0.6 −1.4 1.5 −1.8
ft 9.7 11.6 15.7 21.0 2.8 8.9
f̄t −2.2 −2.4 −3.1 −4.3 18.3 18.9
fl −11.8 −12.6 −15.7 −18.8 −0.9 −11.5
f̄l 12.2 12.8 14.5 16.9 −1.5 14.1

For the force constants we used a simple parametriza-
tion, in which only central (bond-stretching) forces de-
pend on the configuration, while the non-central force
components are configuration-independent. We also lim-
ited the range of the force constants to second-nearest
neighbors and assumed that the central force for bond
i − j depends only on the occupation of sites i and j.
The resulting model has 9 parameters including 6 central-
force constants (2 per coordination sphere: for A-A, B-
B, and A-B bonds), 2 non-central force constants for the
nearest neighbors, and 1 isotropic non-central constant
for the second-nearest neighbors. The fitted parameters
are listed in Table VII. Note that the notation for the
first nearest neighbor force constants is given in a ro-
tated reference frame to isolate the central forces. Specif-
ically, for a (1/2,1/2,0) bond, the axes are rotated by
45◦ around the z axis so that the axis x′ lies along the
(1,1,0) direction, parallel to the bond. A1RR is the central
force constant in this rotated frame. One can also write
A1RR = (A1XX +A1YY)/2, A1TT = (A1XX −A1YY)/2.
The price paid for the accuracy of the CLDM is that

the configuration-dependent force constant matrix can
no longer be inverted in closed form, which hampers the

TABLE VII. Parameters of the cluster expansion for the force
constants (units of dyn/cm). The notation for the first nearest
neighbor constants is given in a reference frame with direction
R parallel to the bond in x̂ŷ plane, Z‖ ẑ as usual, and T
orthogonal to both R and Z. 1RR and 2XX generate central
forces.

Pairs AuFe AuFe AuFe AuFe AuFe2 AuFe3
a, Å 3.953 3.901 3.8 3.7 3.862 3.811

A-A
1RR 8228 11118 17549 25166 13812 17960
2XX 8859 9596 11356 13667 4766 3459

B-B
1RR 58441 68523 91481 119421 73829 84453
2XX 4449 4455 3928 3548 961 −1768

A-B
1RR 25842 31043 42785 57103 35104 41254
2XX 8272 8869 10019 11146 6144 4874

Any
1ZZ −4930 −5862 −7769 −10065 −3646 −4935
1TT −1922 −2470 −3691 −5187 −1566 −1642
2YY −1276 −1247 −1276 −1399 −1608 −1664

direct calculation of the effective pair interactions in the
random alloy. One approach, used previously in Ref. 19,
is to fit the relaxation energy predicted by CLDM to an
auxiliary many-body real-space cluster expansion, after
which the definition (7) leads to

Jeff
ij =

∑

P⊃{i,j}

mPN
P
ijJPσ

NP−2
0

mij
, (B2)

where mP is the multiplicity factor of cluster type P ,
NP the number of sites in P , NP

ij the number of edges
of P that are equivalent by symmetry to the pair {i, j},
JP the effective interaction for cluster type P , mij the
multiplicity factor of the pair cluster {i, j}, and σ0 the
concentration of the alloy.
Contrary to the CLDM, which captures the long-range

singularity of the strain-induced interaction, the auxil-
iary CE has a finite range. Therefore, in Appendix C we
introduce another way to calculate Jeff(k) from CLDM,
which allows one to retain its correct behavior at k → 0.

Appendix C: Simplified CLDM (S-CLDM)

The purpose of the “simplified CLDM” (S-CLDM) is
to facilitate the calculation of the effective pair interac-
tions Jeff(k) in the random alloy while retaining the sin-
gular long-range part of the strain-induced interaction
captured by the full CLDM. This long-range part may
be particularly important when spinodal decomposition
competes with ordering tendencies, as in the present case
of the Au-Fe system.
We start by approximating the full CLDM by a S-

CLDM with configuration-independent force constants.
Within two shells of neighbors, as in the full CLDM (Ta-
ble VII), the S-CLDM has 5 force constants (Table VIII).
Given that the nearest-neighbor terms f1 and f̄1 domi-
nate in the Kanzaki force expansion (Table VI), we only
allow these two terms in the S-CLDM. The resulting S-
CLDM has 7 parameters, but one of them is redundant,



20

because the forces and force constants can be simulta-
neously scaled without changing the relaxation energies
(5). We therefore fix f1 to remove the degeneracy in the
parameter space, which leaves 6 fitting parameters.
For each concentration and volume we calculate Erel

from the corresponding CLDM for a set of 100 ordered
structures, and then minimize the S-CLDM misfit using
the coordinate-descent algorithm in the space of its 6 fit-
ting parameters. To initialize this minimization process,
we took the (configuration-independent) force constants
fitted to the same first-principles data that were used to
construct the full CLDM, while the starting values of f1
and f̄1 were taken from the two-parameters fits in Table
VI. The final S-CLDM parameters are listed in Table
VIII.

TABLE VIII. Parameters of the cluster expansion in S-
CLDM for the Kanzaki forces (meV/Å) and force constants
(dyn/cm).

Pairs AuFe AuFe AuFe AuFe AuFe2 AuFe3
a, Å 3.953 3.901 3.8 3.7 3.862 3.811
f1 252 295 398 536 310 333
f̄1 29 38 57 86 19 36

1RR 29758 37050 49993 64932 44347 47507
2XX 7202 3828 6388 7795 8520 9840
1ZZ −6551 −6514 −8566 −10937 −19797 −9581
1TT −980 −582 −1611 −1560 −4555 −4703
2YY −3539 −4737 −4341 −1564 −2121 −6704

As seen in Table VII, the force constants depend
strongly on the configuration. Therefore, there is gener-
ally no reason to expect the S-CLDM with configuration-
independent force constants to be adequate. However,
Fig. 10 demonstrates that the S-CLDM captures the
dominant part of the full CLDM in the Au-Fe system.
Comparing the parameters in Tables VIII and VI, we

see that the f̄1 parameter in the optimal S-CLDM mod-
els is significantly reduced compared to the correspond-
ing CLDM models. In the absence of f̄1 the interaction
in S-CLDM would be pairwise, and the model would
reduce to the simple Kanzaki-Krivoglaz-Khachaturyan
model. The fact that a reasonably adequate S-CLDM
has this property suggests that the effects of strong con-
figuration dependence of the Kanzaki forces and force
constants largely cancel each other in the Au-Fe system
(and perhaps in other similar 3d-5d alloys). Thus, it may
be reasonable to expect that the conventional Kanzaki-
Krivoglaz-Khachaturyan model with parameters fitted
directly to relaxation energies could perform well in such
alloys, even though its effective Kanzaki forces and force
constants would have no relation to the physical forces
and force constants.
The relatively small residual error of the S-CLDM

(with respect to CLDM) is fitted to a real-space CE,
the CV and misfits for which are listed in Table V.
The contribution Jres(k) from this residual CE, as well
as Jchem(k), are calculated according to Eq. (B2). Fi-
nally, the dominant strain-induced contribution from S-
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FIG. 10. Relaxation energy (per atom) from S-CLDM vs its
input value from the full CLDM, for three concentrations.
The set of structures is the same as the one used in the CE
for ∆Hrel, see Table V.

CLDM is computed from Eq. (5). This is now straightfor-
ward, because the configuration-independent force con-
stant matrix is easily inverted in reciprocal space. Tak-
ing second derivatives with respect to δi as in Eq. (7), we
find, taking into account that

∑

j eji = 0 (see (B1)):

Jeff(k) = f2e(k)Â−1(k)e(k)+Jchem(k)+Jres(k), (C1)

where f = f1 + σ0f̄1, and e(k) is the Fourier transform
of eji.

Appendix D: Proof that ordering striction has no
effect on the ordering tendencies in a random alloy

The ordering tendencies are described by the effective
interaction Jeff(k) (8) evaluated with respect to the disor-
dered alloy. We consider a large disordered crystal or an
average over an ensemble representing a disordered alloy.
The quantities referring to the disordered configuration
will be labeled by an index 0.
First, we prove a rather general statement. Consider

a concentration wave, or any other particle-conserving
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inhomogeneity, in the disordered alloy, and let it be de-
scribed by the parameters δi that were introduced above
Eq. (7). (The disordered alloy can have short-range or-
der; we only require that the deviation from it is fully
determined by the local concentration changes δi.) We
further assume that the parent structure of the alloy is
a Bravais lattice, such as the fcc lattice for Fe-Au alloys.
Translational invariance then demands ∂Q(σ)/∂δi = q,
where Q(σ) is any function of configuration that is invari-
ant under lattice translations, and q is the same constant
for all lattice sites i. To first order in δi, we then have
δQ = q

∑

i δi = 0 due to the conservation of the number
of atoms. If the parent structure is not a Bravais lattice,
the above conclusions apply to all inhomogeneities that
preserve the numbers of atoms in each sublattice.
Now we turn to the ordering striction. In the main

text, the ordering tendencies are studied both in the un-
strained alloy and at a reduced lattice parameter, in order
to examine the possible influence of a compressive strain
in the core region of a nanoparticle. However, in reality it
is not the volume that is fixed, but the pressure. Equilib-
rium of a system in an environment at (external) pressure
Pext corresponds to the minimum of the thermodynamic
potential H̃ = E + PextV . In mechanical equilibrium H̃
is equal to the enthalpy H of the system. The potential
H̃ is a function of Pext, the occupation numbers σi, and
the structural degrees of freedom uαβ and wi.
Let us define the strain tensor uαβ so that it vanishes

in the equilibrium disordered alloy at pressure P0 (whose
volume is V0). If a concentration wave in the disordered
alloy induces a stress δσαβ at uαβ = 0, the ordering stric-
tion contributes to the enthalpy (per unit volume) of a
fully relaxed alloy as

Hstr = −1

2
δσαβ(σ)Sαβγδ(σ)δσγδ(σ) (D1)

where Ŝ is the elastic compliance tensor.
The statement proved three paragraphs above applies

to δσαβ . Therefore, δσαβ is of second and Hstr of fourth
order in δi. Thus, Hstr has vanishing second derivatives
in δi and does not contribute to Jeff(k). In other words,
the ordering striction does not affect the ordering tenden-
cies in the disordered alloy, and we are justified in using
relaxation energy at constant strain in Eq. (4) instead of
the relaxation enthalpy at given Pext.
On the other hand, Jeff(k) does depend on Pext. In-

deed, we have:

dH

dPext
=

(

∂H̃

∂Pext

)

u,w

= V0(1 + uαα), (D2)

where the partial derivative is taken at fixed equilibrium
values of uαβ and wi, and the derivatives are evaluated
at Pext = P0. In the above, uαα = δV/V0 is the reduced
volume relaxation of the given configuration σ of the alloy
with respect to the disordered alloy. This leads to

dH

dPext
= 1− Sααγδδσγδ, (D3)

where the configuration-dependent term is quadratic in
δi. Thus, a pressure change adds a linear contribution to
Jeff(k), which is seen in Fig. 8.
Note that the force constants depend strongly on

the lattice parameter (see Table VII), which violates
the harmonic approximation. The above expressions
should, therefore, be understood in the spirit of the
quasi-harmonic approximation, with the elastic compli-
ance tensor and the striction stress corresponding to the
relaxed nearly-random alloy at the given pressure.

Appendix E: Energetics of substitutional defects in
dilute Fe and Au

Given that all input structures except pure Fe and Au
had 6 atoms per cell or fewer, the accuracy of the CE-
SF predictions may deteriorate in dilute alloys. On the
other hand, in the dilute limit, the slope of the forma-
tion enthalpy line for the random alloy represents the
dissolution enthalpy of an isolated impurity atom, and it
can be calculated separately using large supercells. Such
calculations can only be performed for dynamically sta-
ble lattices, because otherwise an impurity atom would
break the symmetry and collapse the dynamically unsta-
ble equilibrium. In our case, this excludes alloys based
on fcc Fe and bcc Au, which are dynamically unstable
at T = 0 in GGA, as is typical for elemental metals in
the “wrong” crystal structures.44 Here we examine the
well-defined dissolution enthalpies of Fe in fcc Au and of
Au in bcc Fe.
Fig. 11 shows the formation enthalpies of supercells

of different sizes L × L× L containing a single impurity
atom, including corrections calculated for L > 2 from
the continuous linear elasticity theory.65 For Au in bcc
Fe, the formation enthalpy depends weakly on the size
of the supercell, especially if the elastic correction is in-
cluded. However, the formation enthalpy for Fe in fcc
Au continues to change in the largest supercells that we
have considered, while the elastic correction has a negli-
gible effect on it. This dependence on the supercell size
is much stronger than typical for defects in good metals
where the electrostatic interaction is effectively screened.
Different data points in Fig. 11 for the same L were ob-

tained using k-point meshes with densities in the range
of 20 × 20 × 20 to 30 × 30 × 30 (after mapping to the
primitive cell), and we have always used equivalent k-
point meshes for the pure element and the defect super-
cell. The discrepancy between these data points suggests
that the defect formation enthalpy for Fe in fcc Au is not
fully converged even for this rather dense k-point mesh,
but this uncertainty is unlikely to be responsible for the
observed size dependence.
We did not attempt to establish whether the super-

cell size dependence of the dissolution enthalpy of Fe in
fcc Au reflects a simple concentration dependence or is
sensitive to the specific geometric arrangement of the Fe
atoms. Given the complexity of the Fermi surface of Au,
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FIG. 11. Formation enthalpies of substitutional defects (dia-
monds: Fe in fcc Au matrix, squares: Au in bcc Fe matrix)
vs. linear supercell size L. Filled symbols: uncorrected val-
ues; open symbols: including the elastic corrections (only for
L > 2). Multiple symbols for the same L correspond to dif-
ferent (but reasonably dense) k-point meshes.

which has narrow “necks” at the L points in the Bril-
louin zone, it is possible that a relatively small reduction
of the Fermi momentum due to the small substitution of
Fe is sufficient to change the Fermi surface topology; this
would lead to a largely concentration-dependent (rather
than configuration-dependent) energetics. In this sce-
nario, the data in Fig. 11 suggests that the dissolution
enthalpy of Fe in fcc Au rapidly increases with the con-
centration of Fe.

The dotted lines in Fig. 1 of the main text indicate
the slopes of the formation enthalpy in dilute random
alloys corresponding to the dissolution enthalpies cal-
culated here. For Au in bcc Fe, we use the converged
value of 0.98 eV, and for Fe in fcc Au we took 0.57 eV
corresponding to approximately 1% Fe substitution. In
both cases, these slopes agree reasonably well with the
random-alloy lines predicted by the CEs.
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