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We consider core-shell nanowires with conductive shell and insulating core, and with polygonal
cross section. We investigate the implications of this geometry on Majorana states expected in the
presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic
nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-
energy states are localized at the corners of the cross section, i. e. along the prism edges, and
are separated by a gap from higher energy states localized on the sides. The corner localization
depends on the details of the shell geometry, i. e. thickness, diameter, and sharpness of the corners.
We study systematically the low-energy spectrum of prismatic shells using numerical methods and
derive the topological phase diagram as a function of magnetic field and chemical potential for
triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of
Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas
a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic
geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which
we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness.
We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric
field across the shell.

I. INTRODUCTION

Zero-energy Majorana bound states, a concept bor-
rowed from particle physics, are at the center of an in-
tense search in condensed matter physics. Similar to
the original Majorana fermions, these (quasi)particles
are identical to their antiparticles but, unlike their long-
predicted fermionic counterparts, they are character-
ized by non-Abelian exchange properties. Predicted to
emerge in certain types of topologically-nontrivial quan-
tum phases,1–3 the zero-energy Majorana modes benefit
from the topological protection of the underlying phase
and, consequently, represent an appealing possible plat-
form for fault-tolerant quantum computation.1,4–6 While
topological superconductors appear to be rather rare
in nature, several practical schemes for realizing topo-
logical superconductivity and Majorana zero modes in
solid state heterostructures have been proposed in re-
cent years.7–9 The basic physics behind these schemes
has been discussed in detail in a number of review
papers,10–13 So far, the most promising type of hybrid
system involves a semiconductor nanowire with strong
spin-orbit coupling proximity-coupled to a standard s-
wave superconductor and in the presence of a longitudi-
nal magnetic field.14,15 When the magnetic field exceeds a
certain critical value, the system undergoes a topological
quantum phase transition to a topologically-nontrivial
superconducting phase. In this phase, the system is pre-
dicted to host Majorana modes as pairs of zero-energy
mid-gap states localized at the two ends of the nanowire.
These Majorana zero modes are topologically-protected,

in the sense that they are robust against any local per-
turbation that does not close the superconducting gap.

Extensive experimental investigations of Majorana
modes in semiconductor nanowires have been performed
in the past few years. So far, the most promising exper-
imental signature consistent with the presence of Ma-
jorana modes in semiconductor-superconductor hybrid
structures consists of zero-bias conductance peaks ubiq-
uitously observed in charge transport measurements.16–26

The conductance peak is produced by electron tunneling
into the proximitized semiconductor wire from conduct-
ing electrodes attached to its end when a zero-energy Ma-
jorana bound state is localized in that region. We note
that this type of experiment gives only a primary indica-
tion on the possible presence of Majorana bound states
and provides no direct evidence of a topological quantum
phase transition between the trivial to the topological su-
perconducting phases11 and no signature associated with
the predicted non-Abelian exchange properties of the Ma-
jorana zero modes.

In proximitized semiconductor nanowires, which are
quasi one-dimensional systems in symmetry class D, the
topological superconducting phase that supports the Ma-
jorana zero modes has a Z2 classification. We note that,
while ideally the system is one-dimensional, real wires
are, of course, three-dimensional and exhibit a variety of
non-universal phenomena that can affect the stability of
the topological phase and, implicitly, the Majorana zero
modes. Multi-band physics27 is an essential aspect of this
phenomenology. Another example is the orbital effect of
a magnetic field applied parallel to the nanowire, which
has been shown28 to be detrimental to the stability of the
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the Majorana states as it reduces the energy of the low-
momentum modes, thus reducing the gap that protects
the Majoranas.

The semiconductor nanowires used to realize and de-
tect Majorana bound states are typically grown by
bottom-up methods and have a prismatic geometry, most
often with a hexagonal cross section, reflecting the under-
lying crystal structure.29 With two different concentric
materials one can also obtain a prismatic core-shell het-
erostructure, where the shell is conductive and the core
is insulating. Core-shell nanowires have been recently
considered for Majoranas based on semiconductor holes,
but as a 1D model only.30 Seen from a different angle,
the polygonal shape of the shell may be an advantage for
Majorana states. In this geometry the electronic states
with the lowest energy are localized in the corners of the
shell and those with higher energies are localized on the
sides.31 The corner localization was studied in the 1990s
in bent nanowires.32,33 In our case, the cross section of a
core-shell nanowire can be seen as a (sharply) bent and
closed channel forming a polygonal ring.

The energy separation between corner and side states
is large when the shell thickness is much smaller than the
radius of the nanowire, and when the corners are sharp,
i. e., it increases when the number of corners decreases.
Interestingly, apart from the hexagonal shape, core-shell
nanowires with square34 or triangular35–39 cross section
can also be fabricated. In particular, the gap between
corner and side states for a triangular shell of 8-10 nm
and radius 50 nm can be in the range 50-100 meV,40 i.
e. larger than many detrimental perturbations for Ma-
jorana states, including the orbital magnetic energy. In
principle, a prismatic core-shell nanowire could host sev-
eral Majorana states at each end if the corner states are
completely isolated from each other, which happens in
the limit of a very narrow shell. Therefore the core-shell
nanowires can be an experimental system with multi-
chain ladders discussed in recent theoretical papers.41–43

To the best of our knowledge, the implications of the cor-
ner localization in core-shell nanowires on the formation
and stability of Majorana bound states have not been ex-
plored yet. The main purpose of this work is to fill this
gap.

The paper is organized as follows. In Section II we
introduce the localization of electrons in polygonal rings
and in Section III we describe the nanowires. In Section
IV we explain the SOI model. In Section V we present en-
ergy spectra of infinite nanowires in the normal state and
in Section VI the Bogoliubov-de Gennes spectra in the
superconductor state. In Section VII we show and dis-
cuss phase diagrams for the three polygonal geometries.
The conclusions are collected in Section VIII. Finally,
in the Appendix, we present a simplified (toy) model of
parallel chains which qualitatively reproduces the basic
phase diagrams.

II. POLYGONAL SHELLS

Below we review the properties of the low-energy states
in a polygonal ring, which is the cross section of a core-
shell nanowire. We performed the numerical diagonaliza-
tion of the Hamiltonian

Ht = − ~2

2meff

(
∂2
x + ∂2

y

)
, (1)

where meff is the effective electron mass in the shell ma-
terial and the partial derivatives in the shell plane (x, y)
are calculated numerically within a finite-difference ap-
proximation scheme on a grid, with Dirichlet boundary
conditions at the edges of the polygons.40,44 To reach con-
vergence the grid included several thousands of points. In
Fig. 1 we show typical probability distributions of cor-
ner and side states for a symmetric triangle, square, and
hexagon, all with the same side thickness t = 9 nm and
circumference radius R = 50 nm, for InSb parameters
(see Sec. III). For each polygon there are 2N corner
states, where N is the number of corners, followed on
the energy scale by 2N side states, the counts including
the spin.

For this aspect ratio, AR = t/R = 0.18, the corner
states of the triangle consist in nearly isolated peaks and
quasi-degenerate six energy levels, with a small disper-
sion γT = 0.02 meV, separated from the side states by
a gap ΓT = 70 meV, Fig. 2(a). Next, for the square,
the corner localization softens a little bit, the eight cor-
ner states have a broader dispersion, γS = 1.4 meV, and
the energy separation from the side states decreases to
ΓS = 22 meV, Fig. 2(b). Further, for the hexagon, the
corner peaks drop more and have tails onto the poly-
gon sides, the corresponding twelve corner states have a
considerable dispersion, γH = 8 meV, comparable to the
interval between corner and side states ΓH = 10 meV,
Fig. 2(c). Higher energy states (not shown in the fig-
ures) have increasingly spread localization. Apart of the
spin degeneracy, the symmetries of the polygons lead to
orbital double degeneracies, such that the degeneracy se-
quences are (24, 42,...), (242, 242,...), and (2442, 2442,...),
for triangle, square, and hexagon, respectively.40 By de-
creasing the AR of the polygons the corner localization
becomes stronger, the probability distribution converges
to totally isolated peaks for each polygon, and the en-
ergy separation between the highest corner state and the
lowest side state considerably increases.44

III. MODELS OF CORE-SHELL NANOWIRES

We build the Hamiltonian of the nanowire, Hw, from
several terms,

Hw = Ht +H` +HZ +HSOI. (2)

We consider a magnetic field along the nanowire, i. e.
along the z axis, B = (0, 0, B), and incorporate it in the
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(a) (b) (c)

FIG. 1. Probability distributions of corner and side states of
an electron in a polygonal ring. The upper row illustrates
the corner states (including the ground state) and the lower
row the side states: (a) triangle, (b) square, (c) hexagon. All
polygons have radius R = 50 nm (center-to-corners) and side
thickness t = 9 nm.
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FIG. 2. Low-energy spectra for the polygonal rings shown
in Fig.1. The corner states are nearly degenerated for the
triangle (a), and have an increasing dispersion for the square
(b) and hexagon (c). The insets show the energy span of the
corner states which is denoted by γT,S,H. The gap between
corner and side states, indicated as ΓT,S,H, decreases in the
same order. In the numerical calculations we used meff =
0.014, as for InSb

transverse Hamiltonian Ht via the canonical momentum
pϕ + eAϕ, where Aϕ = Br/2ϕ̂ is the vector potential in
polar coordinates (ϕ, r) transversal to the nanowire, and
pϕ = (−i~/r)∂ϕ.

The second term of Eq. (2) corresponds to the longi-
tudinal degree of freedom, H` = p2

z/(2meff). For an in-
finite nanowire its eigenstates are the plane waves |k〉 =

exp(ikz)/
√
L, where k is the wave vector, L→∞ being

the nanowire length. For a finite length L we assume hard
wall boundaries at z = ±L/2 and the eigenstates become

|n〉 =
√

2/L sin [n(z/L+ 1/2)π], with n = 1, 2, 3, ....

Next, the term HZ = −geffµBσB is the spin Zeeman
term, with geff the effective g-factor in the shell material,
µB Bohr’s magneton and σ = ±1 the spin quantum num-
ber, and finally HSOI is the spin-orbit term, which will
be discussed in the next section.

In the calculations we use material parameter values
corresponding to (bulk) InSb, which is one of the most
interesting semiconductors for Majorana detection due to
the large g-factor and strong SOI. We used meff = 0.014
and geff = −51.6, i. e. the values known for the bulk ma-

terial, although they may be different for our thin shell
structures. To find them properly one needs to perform
ab initio calculations starting with the proper atomic
structure in the prismatic geometry. This is a complex
problem which is beyond the scope of our present work.
We thus compute the electronic states at a mesoscopic
scale, i. e. by averaging over many unit cells of the atomic
lattice, such that the dominant effects are due to the ge-
ometry. This approach has been able to describe the rele-
vant physics related to edge or side localization.31,35 Still,
the precise quantitative validity for core-shell nanowires
of simplifying approximations such as the use of piecewise
constant potentials and material parameters is something
to be confronted with more refined models in the future.
The intention of our present work is to predict several
scenarios of Majorana physics in shells of prismatic ge-
ometry, using the bulk parameters as test values, i. e.
mid- way between a qualitative and a quantitative style,
and to support each scenario with plausible examples.
The qualitative agreement with a toy model (discussed
in Appendix) indicates a rather robust physical behavior
of the phase diagrams discussed below.

IV. SPIN-ORBIT INTERACTION

In order to obtain Majorana states we need a Rashba-
type SOI model for the prismatic geometry. In het-
erostructures where materials with different work func-
tions are placed next to each other interface electric fields
are generated. For a planar 2D electron system created
in a semiconductor heterostructure the origin of SOI is
the effective (net) electric field, normal to the interface,
associated with an asymmetric confinement. For a core-
shell heterostructure we assume similar intrinsic fields,
present at the core-shell and/or at the shell-vacuum in-
terfaces, perpendicular to the lateral surfaces of the pris-
matic shell, and thus changing direction at the corners,
as illustrated in Fig. 3. In core-shell nanowires there is
a geometric asymmetry in the radial direction, inwards
vs. outwards, that lends plausibility to an effective radial
field. In principle such a field could also be obtained or
controlled with gates. In cylindrical coordinates the field
has radial and azimuthal components, E = (Eϕ, Er, 0).
The SOI Hamiltonian can be calculated as45,46

HSOI =
λ

~
σ (p×E) , (3)

where λ is the SOI coupling constant and σ are the Pauli
matrices. We implement both Eϕ and Er as functions of
ϕ with two independent strength parameters. This is
a phenomenological model aimed at capturing the basic
SOI effect dictated by the geometry of the heterostruc-
tures, which is necessary for the realization of topological
superconductivity and Majorana bound states. In reality
the Rashba coupling, and also the g-factor, are expected
to depend on the shell thickness and, possibly, on the
radius of the wire. To evaluate them rigorously a com-
putationally involved approach is necessary, for example



4

FIG. 3. The effective Rashba electric field for a square and a
triangle in the prismatic SOI model. The corner areas span
angular intervals of 40o.

based on a multiband k · p model45, taking into account
the core-shell materials and geometry. This is an impor-
tant task, but still, outside our present focus.

In particular, for a cylindrical shell, following the same
line of arguments, the effective interface field should be
radial and constant, i. e. E = (0, E, 0). In this case Eq.
(3) gives

HSOI =
α

~
(σϕpz − σzpϕ), (4)

where α = λE. We shall call (4) and (3) the cylindrical
and prismatic SOI models, respectively. The cylindrical
model can also be seen as a straight forward transforma-
tion of the standard two-dimensional model where the
planar Cartesian coordinates are replaced by cylindrical
coordinates.46,47

For the prismatic nanowires, as long as we consider
only corner states in the shell, the SOI is restricted to
the corner areas, where we can assume Eϕ ≈ 0 and a
constant Er. Therefore, by neglecting the presence of the
electrons on the sides of the polygonal shell, where the
wave functions exponentially vanish (Fig. 1), the cylin-
drical model should still be reasonable and qualitatively
correct. In the numerical calculations we included the
SOI using the cylindrical model, with α = 50 meV nm
(as for InSb). We also tested the energy spectra with the
prismatic SOI model (Fig. 3), and we obtained similar
results. In this context it is worth mentioning that the
cylindrical SOI model cannot lead to Majorana states for
a wire with circular symmetry.48 As we shall see, this is
no longer true for the prismatic geometry.

V. ENERGY SPECTRA OF NANOWIRES IN
THE NORMAL STATE

In order to obtain the eigenstates of a nanowire we
first diagonalize the Hamiltonian of the polygonal cross
section, Ht, on the transverse grid. Then, we combine
the N corner states, which are the lowest-energy states
of Ht, |a〉, a = 1, 2, ..., N , with the longitudinal modes,
which are the eigenstates of H`, |k〉 or |n〉, for the infi-
nite or finite length, respectively. By adding the spin we
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FIG. 4. Energy dispersions for the corner states of infinite
nanowires with polygonal shells including SOI within the
cylindrical model. The top row shows 2N bands for the three
polygonal shapes: (a) triangular, N = 3, (b) square, N = 4,
(c) hexagonal, N = 6. Due to the geometric symmetries all
bands are degenerate, except one pair for the triangle, cross-
ing at k = 0, as shown in the zoomed inset. The bottom plots
show the results with a transverse electric field of 0.22 mV/R
which perturbs the symmetry of each polygon, lifting all spin
degeneracies at k 6= 0. Here the radius R = 50 nm and side
thickness t = 9 nm. The material parameters are as for InSb.

form a basis set in the total Hilbert space, |g〉 = |akσ〉
for the infinite wire and |g〉 = |anσ〉 for the wire of finite
length. We use these bases to calculate the matrix ele-
ments of the total Hamiltonian, 〈g|Hw|g′〉. The matrices
are diagonalized numerically to give the eigenstates of
the two models. For the infinite nanowire Hw is already
diagonal in k, and we calculate the eigenstates within the
subspace |aσ〉 for an array of k values. For the case with
finite length we diagonalize a single, but larger matrix
including the longitudinal modes |n〉. The basis set is
truncated appropriately for convergence. We used only
the corner states as transverse modes |a〉 because the SOI
and other perturbations are too weak to mix them signif-
icantly with the side states. By including the side states
the largest correction, expected for the highest corner
states in the hexagonal shell, is at most 1 meV. For the
nanowires with finite length we included all longitudinal
modes up to n = 200.

In Fig. 4 we display energy eigenvalues of Hw for in-
finite nanowires with the three polygonal cross sections
discussed: triangular, square, and hexagonal. In the ab-
sence of SOI all energies (or bands) are parabolic func-
tions of k. With SOI they remain even functions, but
non-monotonic for k > 0 or k < 0. For symmetric poly-
gons, i. e. with equal corner angles, the energy bands are
shown in Fig. 4(a-c). In these cases the eigenstates of Hw

appear pairwise degenerate for each fixed k, although the
spin is not conserved. For the square and the hexagon
four and six bands, respectively, can be observed in the
figures, which in reality are eight and twelve, i. e. the
number of corners times spin. In the triangular case, due
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to the absence of inversion symmetry, one degeneracy is
lifted for any k 6= 0, and only two degenerate bands are
obtained, and thus four energy curves are seen in Fig.
4(a). At k = 0 the nondegenerate bands have the famil-
iar crossing (where SOI vanishes), and this is the only
exact level crossing point in Fig. 4.

For the purpose of our work the strictly symmetric
polygons should be regarded only as mathematical mod-
els. The prismatic nanowires grown in labs are naturally
not perfectly symmetric even if the polygonal cross sec-
tion is a result of a specific lattice structure. In addition,
in order to detect Majorana states, the experimentalists
use gates and contacts that are expected to break the
polygonal symmetry. Therefore, in our model we per-
turb the polygonal symmetries by imposing an electric
field along one side of each type of polygon, which gen-
erates a voltage of 0.22 mV across the length of one ra-
dius. This perturbation lifts the orbital degeneracies of
the transversal modes of the nanowires (shown earlier in
Fig. 2), and all energy bands for each polygonal shape are
now spin split, as seen in Fig. 4(d-f). Still, the splitting
decreases for large polygon angles and it is not visible for
all hexagon bands in (f).

VI. MAJORANA STATES

The Majorana states are obtained using the Bogoli-
ubov – de Gennes Hamiltonian (BdG), HBdG, which we
obtain with the matrix elements of Hw and with the
isospin quantum number τ = ±1. For the infinite wire
they can be written as

〈aστ |HBdG(k)|a′σ′τ〉 = τ Re〈aστ |Hw(τk)|a′σ′τ〉
+ i Im〈aστ |Hw(τk)|a′σ′τ〉 − τµδaa′δσσ′ ,

(5)

〈aστ |HBdG(k)|a′σ′τ ′〉 = τσδσ,−σ′δaa′∆, τ 6= τ ′. (6)

Eqs. (5-6) define the diagonal and off-diagonal elements
in the isospin space, respectively. µ is the chemical poten-
tial, 2∆ is the superconductivity gap, and δ denotes the
Kronecker symbol. Here the wave vector k is included in
the Hamiltonian because it behaves like a parameter. For
the nanowire of finite length these equations are replaced
by

〈gτ |HBdG|g′τ〉 = τ Re〈gτ |Hw|g′τ〉
+ i Im〈g|Hw|g′τ〉 − τµδgg′ ,

(7)

〈gτ |HBdG|g′τ ′〉 = τσδσ,−σ′δaa′δnn′∆, τ 6= τ ′. (8)

where we used the previous notation |g〉 = |anσ〉 for the
basis states of the nanowire in the normal state.

A. BdG spectra for nanowires of infinite length

In Fig. 5 we show several examples of BdG spectra for
a triangular nanowire of infinite length. We use the bare
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FIG. 5. Triangular shell. BdG eigenenergies vs. the wave
vector for a triangular shell of infinite length. The supercon-
ductor gap closes and reopens depending on the values of the
chemical potential µ and magnetic field B. The nanowire ra-
dius R = 50 nm is fixed. The shell thickness is t = 9 nm, i.
e. AR = 0.18 for the cases (a)-(d). Other parameters: (a)
µ = 236.2 meV, B = 0, (b) µ = 234.6 meV, B = 1.32 T, (c)
µ = 234.7 meV, B = 1.32 T, (d) µ = 236.2 meV, B = 1.32 T.
Next, t = 12.5 nm, i. e. AR = 0.25, for (e) µ = 126.7 meV,
B = 0.34 T, and (f) µ = 126.7 meV, B = 1.32 T.

superconductor energy parameter ∆ = 0.5 meV. Only
the transversal corner states are considered in the calcu-
lations, the mixing with the side states being completely
negligible for the chemical potentials and magnetic fields
used. The spectra are selected for the further discus-
sion on the phase diagrams with several representative
values of the chemical potential and magnetic field B.
The triangular symmetry is broken by the small electric
bias discussed in the previous section. In the first ex-
ample, Fig. 5(a), the BdG states are obtained with µ
near the intersection of the six energy curves seen in Fig.
4(d) and B = 0. This case corresponds to the trivial
phase of the proximity-induced superconductivity in the
nanowire. The spectra are particle-hole symmetric, but
for clarity we display a larger interval for particle than
for hole states.

By varying the chemical potential and/or increasing
the magnetic field, and thus the Zeeman energy, the
gap closes first at k = 0, and then it opens again, and
the systems enters into the topological phase. In Figs.
5(b,c) we show two situations with B = 1.32 T, and
a very small difference between the chemical potentials,
µ = 234.6 and 234.7 meV, respectively, such that one can
see a small gap at k = 0 reopening due to the repulsion
of different corner states. In Fig. 5(d), with the same
magnetic field, and µ = 236.2 meV, the gap at k = 0
is largely open. In these cases Majorana states are ex-
pected, located at the ends of the nanowire, and with
zero energy, which we shall observe with the nanowire
model of finite length. Notice the smaller gaps at finite
k in Figs. 5(d,e,f). They indicate orbital effects of the
magnetic field which may possibly forbid the formation
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FIG. 6. Square shell. BdG energy spectra similar to those
shown in Fig. 5, for a nanowire of radius R = 50 nm. The
shell thickness is t = 9 nm, i. e. AR = 0.18 for the cases (a)
µ = 277.6 meV, B = 0, (b) µ = 277.6 meV, B = 0.33 T, (c)
µ = 276.5 meV, B = 0.79 T, (d) µ = 276.5 meV, B = 1.32
T. Next, t = 8 nm, i. e. AR = 0.16 for (e) µ = 346.4 meV,
B = 0.66 T, and (f) µ = 347.3 meV, B = 0.66 T.

of Majorana states if such gaps become very small (much
smaller than 2∆).28 By increasing the thickness of the
shell, from 9 to 12.5 nm, the energy separation between
the corner states, and hence between the bands shown
grows, as seen in Figs. 5(e,f). At the same time the cor-
ner localization weakens and the orbital effects increase,
so the Majorana suppression at large magnetic fields be-
comes more likely, Figs. 5(e).

In Fig. 6, we show several cases with the square geome-
try, with four corner states (not counting the spin), which
lead to more complicated spectra. The topologically triv-
ial phase is shown in Fig. 6(a), for a shell thickness of 9
nm. Fig. 6(b), with nearly closed gaps at finite k, and
Fig. 6(c), with a larger gap at a larger k, correspond
to a topological phase. The square geometry implies a
larger energy separation between the corner states com-
pared to the triangular geometry with the same AR, and
thus the orbital effect may be more detrimental for the
square than for the triangular shell. By slightly reducing
the shell thickness from 9 to 8 nm we can obtain more
robust topological phases for the square geometry, Fig.
6(d,e,f).

In Fig. 7, we show several spectra corresponding to
the hexagonal shell, now with six corner states involved.
The magnetic fields necessary to close the superconductor
gap has now lower values than for the other geometries,
a tendency that can also be observed for the square vs.
triangular case. The reason is that the corner localiza-
tion softens when the angle of the polygons increase, and
orbital effects of the magnetic field are more important.
In other words, the split of the energy bands occurs not
only due to the spin Zeeman energy, but also because
of the orbital Zeeman energy. We shall refer to these
spectra later when we shall discuss the phase diagrams.
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FIG. 7. Hexagonal shell. BdG spectra, as in Figs. 5-6, for
a nanowire of radius R = 50 nm and shell thickness t = 9 nm,
i. e. AR = 0.18. (a) µ = 286.9 meV, B = 0, (b) µ = 286.9
meV, B = 0.062 T, (c) µ = 286.9 meV, B = 0.26 T, (d)
µ = 287.3 meV, B = 0.039 T, (e) µ = 287.3 meV, B = 0.17
T, (f) µ = 287.3 meV, B = 0.33 T.
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FIG. 8. Examples of BdG energy spectra for a nanowire of
10000 nm length and 50 nm radius for selected values of the
chemical potential and Zeeman energy and two shell geome-
tries: triangular, the top row, with thickness t = 9 nm and
(a) µ = 234.6 meV, (b) µ = 234.7 meV, (c) µ = 236.2 meV,
all with B = 1.32 T; square, the bottom row, with (d) t = 9
nm, µ = 277.6 meV B = 0.33 T, and also t = 8 nm where (e)
µ = 346.4 meV and (f) µ = 347.3 meV both with B = 0.66 T.

B. BdG spectra for nanowires of finite length

Next, we shall correlate the BdG spectra shown for in-
finite nanowires with some results for nanowires of finite
length L = 200R = 10000 nm, with triangular and square
shells, shown in Fig. 8. In the top row, Fig. 8(a-c), we
show three possible situations obtained for the triangular
geometry. One pair of states at zero energy is interpreted
as a pair of Majorana (M) states, one at each end of the
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wire, like in Fig. 8(a). For the infinite wire this situation
is shown in Fig. 5(b). In this case the M states are formed
due to the particle-hole interaction within a single corner
state.

When two corner states are involved at the same time,
two particle-hole symmetric pairs of states may be cre-
ated, one pair with positive and another one with neg-
ative energies, and both close to zero, as can be seen in
Fig. 8(b). For the infinite nanowire this situation corre-
sponds to Fig. 5(c). We shall call such states pseudo (P)
Majorana, and we shall denote the resulting combination
of two P pairs as PP. We also notice that the gap between
the other particle and hole states is quite small in Figs.
8(a-b), where one or two corner states contribute to the
low-energy states, respectively.

Fig. 8(c) shows one M and two P states, and a con-
siderably larger gap. We shall denote this combination
as PMP. In this case all three corner states mix together.
The corresponding spectra for the infinite wire have been
shown in Fig. 5(d). For a very thin shell, i. e. very low
AR, the corner states would become isolated from each
other and each one would create an independent M state.
By slightly increasing the AR the wave functions of differ-
ent corner states develop a very small exponential overlap
along the sides of the polygonal shell, not visible in Fig.
1(a), which is equivalent to an interaction between the
corner states. This interaction lifts the degeneracy of the
three former M states, transforming two of them in P
states, but leaving one M at zero energy, hence giving
a PMP configuration. The energy of the P states can
still be close to zero if the energy separation between
the corner states γ is smaller that the superconductiv-
ity parameter ∆ such that the pairing interaction mixes
all corner states, provided the chemical potential is such
that they are all populated. For the triangular shell with
t = 9 nm thickness we have γT = 0.027 meV.

For the square geometry an M state exists in the sit-
uation shown in Fig. 6(c) and a PP combination in that
of Fig. 6(d). The case of Fig. 6(b) with vanishing gap at
kR ≈ 0.3 is shown in Fig. 8(d). A kind of M precursor
state can be observed, eventually becoming a real M state
for a nanowire longer that 10000 nm. The PMP config-
uration of Fig. 8(e) corresponds to Fig. 6(e). Finally, in
Fig. 8(f) we obtain four pairs around zero energy, to be
called a 2PP combination, indicating four corner states
competing to create Majorana states. Again, like for the
triangular case, for a very low AR, the square shell yields
four independent or degenerate Majoranas at zero energy,
whose degeneracy is lifted at finite AR. But unlike the
triangular case, now, due to the particle-hole symmetry,
no pure Majorana can survive out of the former four, and
the result is a 2PP group, with energy dispersion smaller
than the superconductor gap.
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FIG. 9. Energy dependence of the lowest eigenvalue of matrix
M in a semi-infinite triangular wire. The zeroes indicate the
physically acceptable energies for states attached to z = 0
while decaying for increasing z. Panels (a) to (d) correspond
to a PMP configuration with increasing shell radius and fixed
t = 40 nm and B = 0.73 T. Panels (e) to (h) correspond to a
fixed R = 110 nm and t = 37.5 nm, and decreasing magnetic
fields, with configurations PMP (e), PP (f), M (g) and trivial
(h). Other parameters: µ = 22.7 meV, α = 50 meVnm, ∆ =
0.5 meV.

C. Semi-infinite nanowires

We have confirmed the above scenario of zero-energy
(M) and near-zero-energy (P) pairs of states in the limit
of very long wires directly studying the semi-infinite sys-
tem. In this limit, any longitudinal finite size effect due
to interference between opposite wire ends is totally re-
moved and we can unambiguously assign the fragmenta-
tion of the P pairs to the interaction between the local-
ized states along the edges of the prism. The semi-infinite
system has been described with the complex-k approach
introduced in Ref. 49 for the case of 2D planar wires.
In this approach the existence of a state attached to the
semi-infinite system boundary is signaled by a zero eigen-
value of a matrix Mkk′ , defined by the set of evanescent
modes {k} as labeled by their complex wavenumbers.

In Fig. 9 we show the lowest eigenvalue of matrixM as
a function of the energy. Since the results are symmetric
by reverting the sign of E we only show the positive en-
ergies. Figures 9(a-d) show the evolution with increasing
shell radius R of the zeros of matrix M for a selected
case. The chosen parameters correspond to a PMP con-
figuration in a triangular wire, with an M zero exactly
at zero energy and two additional ones at finite energies
(a corresponding zero at negative energy is not shown).
By increasing R the prism edges become more and more
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FIG. 10. Density corresponding to the M state of Fig. 9(a)
(at zero energy). Dots show the z evolution of the 1D density
integrated in the transverse directions, while the inset shows
in a color scale the transverse pattern for z = 150 nm, near
the maximum of the integrated 1D density.

independent, causing a collapse towards zero energy of
all three states. Figures 9(e-h) show the variation of the
null eigenvalue for decreasing magnetic field with a fixed
radius. The chosen shell width is rather large for a better
separation of the split P modes. Increasing the field the
configurations in Fig. 9 are: trivial (h), M (g), PP (f),
PMP (e).

A characteristic density of an M mode is shown in Fig.
10. The transverse-integrated density shows a shape sim-
ilar to the known behavior from purely 1D models, with
a decay length of around 1 µm for the chosen parameters.
As anticipated, the transverse pattern exhibits localiza-
tion on the edges of the triangular wire, with sizable over-
laps on the sides representative of edge-edge interactions
in small enough wires (R = 110 nm).

VII. PHASE DIAGRAMS

In this section we show phase diagrams in the param-
eter space µ–B obtained by calculating the minimum
gap of the BdG energy spectra for the infinite nanowire,
at all k values. At any chemical potential µ the phase
transition from the trivial (no Majorana) to the topo-
logical state (with Majorana) is expected to occur when
the magnetic field is strong enough to close the super-
conductor gap at k = 0. In principle the minimum
or critical magnetic field necessary for closing the su-
perconductor gap corresponds to a spin Zeeman energy
EZ = 2∆ = 1 meV. For our material parameters this
means B = 0.33 T. This result is however true as long
as the main effect of the magnetic field longitudinal to
the nanowire is to create only a spin splitting, and no
orbital energy, e. g. for 1D or 2D (flat) nanowires. For
a prismatic core-shell nanowire this can happen only if
the corner states are almost isolated. In our case this

FIG. 11. Triangular shell with R = 50 nm. In panels
(a)-(c) the dark blue color indicates the topological Majorana
phases and the yellow color the trivial phases, the frontiers
being defined by the gap closed at k = 0. In (d) the colors
indicate the minimum gap at all k values, on the log10 scale.
(a) Symmetric triangle with t = 9 nm, with corner states
almost three-fold degenerated. (b) The same triangle in the
presence of the weak transverse electric field which removes
the degeneracy such that the phase boundary splits in three.
(c-d) A thicker shell, with t = 12.5 nm.

situation occurs for the narrow triangular shell.

In Fig. 11(a) we show the phase diagram for the trian-
gular symmetric nanowire, where the topological phase is
shown with the dark blue color and the trivial phase with
yellow. By breaking the symmetry of the triangle, with
the weak transversal electric field, the phase boundary
splits into three frontiers, each one generated by differ-
ent corner states, Fig. 11(b). The frontiers indicate the
gap closed at k = 0. In both cases the topological phase
above all lines is a PMP type presented in Fig. 8(c), with
low-energy P states, implied by the small energy disper-
sion of the corner states γT < ∆.

In addition, for the asymmetric triangle, at any fixed
chemical potential, a succession of phases occurs when
the magnetic field is increased from zero. After crossing
the first frontier one enters a topological state of an M
type, illustrated in Fig. 8(a). Then, after crossing the sec-
ond border a PP phase is obtained, [Fig. 8(b)], which is
in principle a topologically trivial phase. However these
low-energy P states are expected to converge to two Ma-
jorana pairs in the limit of a very small ratio t/R, and
the phase to become topological.

Increasing now the thickness, to t = 12.5 nm, the en-
ergy dispersion of the corner states increases to γT = 0.56
meV and the three frontiers become more separated, as
seen in Fig. 11(c). The energy interval between the inner
and outer frontier is close to γT. Moreover, the orbital
effects of the magnetic field increase and the critical mag-



9

FIG. 12. Square shell with R = 50 nm. The topological
(Majorana) and trivial phases are shown in dark blue and
yellow, respectively, with frontiers defined by the gap closed
at k = 0, whereas the smallest gap at all k values is shown
with continuous colors (on log10 scale), like before. (a-b) t = 9
nm, (c-d) t = 8 nm.

netic field slightly reduces to B = 0.27 T. But, the gaps
can possibly shrink at nonzero k values, as shown in the
example of Fig. 5(e), corresponding to the bottom of the
topological phase, for µ = 126.7 meV and B = 0.34 T.
Such small energy gaps at k 6= 0 indicate the possible
instability of the Majorana states. Therefore, to incorpo-
rate that information, in Fig. 11(d) we repeat the phase
diagram on a color scale indicating the minimum gap at
any k. In this case the gaps are still reasonably large in
most of the regions such that the main topological phase
is still robust. One can see for example the BdG spec-
trum corresponding to µ = 126.7 meV and B = 1.32 T
shown in Fig. 5(f). The spectrum for the finite wire is
now qualitatively like in Fig. 8(e), with a clear M state,
but with the former P states now with larger energy,
that will further increase by increasing the thickness of
the shell.

For the square shell with thickness t = 9 nm the phase
diagrams are shown in Fig. 12. We see now four phase
boundaries, corresponding to the four corner states, sep-
arated by an energy γS. At the bottom of the phase
diagram we notice a lower critical magnetic field than for
the triangular shell, of about 0.1 T, a consequence of the
increased orbital Zeeman energy. But at the same time,
in the topological phase, the gaps at finite k values can
be small. For example for the magnetic field B = 0.33
T at µ = 277.6 meV the BdG spectrum for the infinite
wire is shown in Fig. 6(b) and indicates a very small gap
at kR ≈ 0.3. Still, in the version with finite length, Fig.
8(d), we see two energies close to zero, which would be-
come an M state for a sufficiently long nanowire. Indeed,
that phase region is theoretically a topologically nontriv-

FIG. 13. Hexagonal shell with R = 50 nm and t = 9
nm. (a-b) The phase diagrams are shown with the same color
schemes as before (Figs. 11-12). (c-d) The results after ex-
cluding the orbital Zeeman effect of the magnetic field.

ial one, and in other regions the gap at finite k may
increase. For example, slightly to the left, for µ = 276.5
meV and B = 0.79 T, the spectrum is shown in Fig.
6(c) and it has a finite length counterpart similar to that
shown in Fig. 8(a).

By crossing now each frontier defined by the gap closed
at k = 0, with magnetic field increasing from zero, topo-
logically nontrivial phases containing M states alternate
with topologically trivial phases containing at most P
states, depending on whether the number of crossed fron-
tiers is odd or even, respectively. For example, with
µ = 276.5 meV and B = 1.3 T, the spectrum is that
of Fig. 6(d), with a PP configuration in the finite case.
Thus, the phase surrounded by all four frontiers, situated
in the middle of Fig. 12(a), is a trivial phase, where we
expect only P states.

By reducing the aspect ratio of the polygon, for ex-
ample by reducing the thickness by only one nanometer
the energy spread of the corner states rapidly drops to
γS = 0.56 meV (at B = 0) and the phase boundaries
approach each other, Fig. 12(c). The central region con-
tains states of 2PP type, one of which being shown in Fig.
8(f) for µ = 347.3 meV and B = 0.66 T. Reducing the
aspect ration of the square polygon further these states
converge to four independent M states. Notice also that
the critical field increases relatively to the previous case
of t = 9 nm because the orbital Zeeman effect drops.

The orbital effect further increases for the hexagonal
shell with a similar aspect ratio as the other polygons,
t = 9 nm, such that the critical magnetic field is about
12 mT for µ = 287.3 meV, Fig. 13(a). That phase bound-
ary is created by the corner state with the lowest energy.
As for the square geometry, the energy gap in the topo-
logical phase may possibly be almost closed at nonzero k
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as shown in Figs. 7(d) and (e), and also indicated by the
blue colors of Fig. 13(b). Still, robust Majorana regions
exists in this example at chemical potentials below 288
meV. BdG spectra in one of such zones, at µ = 286.8
meV, are shown in Fig. 7(b) and (c), for B = 0.062 T
when the gap closes at k = 0 (i. e. near the phase bound-
ary), and at B = 0.26 T, when M states are present.
In the later case the eigenstates of a nanowire of finite
length are qualitatively similar to that of Fig. 8(a).

In general both orbital and spin Zeeman energies may
lead to the splitting of electron and hole bands of the
superconductor, which would combine into M states at a
sufficiently large magnetic field. It turns out that for our
hexagonal core-shell wire the orbital splitting is domi-
nant. Consequently, in this case, the M states can be
obtained even if we neglect the g-factor. With geff = 0
we could obtain a critical field of about 60 mT. This is an
important detail, since the g-factor in the shell material
may be different, possibly lower than that of the same
bulk material. A “strange” detail of the phase diagram
can be the small elliptic island seen on the left side of
Fig. 13(b), around µ ≈ 287.2 meV and B ≈ 0.4 T. The
reason for it is that, due to the combined orbital and spin
Zeeman splitting, the energy levels at k = 0, forming the
M states, can possibly increase with the magnetic field,
instead of decreasing, as expected from the spin Zeeman
effect alone. Within that island the topological phase is
suppressed, although it exists all around outside it.

Finally, to close this section, in Fig. 13(c-d) we show
the phase diagram for the hexagon after removing from
the Hamiltonian (2) all terms related to the orbital Zee-
man effect of the magnetic field, to compare with the real
phase diagram. Indeed, the critical field returns to the
value expected from the spin Zeeman splitting only. But
with increasing the chemical potential the gap can eas-
ily close at finite k values in the topological phase even
without orbital effects.

VIII. SUMMARY AND CONCLUSIONS

In conclusion, we have shown that prismatic core-shell
nanowires with proximity-induced superconductivity and
Rashba spin-orbit coupling provide an interesting and
rather complex playground for Majorana physics. A key
new element that characterizes these structures is that
the Majorana physics can be realized within a low-energy
sub-space defined by states localized along the edges of
the prism, which are separated by a significant energy gap
from higher energy states. Furthermore, the localization
of these states around the edges can be controlled, e. g.,
by varying the thickness of the shell or of the core. Strong
edge localization leads to a system of effectively decou-
pled 1D nanowires running along the edges of the prism,
each wire hosting Majorana bound states generated ac-
cording to the well-known mechanism when the magnetic
field exceeds a certain critical value. Remarkably, upon
increasing the aspect ratio AR = t/R the “edge” wires

become coupled and an interference between states local-
ized on different edges emerges. In the phase diagram,
this edge-edge “communication” is manifested as a frag-
mentation of the boundaries between trivial and topologi-
cal regions, as well as a separation of the Majorana bound
states into real Majoranas and “trivial”, but nearly-zero
energy modes which we dub pseudo Majorana states.

The transformation of Majorana into pseudo Majorana
states can be seen as a finite size effect in the direction
transversal to the nanowire. The resulting phase dia-
grams correspond to ladders of interacting chains,41–43

as we demonstrate in the Appendix.

In the presence of edge-edge interference there are re-
gions in the µ−B phase diagram containing np near-zero-
energy pairs of states, where np can take all integer val-
ues from zero to the number of prism edges. We have
focussed on triangles and squares, exploring also the re-
sults for hexagons. Regions with odd values of np con-
tain a genuine Majorana mode at zero energy, while those
with even values of np only contain zero modes asymp-
totically, for low AR. Actually, the energies of all the np
pairs collapse to zero energy in the limit of low AR. We
stress that the Rashba interaction in our model is not
oriented along any externally fixed direction, but points
perpendicular to the sides and in a radial direction on the
edges. Therefore, we do not need to invoke a breaking of
the overall nanowire symmetry. For given values of the
shell thickness and radius, the edge localization weakens
when the number of corners is increased. This is sup-
ported by our results for triangle, square and hexagon.
Indeed, the triangle has a relatively weaker fragmenta-
tion of the phase diagram and of the pseudo Majorana
pairs, while this fragmentation is larger for the hexagon.

A relevant effect in core-shell nanowires is the possi-
bility of controlling the magneto-orbital contributions by
varying the shell thickness t. Orbital effects of the mag-
netic field cause a strong reduction of the global energy
gap for propagating states at arbitrary values of the wave
vector k. They can even lead to a complete closing of the
gap at a finite k in some cases. We have shown that
in prismatic core-shell wires with small values of t or-
bital effects are greatly quenched and, as a consequence,
the energy gaps are sizeable larger than for wide shell
nanowires. This is a very appealing feature, since in any
practical application a sizeable gap is required for the
stability and protection of the Majorana states.

Our analysis uncovered a remarkable consequence
of the magnetic orbital effect in prismatic core-shell
nanowires. Namely, the strong reduction of the over-
all minimum magnetic field for a phase transition, for
an arbitrary chemical potential µ. This is a conse-
quence of edge-edge interference in thick enough core-
shell nanowires. For the hexagon this reduction is much
larger than for the triangular and square, due to the en-
hanced edge-edge interference. As mentioned, thick wires
also tend to rapidly close the overall gap for propagating
states when increasing B. Still, our results indicate that
in hexagonal prismatic nanowires a compromise regime
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can be found with a thickness t such that the Majorana
pairs are obtained, along with a sizable overall gap, at
low magnetic fields. Finally, as a general conclusion, we
emphasize that edge localization in prismatic core-shell
nanowires offers a promising physical mechanism towards
the controllability of Majorana states in nanowires.
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Appendix: Toy model for proximitized core-shell
nanowires

To gain further insight into the low-energy physics of
proximitized core-shell nanowires, and to better under-
stand the qualitative dependence of the BdG spectrum on
relevant parameters, it is convenient to use a simplified
tight-binding “toy model” consisting of coupled parallel
chains. The basic idea is to define a “coarse-grained”
shell consisting of one chain associated with each vertex
and one chain corresponding to each side, as illustrated
in Fig. A1. If the cross section of the wire is a polygon
with N corners, the toy model will contain N or 2N par-
allel chains, depending on whether only the corner or also
the side states are included, respectively.

Consider now a core-shell nanowire, described in a
tight-binding manner in the longitudinal direction, and
proximity-coupled to one ore more s-wave superconduc-
tors. The low-energy physics of the hybrid structure is
described by the following BdG Hamiltonian

H = −t
∑
i,`,σ

(
c†i+1`σci`σ + h.c.

)
− t′

∑
i,`,σ

(
c†i`+1σci`σ + h.c.

)

+
∑
i,`,σ

[Veff(`)− µ] c†i`σci`σ + Γ
∑
i,σ

(even)∑
`

c†i`σci`σ (A.1)

+
i

2

∑
i,`

[
α c†i+1` (σ̂ · n`) ci` + α′ c†i`+1σ̂xci` + h.c.

]
+ EZ

∑
i,`

c†i`σ̂xci` +
∑
i,`

(
∆`c

†
i`↑c
†
i`↓ + ∆∗`ci`↓ci`↑

)
,

where ci`σ is the annihilation operator for an electron
with spin projection σ localized on the longitudinal lat-
tice site i of the chain `, 1 ≤ ` ≤ 2N , and ci` =

(ci`↑, ci`↓)
T

is the corresponding spinor operator. The
first term in Eq. (A.1) represents nearest-neighbor hop-
ping along the chains, while the second term corresponds
to the inter-chain coupling. In the summations over
the chain index ` we use the convention 2N + 1 ≡ 1.
The inter-chain coupling t′ contains information about
the shell thickness, so that t′/t → 0 in the thin shell

1

2
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6

n1

n3

n5

FIG. A1. Schematic representation of the toy model con-
struction for a triangular wire. The shell (yellow/light gray)
is coarse-grained so that the vertices and the sides are rep-
resented by one-dimensional chains (red/dark gray circles).
The arrows indicate the direction of the effective magnetic
field n` associated with the (longitudinal) Rashba spin-orbit
coupling.

limit. The third term of the Hamiltonian (A.1) contains
the chemical potential µ and a chain-dependent effective
potential Veff(`) that incorporates electrostatic effects
due to back gates, coupled superconductors, and non-
homogeneous charge distributions. In general, Veff(`)
breaks the N -fold rotational symmetry of the wire, and
in addition it can also vary along the chains, i. e.,
Veff = Veff(i, `), but here we do not consider this aspect.

The term proportional to Γ accounts for the property
that the “side states” have higher energies than the “cor-
ner states” as shown in Fig. 2. The next term models a
Rashba-type SOI, with longitudinal and transverse com-
ponents proportional to α and α′, respectively, generated
by an effective electric field in the shell, Fig. 3. The cor-
responding direction of the effective magnetic field, n`,
for electrons moving along a triangular wire, is shown
in Fig. A1. The last two terms in Eq. (A.1) describe
the Zeeman splitting EZ = geffµBB generated by an ex-
ternal magnetic field applied along the chains, and the
proximity-induced pairing. Note that pairing potential
∆` can be chain-dependent, which reflects the generic sit-
uation when the surface of the wire is not uniformly cov-
ered by a superconducting layer. Here we shall consider
a constant pairing potential, ∆ = 0.3 meV. The other
model parameters used in the numerical calculations pre-
sented below have the following values: t = 5.64 meV,
t′ = 1.41 meV, α = 2.0 meV, α′ = 0.5 meV. In these ex-
amples only the corner chains are considered, i. e. with
odd `, corresponding to the previous calculations where
the chemical potential was always inside the gap Γ.

The first question that we address using the simpli-
fied tight-binding model given by Eq. (A.1) concerns the
structure of the phase diagram of the proximitized wire.
For this purpose we consider a translation-invariant sys-
tem (i. e., an infinite wire) and, for concreteness, we focus
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(A)

(B)

(C)

FIG. A2. (A) Topological phase diagram for a symmetric
triangular wire, Veff = 0. The white areas are topologically
trivial, while the orange (gray) regions correspond to M =
−1. (B) Dependence of the minimum quasiparticle gap on
the Zeeman field for µ = −5.4 meV [blue cut in panel (A)].
(C) Dependence of the minimum quasiparticle gap on the
Zeeman field for µ = −4.4 meV [dark red cut in panel (A)].
The white/orange regions correspond to the phases shown
in panel (A). Note the vanishing of the quasiparticle gap in
certain parameter regions.

on the triangular case, i. e. on the case N = 3. To dis-
tinguish between the topologically trivial and nontrivial
phases, we calculate the Z2 topological index M (the
so-called Majorana number) defined as1

M = sign [Pf B(0)] sign [Pf B(π)] , (A.2)

where Pf[. . . ] designate the Pfaffian and B(k) is a
momentum-dependent antisymmetric matrix (see be-
low). The trivial phase is characterized by M = +1,
while M = −1 signals a topological superconducting
phase. The antisymmetric matrix B represents the
Fourier transform of the Hamiltonian (A.1) in the Majo-
rana basis and can be constructed14,50 by virtue of the

particle-hole symmetry of the BdG Hamiltonian,

T H(k)T −1 = H(−k), (A.3)

where H(k) is the Fourier transform of the (single par-
ticle) Hamiltonian corresponding to Eq. (A.1) and T =
UtK is the antiunitary time-reversal operator, with Ut
being a unitary operator and K the complex conjuga-
tion. One can easily verify that B(k) = H(k)Ut is
an antisymmetric matrix when calculated at the time-
reversal invariant points k = 0 and k = π. Further-
more, for physically-relevant model parameters (i. e., Zee-
man splittings not exceeding a few meVs and chemical
potentials near the bottom of the spectrum) we have
sign [Pf B(π)] = +1 and the topological phase bound-
ary is determined by a sign change of PfB(0). Note that

DetH(0) = [Pf B(0)]
2
, hence the phase boundary is as-

sociated with the vanishing of the quasiparticle gap at
k = 0.

The phase diagram for a triangular wire with Veff(`) =
0 (i. e., no symmetry-breaking potential) is shown in
panel (A) of Fig. A2. The white regions are characterized
byM = +1, i. e., they are topologically trivial, while the
orange (gray) areas correspond to M = −1. The three
phase boundaries would merge into a single one, like in
Fig. 11(a), if t′/t → 0. For a complementary character-
ization of different phases, we calculate, as before, the
minimum quasiparticle energy (for all wave vectors), as
shown in Fig. A2(B-C), for two different values of the
chemical potential. At EZ = 0 the system is in a trivial
superconducting phase characterized by a quasiparticle
gap close to ∆. Increasing EZ reduces the quasiparticle
gap, which eventually vanishes at a certain critical field.
In panel (C), the gap reopens as we enter a topological su-
perconducting region (orange). By contrast, in panel (B)
the spectrum remains gapless throughout the first region
characterized byM = −1, which means that the system
is a gapless superconductor. Note that the vanishing of
the gap happens at k 6= 0, except for the phase bound-
ary crossing points, where the quasiparticle gap vanishes
at k = 0, as mentioned above. A gapless superconduct-
ing phase is also present in panel (C) for Zeeman fields
between approximately 0.55 meV and 0.85 meV, where
M = +1. Finally, for large-enough values of the Zeeman
splitting, i. e. above 0.7 meV in panel (B) and 0.85 meV
in panel (C), the system is in a gapped topological phase.

Next, we consider the effect of a symmetry-breaking
potential Veff(`) = (0.67,−0.33,−0.33) meV for ` =
1, 3, 5. The results are shown in Fig. A3. First, we note
that the location of the phase boundaries changes signif-
icantly, but the topology of the phase diagram remains
the same. Second, upon breaking the three-fold rota-
tion symmetry of the wire the gapless superconducting
phases shown in Fig. A2 become gapped. Finally, we
note that the low-field topological phase corresponding
to µ = −4.4 meV is characterized by a sizable quasipar-
ticle gap [see panel (C)], which suggests that this regime
may be particularly suitable for the experimental realiza-
tion of a topological superconducting state that supports
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(A)

(B)

(C)

FIG. A3. (A) Topological phase diagram as function of the
chemical potential and applied Zeeman field for a slightly
asymmetric triangular wire, with Veff = (0.67,−0.33,−0.33)
meV at corners. The white and orange (gray) phases are
topologically trivial and nontrivial, respectively. (B) Depen-
dence of the minimum quasiparticle gap on the Zeeman field
for µ = −5.4 meV [blue cut in panel (A)]. (C) Dependence
of the minimum quasiparticle gap on the Zeeman field for
µ = −4.4 meV [dark red cut in panel (A)]. Note that all
superconducting phases are gapped.

robust zero-energy Majorana modes.
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