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We calculate the dielectric function and plasmonic response of armchair (aGNRs) and zigzag
(zGNRs) graphene nanoribbons using the self-consistent-field approach within the Markovian master
equation formalism (SCF-MMEF). We accurately account for electron scattering with phonons,
ionized impurities, and line-edge roughness, and show that electron scattering with surface optical
phonons is much more prominent in GNRs than in graphene. We calculate the loss function,
plasmon dispersion, and the plasmon propagation length in supported GNRs. Midinfrared plasmons
in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4–
5-nm-wide ribbons having the longest propagation length. In other types of aGNRs and in zGNRs,
the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much
longer on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO2 or hBN), where
electrons scatter strongly with surface optical phonons. We also show that the aGNR plasmon
density is nearly uniform across the ribbon, while in zGNRs, because of the highly localized edge
states, plasmons of different spin polarization are accumulated near the opposite edges.

I. INTRODUCTION

Surface plasmon-polaritons or simply plasmons are col-
lective oscillations of free carriers at the surface of good
conductors [1, 2]. They can be guided below the diffrac-
tion limit, i.e., their wavelength is shorter than the free-
space wavelength of electromagnetic waves with the same
frequency [1]. Plasmons have been studied for many ap-
plications, such as integrated nanophotonics [3–5], meta-
materials [6–9], sensing [10, 11], photovoltaics [12], and
metasurfaces [13–15]. Plasmons were first experimentally
realized at the interface of a noble metal, such as gold
or silver, and a dielectric [16]. In metals, plasmons are
mostly in the visible part of the electromagnetic spec-
trum, owing to the high carrier density [17]. Two key
shortcomings of metal plasmonics are a lack of tunability
of the plasmon frequency and large plasmon loss (small
plasmon propagation length) [17].

Graphene plasmonics [18–26] offers several advantages
over metal plasmonics. First, graphene plasmons are
found in the terahertz-to-midinfrared frequency range,
which is important for application in security, commu-
nications, and sensing. Second, carrier density in sup-
ported graphene is tunable by a back gate, which en-
ables electrostatic control of graphene’s electronic and
optical properties [27, 28]. However, the electron scat-
tering mechanisms present in supported graphene sig-
nificantly degrade the plasmon propagation length [29].
One solution is to reduce plasmon damping and improve
the plasmon propagation length by lowering the system
dimensionality, from two-dimensional (2D) graphene to
quasi-one-dimensional (quasi-1D) graphene nanoribbons
(GNRs).

Supported GNRs provide almost the same interesting
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plasmonic features as graphene, with the added bene-
fit of a less dissipative environment for electrons, owing
to the low electronic density of states and thus lower
electron scattering rates. GNRs have different electronic
and optical properties than pristine graphene, and have
been studied for applications such as resonators [30] and
field-effect transistors [31, 32]. Plasmons in wide GNRs
have been experimentally measured [18, 20, 33, 34]. How-
ever, in order to minimize electron scattering and obtain
the best electronic and plasmonic properties, we need to
look at ultranarrow GNRs (width < 10 nm), where very
few subbands are involved in electron transport. Ultra-
narrow GNRs can be fabricated by top-down methods
[35](conventional lithography [36], local-probe lithogra-
phy [37–39], or chemical synthesis [40]) or bottom-up syn-
thesis [41–45]. To date, there have been no experimen-
tal reports on the plasmon behavior in these structures.
On the theoretical front, previous studies of plasmons in
ultranarrow GNRs have relied on the random-phase ap-
proximation to treat electron–electron interaction, and
have either assumed ballistic (scattering-free) electron
transport [46–54] or have employed the relaxation-time
approximation for a simplified treatment of scattering
[55, 56]. However, electrons in GNRs are subject to sev-
eral concurrent scattering mechanisms that are both in-
elastic and anisotropic, and whose rates have widely vary-
ing dependencies on the electron energy; consequently,
the relaxation-time approximation with a single energy-
independent relaxation time is not accurate for treating
dissipation in GNRs [29].

In this paper, we calculate the optical and plasmonic
response of ultranarrow GNRs by employing an accu-
rate and computationally affordable technique: the self-
consistent-field approach within a Markovian master-
equation formalism (SCF-MMEF) for the single-electron
density matrix [29]. SCF-MMEF captures interband
electron–hole-pair generations and all the concurrent
electron scattering mechanisms, such as with intrin-
sic phonons, ionized impurities, surface optical (SO)
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phonons, and line-edge roughness (LER). The technique
uses the Bloch wave functions and dispersions calcu-
lated via the third-nearest-neighbor tight binding with
a nonorthonormal basis and, in the case of zigzag GNRs,
also a Hubbard term to account for the strong electron–
electron interaction and spin polarization (Appendix A).
We calculate the dielectric function, loss function, as
well as the plasmon dispersion and propagation length
in supported armchair GNRs (aGNRs) and zigzag GNRs
(zGNRs) on various dielectric substrates [polar SiO2

and hBN and nonpolar diamondlike carbon (DLC)]. We
show that the SO-phonon scattering rates (the interac-
tion Hamiltonian between electrons and SO phonons in
quasi-one-dimensional systems is derived in Appendix C)
is at least as prominent as ionized-impurity scattering in
GNRs, unlike in bulk graphene, where impurity scatter-
ing dominates (Sec. II); this has repercussions on the
plasmonic response in supported GNRs. In the midin-
frared, at room temperature, and for typical sheet car-
rier densities (up to 1013 cm−2), plasmons in supported
(3N+2)-aGNRs of width 4–5 nm can propagate as far as
several microns (Sec. III). In other types of aGNRs and
in zGNRs, plasmons are strongly damped and the prop-
agation length seldom exceeds 100 nm. Plasmon prop-
agation lengths are much longer on nonpolar (e.g., dia-
mondlike carbon) than on polar substrates (e.g., SiO2 or
hBN), where electrons scatter strongly with surface op-
tical phonons. Also, we obtain the plasmon distribution
profile from the SCF-MMEF. aGNR plasmons are dis-
tributed almost uniformly across the ribbon (Sec. III).
Owing to the highly localized edge states, zGNR plas-
mons are spin-polarized and different spin polarizations
are accumulated near the opposite edges of the ribbon
(Sec. IV). We conclude with Sec. V.

II. ELECTRON SCATTERING IN GNRS.
SCF-MMEF OVERVIEW

We analyze a graphene nanoribbon of width W and
length L, placed on a substrate of thickness Ts and width
WS >> W (Fig. 1). It is assumed that a back gate
can be used to tune the carrier density and Fermi level
in the GNRs, and that both n-type (Fermi level in the
conduction band; electrons are majority carriers) and p-
type (Fermi level in the valence band; holes are major-
ity carriers) GNRs are accessible. In order to calculate
the dynamic dielectric response and plasmon properties
of GNRs, we need to compute its full dynamic dielec-
tric function, ε(q, ω), where q is the wave number in the
GNR length direction (along x in Fig. 1) and ω is the
angular frequency. In short, this task requires the knowl-
edge of the electron dispersion and Bloch wave functions
for the quasi-1D GNR, as well as an accurate account
of all the electron dissipative pathways. In GNRs, there
are several competing scattering mechanisms with differ-
ent energy dependencies; some of them, like SO-phonon
scattering, are both anisotropic and inelastic. Therefore,

FIG. 1. Schematic of a GNR of length L and width W lying
on a dielectric substrate of width WS and thickness TS .

methods like the Mermin-Lindhard dielectric function
[22, 57] that rely on the relaxation-time approximation
fail to capture the dissipation accurately. Instead, we
use the SCF-MMEF, which was previously successfully
applied to graphene [29], in order to calculate the dielec-
tric function ε(q, ω) for GNRs. The SCF-MMEF provides
an equation of motion for the single-particle density ma-
trix of the electron system interacting with a perturbing
electromagnetic field and a dissipative environment. The
equation of motion is Markovian and guarantees that the
density matrix will remain positive throughout the evo-
lution. From it, in the frequency domain, we can obtain
the information about off-diagonal terms, the so-called
coherences, which are critical for calculating the polar-
ization and from it the susceptibility and dielectric func-
tion. The dissipative terms in the SCF-MMEF equation
of motion capture scattering much more rigorously than
the relaxation-time approximation. Details of the calcu-
lations are given in Appendix B, as well as in [29].

Here, we will focus on building an intuitive under-
standing of the strength of different scattering mecha-
nisms in GNRs. Therefore, we use Fermi’s golden rule
to calculate the electron scattering rates (see Appendix
C) for the different mechanisms in a representative n-
type armchair GNR of width approximately 4 nm on the
SiO2 substrate. It is important to note that electron–
SO-phonon scattering is the most prominent mechanism
in GNRs at typical carrier and impurity densities; this is
unlike in bulk graphene, where impurity scattering dom-
inates. (We derive the appropriate form of the Hamilto-
nian for the interaction between the quasi-1D electrons in
the GNR and the 2D SO phonons from the substrate in
Appendix C 3). The relatively high SO-phonon scatter-
ing rates in narrow GNRs occur because the momentum
conservation across the GNR is relaxed and each electron
transition in narrow GNRs can be mediated by many
SO-phonon modes. The wider the ribbon, the fewer SO
phonons aid an electron transition, and, in the limit of
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FIG. 2. Electron scattering rates for different mechanisms
vs. energy with respect to the top of valence band for an
n-type 35-zGNR on SiO2. The active scattering mechanisms
are longitudinal acoustic (LA) phonons, ionized impurities
(II), line-edge roughness (LER), longitudinal optical (LO)
phonons, and surface optical (SO) phonons from the polar
substrate. The impurity density is Ni = 4 × 1011 cm−2. The
LER is assumed to be exponentially correlated, with an rms
height of 0.2 Å and a correlation length of 3 nm.

very wide ribbons (W → ∞), the momentum conser-
vation across the ribbon is recovered and the 2D SO-
phonon-scattering holds. The high relative importance
of electron–SO-phonon scattering means that the dielec-
tric function and plasmonic response in narrow supported
GNRs are much more sensitive to the choice of a sub-
strate than those of bulk graphene or wide GNRs.

III. PLASMONS IN ARMCHAIR GNRS

Armchair GNRs (aGNRs) can be categorized in three
groups based on the number of dimers in a unit cell:
3N, 3N+1, and 3N+2 (N is a positive integer). (3N+2)-
aGNRs have the smallest band gap and are semimetallic;
the rest are semiconducting. Representative band struc-
tures for the three types of aGNRs of width 4–5 nm,
obtained using third-nearest-neighbor tight binding that
accounts for bond shortening near the edge that accom-
panies hydrogen termination, is depicted in Fig. 3. De-
tails of the band structure calculation can be found in
Appendix A 1; the agreement with the results of first-
principles calculation [58] is excellent.

Based on the SCF-MMEF (see Appendix B), we calcu-
late the dynamic dielectric function ε(q, ω). In the bal-
listic regime (no scattering), the imaginary part of the
dielectric function is zero and the plasmon dispersion is
obtained from the zeros of the real part of the dielectric
function [46–52]. However, in the presence of scattering,
the imaginary part of the dielectric function is no longer
zero. In order to obtain the plasmon dispersion, we follow
the maximum of the loss function, which is proportional
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FIG. 3. (a) Schematic of an aGNR, denoting different bond
lengths at the edge and near the middle. Several dimers are
encircled. aGNRs are classified based on the number of dimers
in a unit cell. (b)–(d) Energy dispersions of a (b) 37-aGNR,
(c) 36-aGNR, and (d) 35-aGNR.

to −={ 1
ε(q,ω)} and is directly measured in experiment.

The loss function has a peak of finite height and width
at the plasmon resonance. The higher and narrower the
peak, the lower the dissipation, and the farther the plas-
mons can propagate. The plasmon propagation length,
Lp, quantifies plasmon loss. Lp = 1/∆q, where ∆q is the
half-width-at-half-maximum of the loss-function peak in
the wave-number direction.

In Fig. 4, we show the loss functions for the same three
aGNRs as in Fig. 3, which are placed on an SiO2 sub-
strate. All aGNRs have the same sheet electron density
(ns = 7 × 1012 cm−2). Just by inspecting the loss func-
tions, we expect the plasmons in (3N+2)-aGNRs to have
significantly longer propagation lengths than other types
of aGNRs, which we will discuss in more detail below.

Using the SCF-MMEF, we also calculate the induced
charge distribution. The induced charge density distribu-
tion at the plasmon resonances corresponds to the plas-
mon distribution. In Fig. 4(d), we see the plasmon distri-
bution at the star-marked plasmon resonance from Fig.
4(c). The distribution is nearly spatially uniform.

Figure 5 shows the plasmon propagation length for dif-
ferent types of aGNRs on SiO2, hBN, and diamond-like
carbon (DLC) with the same sheet carrier density. There
are two important points that can be inferred from the
figure: (1) Among the three substrates, DLC provides
the least dissipative environment for plasmons. As DLC
is a nonpolar material, SO-phonon scattering is absent
and the electron mobility is high. (2) (3N+2)-aGNRs
have significantly (at least an order of magnitude) longer
Lp than other aGNR types. The reason is that (3N+2)-
aGNRs have the smallest band gap and lightest electron
effective mass and a large separation between the first
and second subband in both the conduction and valence
bands, which means infrequent intersubband scattering.
In contrast, (3N+1)-aGNRs not only have heavy elec-
trons, but the first two conduction subbands are very
close to one another, which results in frequent inter-
subband scattering and more plasmon damping (thus a
shorter propagation length).
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FIG. 4. (a)–(c) Loss functions in 3N+1, 3N, and 3N+2 n-
type aGNRs of similar widths: (a) 37-aGNR, (b) 36-aGNR,
and (c) 35-aGNR. Substrate is SiO2, the sheet electron den-
sity is ns = 7 × 1012 cm−2, and the impurity density is
Ni = 4 × 1011 cm−2. (d) The plasmon spatial distribution
(i.e., induced charge density distribution) at different atomic
sites throughout a unit cell of the 35-aGNR at the star-marked
plasmon resonance from (c). Blue is negative, red is positive,
and larger circle radius means greater absolute value of the
induced charge density near a site.
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FIG. 5. Plasmon propagation length Lp for different types
of a-GNRs on (a) SiO2, (b) hBN, and (c) DLC. The electron
sheet density is ns = 7 × 1012 cm−2. The impurity densities
are Ni = 4.0× 1011 cm−2 (SiO2), 0.9× 1011 cm−2 (hBN), and
4.2× 1011 cm−2 (DLC). These impurity densities were chosen

to yield the room-temperature electron mobilities of 2500 cm2
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(SiO2), 9900 cm2

Vs
(hBN), and 3000 cm2

Vs
(DLC), which were

reported in measurements of several groups for bulk graphene
[29]. The dips in the Lp curves correspond to the hybrid
plasmon–SO-phonon modes.

In Fig. 5, we see the effect of ribbon width. As
the width increases, Lp increases, reaches a maximum,
and then decreases. To get a better understanding, we
plot the (3N+2)-aGNRs plasmon propagation length as
a function of the sheet carrier density (ns) for different
widths at frequency ω = 0.2 eV (Fig. 6). Lp has a max-
imum in terms of the sheet carrier density. The reason
is that, by increasing the sheet carrier density, the Fermi
energy rises until it reaches the second conduction sub-
band. Thereafter, the Fermi level does not rise and more
subbands get involved, so intersubband scattering rates
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FIG. 6. Plasmon propagation length Lp vs. sheet electron
density for different-width (3N+2)-aGNRs on SiO2 at the fre-
quency ω = 0.2 eV (above the highest SO-phonon angular fre-
quency). (Inset) Fermi energy vs. width for (3N+2)-aGNRs
at the sheet electron density ns = 7 × 1012 cm−2.

increase. For wider ribbons, the maximum of the plas-
mon propagation length appears at lower sheet carrier
densities, because the second conduction subband has a
lower energy in wider GNRs. The inset of Fig. 6 shows
the dependence of the Fermi level on the width of the rib-
bon for ns = 7 × 1012 cm−2. The maximal propagation
length occurs when the Fermi level reaches the second
conduction subband.

We calculated the static (dc) conductivity of (3N+2)-
aGNRs on different substrates for different carrier den-
sities (Fig. 7). We see that, for typical values of the
sheet carrier density, the conductivity is highest for the
32–41-aGNRs, which corresponds to 4–5-nm width. The
impurity densities are chosen so as to yield the room-

temperature electron mobilities of 2500 cm2

Vs (SiO2), 9900
cm2

Vs (hBN), and 3000 cm2

Vs (DLC), which were reported in
measurements of several groups for bulk graphene [29].
In supported bulk graphene, ionized-impurity scatter-
ing dominates and limits carrier mobility. However, in
GNRs, SO-phonon scattering is very strong (Fig. 2), so
the conductivity of electrons in aGNRs on the nonpolar
DLC is higher than on the polar hBN, even though the
bulk mobility on hBN is more than three times higher
(the impurity density is nearly five times lower) than in
DLC. The strong SO-phonon scattering is also the reason
that peaks in the GNR conductivity on SiO2 [Fig. 7(a)]
are slightly shifted toward the narrower ribbons.

In Fig. 8, we focus on the (3N+2)-aGNRs of differ-
ent widths on DLC. The sheet electron density, ns, is
kept constant. Without SO-phonon scattering, we can
see two clear plasmon branches in the narrowest aGNR
[Fig. 8(a)]. With increasing width, the two branches
merge into one [Figs. 8(b),(c)]. The first branch, occur-
ring at lower energies, emerges because of intrasubband
excitations in the first conduction subband, while the sec-
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vs. width for (3N+2)-aGNRs at different carrier densi-
ties. The impurity densities are the same as in Fig. 5:
Ni = 4.0 × 1011 cm−2 (SiO2), 0.9 × 1011 cm−2 (hBN), and
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ported room-temperature electron mobilities of 2500 cm2
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(SiO2), 9900 cm2

Vs
(hBN), and 3000 cm2

Vs
(DLC). Note that the

GNR conductivity on the nonpolar DLC is the same as on
polar hBN, despite the bulk mobility (and thus conductivity)
being over three times higher on hBN than on SiO2.

ond branch is related to interband excitations between
the first conduction subband and the first valence sub-
band. However, the two branches are distinct and visible
only for a low Fermi level, far from the second subband;
that means either low ns or small width W (EF depends
on the line density nsW ). As we are keeping ns constant
and increasing W in Fig. 8, the Fermi level increases and
the interband excitations get weaker (fewer empty states
in the conduction band) and their rates become compa-
rable to those of intraband excitations (both intra and
intersubband); consequently, the two branches merge.

IV. PLASMONS IN ZIGZAG GNRS

Single-electron dispersions for zGNRs are obtained us-
ing the third-nearest-neighbor tight binding (3NN TB),
with an added Hubbard term in the Hamiltonian to cap-
ture the electron–electron interaction between electrons
of opposite spins. The implementation details are given
in Appendix A 2. Figure 9 shows the dispersions for a
20-zGNR. The 20-zGNR has a width of 4.1 nm, com-
parable to that of the 35-aGNR (width 4.2 nm), which
has the best plasmonic response among aGNRs. Note
that the electron and hole subband dispersions near the
gap are fairly flat, i.e., both electron and hole masses in
the lowest subband are high, with electrons being heavier
(me = 0.18m0 and mh = 0.08m0; m0 is the rest mass of
a free electron). As a result, the densities of states (DOS)
in the conduction and valence subbands are also high. At
typical carrier densities observed in experiment (of order

FIG. 8. (a–c) Loss functions of (3N+2) n-type aGNRs of dif-
ferent widths on the nonpolar DLC substrate: (a)29-aGNR,
(b) 35-aGNR, and (c) 41-aGNR. The sheet electron density is
ns = 3×1012 cm−2 and the impurity density is Ni = 4.2×1011

cm−2. Note the two plasmon branches in the ultranarrow
aGNR (a), which merge into one when width is increased
while keeping ns constant. The two branches are only visible
on nonpolar substrates.
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FIG. 9. (a) Schematic of a zGNR. (b) Energy dispersion for
a 20-zGNR. (c) Spin distribution across the 20-zGNR. “Up”
and “down” refer to two opposite spin orientations.

1012 cm−2), the Fermi level is inside the gap for back-gate
bias resulting in electrons as majority carriers, because
electron DOS in the first subband is very high. In the
case of holes as majority carriers, the Fermi level enters
the valence band, as the hole DOS in the first subband
is lower. Consequently, p-type zGNRs are more metallic
than the n-type zGNRs, which has repercussions on the
plasmonic response.

Figures 10(a),(b) show the loss function for n-type and
p-type 20-zGNRs, respectively, supported on SiO2, with
a sheet carrier density of 7 × 1012 cm−2 (the same den-
sity we analyzed for aGNRs) and the impurity density of
Ni = 4 × 1011 cm−2. In the case of the n-type zGNR,
the plasmon resonance is barely visible. It is much more
pronounced for the p-type zGNR, whose response is more
akin to that of a metal because the Fermi level is inside
the valence band. Figure 10c shows the plasmon spatial
distribution (i.e., the induced charge density) across the
zGNR for the star-marked plasmon resonance from Fig.
10b. It is noteworthy that we have spin-polarized edge
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FIG. 10. Loss function of 20-zGNRs on SiO2. (a) n-type,
with a sheet electron density ns = 7 × 1012 cm−2 and (b) p-
type, with a sheet hole density ps = 7× 1012 cm−2. Impurity
density in (a) and (b) is Ni = 4 × 1011 cm−2. (c) Plasmon
distribution across a unit cell of the p-type 20-zGNR for two
opposite spin orientations at the plasmon resonance denoted
with a star in panel (b).
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FIG. 11. Plasmon propagation length vs. frequency for the
p-type 20-zGNR on SiO2, hBN, and DLC. ps = 7×1012 cm−2.

plasmons in p-type zGNRs at typical carrier densities.
Because plasmons in zGNRs fall in the midinfrared range
and are accumulated near the edges, they could couple
strongly with the vibrational modes of nearby biochemi-
cal molecules, such as proteins and DNA [59]. Therefore,
p-type zGNRs might be a promising material for biosens-
ing.

Plasmons in zGNR have short propagation lengths, as
evidenced by the broad resonances in the loss function
(Fig. 10); the short propagation lengths stem from the
high electron and hole DOS and the resulting high scat-
tering rates for these particles. In Fig. 11, we show the
propagation length versus frequency for the p-type 20-
zGNR on different substrates. The propagation lengths
are overall very short (tens of nanometers), and are lower
on polar substrates (SiO2 and hBN) than on the non-

polar DLC. The plasmon propagation length drops pre-
cipitously at the frequencies corresponding to substrate
SO phonons, similar to what we observed in Fig. 5 for
a-GNRs, which further underscores the importance of
this scattering mechanism in the plasmonic response of
GNRs.

V. CONCLUSION

In summary, we employed the SCF-MMEF along with
accurate electron dispersions and Bloch wave function
obtained using 3NN TB to calculate the plasmon disper-
sion and propagation lengths in narrow GNRs on po-
lar (SiO2 and hBN) and nonpolar (DLC) substrates.
For narrow GNRs, SO-phonon scattering is consider-
ably more effective than other mechanisms. For typical
sheet carrier and impurity densities and at room temper-
ature, semimetallic (3N+2)-aGNRs have the best plas-
monic properties among all GNRs. Plasmons in 4–5-
nm-wide (3N+2)-aGNRs can propagate as far as a few
microns, with the nonpolar DLC substrate supporting
the longest propagation lengths. The plasmonic response
of zGNRs is weak, but zGNRs feature midinfrared spin-
polarized plasmons localized near the edges, which might
hold promise for the detection of biomolecules.
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Appendix A: GNR band structure

We assume that a GNR of length L (along x) and
width W lies in the z = d plane, as shown in Fig. 1. A
substrate of dielectric constant εs(ω) = ε0κs(ω) fills the
z < 0 half-space. The substrate volume is Vs = LWsTs,
where L, Ws, and Ts are its length, width, and thickness,
respectively.

To calculate the energy dispersion and wave functions,
we use the tight-binding Hamiltonian

He = HTB ≡
∑

Rni ,R
m
j ,ν

(
tRni ,Rmj c

†
Rni ν

cRmj ν + h.c.
)
, (A1)

where c†Rni ν
and cRni ν are electron creation and destruc-

tion operators at atomic siteRn
i with spin ν, respectively.

Rn
i = Xn + ri with Xn being the position vector of the



7

nth unit cell, and ri being the position vector of the ith

atomic site in the unit cell. The eigenkets and eigenener-
gies of He are represented as |klν〉 and εklν , respectively.
k is the wave vector along the x axis, l is the band in-
dex, and ν denotes the spin orientation. The TB wave
function reads

|klν〉 =
1√
Nuc

∑
Rmj ν

eikx̂·R
m
j Cklν,jc†Rmj ν |∅〉, (A2)

where |∅〉 is the vacuum state. To obtain |klν〉 and
εklν , we write the secular equations derived from the
Schrödinger equation

〈∅|criνHe|klν〉 = εklν〈∅|criν |klν〉, ∀ ri, (A3)

and solve them as a generalized eigenvalue prob-
lem. However, to do so, the hopping energies

γRni ν,Rmj η = 〈∅|cRni νHTBc
†
Rmj ν
|∅〉δν,η and overlap ele-

ments 〈∅|cRni νc
†
Rmj ν
|∅〉 are required. It should be noted

that in general, c†Rni ν
|∅〉 does not generate an orthonor-

mal basis. So, we define the overlap matrix S as

SRni ν,Rmj η = 〈∅|cRni νc
†
Rmj ν
|∅〉δν,η. (A4)

1. aGNRs

In aGNRs, we drop the spin quantum number, as the
solutions are spin degenerate. The values we used for
γ and S are from Ref. [60] and benchmarked against
first-principles calculations in Ref. [58]:

neighbor γ (eV) S
1st 2.78 0.117

2nd 0.15 0.07

3rd 0.095 0.023

(A5)

Because there is no translational symmetry in the y-
direction, the bonds lengths are not all the same (see
Fig. 3). The bond lengths at the edges of the hydrogen-
passivated aGNRs are assumed to be 0.97acc, acc = 1.42
Å being the the bulk carbon-carbon bond length (Fig.
3). To calculate the overlap integrals of (kl|k + ql′), we

define S̃ as

S̃jν,iη =
∑
m

SRmj ν,riηe
i k+k

′
2 x̂·(ri−Rmj ), (A6)

then the overlap integrals are

(klη|k + q, l′η) = C̃†klηS̃C̃klη, (A7)

where C̃ vector is defined as C̃klη,i = Cklη,i.
In Fig. 12, we see that there is excellent agreement be-

tween the tight-binding calculation and the density func-
tional theory (DFT) calculation within the local-density

1 2 3 4
Width (nm)

0

0.5

1

1.5

2

2.5

Ba
nd

ga
p 

en
er

gy
 (e

V)

(3N)

(3N+2)

(3N+1)

TB
LDA

FIG. 12. Band gap versus width for 3N, 3N+1, and 3N+2
aGNRs as obtained from first principles within the LDA ap-
proximation [58] (dashed line) and from our tight-binding cal-
culation (solid line).

approximation (LDA).

2. zGNRs

In order to capture the strong electron-electron inter-
action in the zGNRs, we amend HTB with the Hubbard
Hamiltonian within the mean-field approximation

He = HTB + U
∑
Rni ,ν

c†Rni ν
cRni ν〈c

†
Rni ν̄

cRni ν̄〉, (A8)

where U is the Hubbard factor, ν̄ is the opposite of spin ν,
and 〈·〉 denotes the zero-temperature expectation value
corresponding to the many-particle ground state

|GS〉 =

(∏
klν

ψ̂†klν

)
|∅〉, (A9)

where ψ̂†klν creates an electron at state |klν〉. In a non-

orthonormal basis, c†Rni ν
cRni ν and the number operator,

nRni ν , are not necessarily equal. The overlap matrix, S,
is Hermitian and positive definite, so it can be decom-
posed as S = UDU†, where U is a unitary matrix, and
D is a positive-definite diagonal matrix. As a result, S 1

2 ,
and S− 1

2 are well-defined. The orthonormal basis of C†

operators may be obtained through the so-called Lowdin
transformation,

C†Rmj ν
=
∑
i

(
S− 1

2

)
Rni ν,R

m
j ν

c†Rni ν
. (A10)
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FIG. 13. Band gap and the gap at K-point versus width
for zGNRs as obtained from first principles within the LDA
approximation [58] (dashed line) and from our tight-binding
calculation (solid line).

One can prove {cRν , c†R′ν′} = SRν,R′ν′ . Knowing the
anti-commutation relation, we obtain

〈c†Rni νcRni ν〉 =
∑
kl

∣∣∣∣∣∣
∑
Rmj η

eikx̂·(R
m
j −R

n
i )

√
Nuc

SRni ν,Rmj ηCklη,m

∣∣∣∣∣∣
2

.

(A11)

The number operator is nRni ν = C†Rni ν
CRni ν . So, the

expectation value of the number of electrons at a specific
site is

〈nRni ν〉 =
∑
kl

∣∣∣∣ ∑
Rmj η

eikx̂·(R
m
j −R

n
i )

√
Nuc

(
S 1

2

)
Rni ν,R

m
j η
Cklη,m

∣∣∣∣2.
(A12)

In our calculations for zGNRs, U = −2.2 eV, while the
γ and S values are from Ref. [61]:

neighbor γ (eV) S
1st 2.78 0.117

2nd 0.09 0.045

3rd 0.27 0.065

(A13)

We neglect the off-diagonal terms due to the Hub-
bard term. For calculating the overlap integrals of
(klν|k + ql′ν), we use equations (A6) and (A7).

In Fig. 13, we see the excellent agreement between the
tight-binding calculation and the density functional the-
ory (DFT) calculation within the local-density approxi-
mation (LDA) [58].

Appendix B: SCF-MMEF in 1D

In Ref. [29], we derived the SCF-MMEF for a quasi-
two-dimensional system. Here, we re-derive the SCF-
MMEF for a quasi-one dimensional system. It should
be noted that the SCF-MMEF can be generalized for
nanoislands and nanodisks, which are essentially large
molecules and thus quasi-zero-dimensional.

The induced charge density in GNRs can be written as

nind(x, y, z, t) = nl(x, t)

[
1

W
Π
( y
W

)]
δ(z). (B1)

The inhomogeneous electromagnetic wave equation de-
scribing the induced potential energy is[

∂

∂2z
+

∂

∂2y
+ (iQ)2

]
Vind(q, y, z, ω) =

− e2

εrε0
nl(q, ω)

[
1

W
Π(

y

W
)

]
δ(z),

(B2)

where we took the temporal Fourier transform and the
spatial Fourier transform over the x-coordinate. Also,

(iQ)2 = εrω
2

c2 −q·q. We use the standard Green’s function
analysis to solve Eq. (B2):

V ind(q, z = 0, ω) =
−e

2πεrε0
nl(q, ω)I(q), (B3)

where the overbar denotes the average along the width

of the system, i.e., V =
∫ W

2

−W2
V (y). To simplify the

notation, henceforth we drop the overbar and z = 0,
but keep in mind that the potential energies are at av-
eraged over y at z = 0. Also, in Eq. (B3) I(q) =∫ 1

2
−1
2

∫ 1
2
−1
2

dη′dη K0(W |q(η − η′)|), where K0 is the mod-

ified Bessel function of the second kind. We define the
linear polarization as

Pl(q, ω) =
−enl(q, ω)

VSCF(q, ω)
, (B4)

where VSCF is the self-consistent field, i.e., the sum of
external and induced fields. The susceptibility reads

χ(q, ω) ≡ Vind(q, ω)

VSCF(q, ω)
=

−e
2πεrε0

I(q)Pl(q, ω), (B5)

and consequently the dielectric function is

ε(q, ω) = 1 +
e

2πεrε0
I(q)Pl(q, ω). (B6)

Also, by solving the continuity equation, we obtain the
conductivity

σ(q, ω) =
−ieωW
q2

Pl(q, ω). (B7)
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To obtain the dielectric function [Eq. (B6)] and conduc-
tivity [Eq. (B7)], we need to know the linear polarization.
We obtain Pl quantum mechanically. The induced charge

density in the second quantization representation is

n(r, ω) = − e

Nuc

∑
k,q,l′,l

u∗k+ql′(r)ukl(r)e−iq·r〈c†k+ql′ckl〉(ω)

(B8)
So, the linear polarization in the second quantization rep-
resentation reads

Pl(q, ω) =
−e
L

∑
k,l′,l

〈c†klck+ql′〉
VSCF(q, ω)

(kl|k + ql′) (B9)

To calculate
〈c†klck+ql′ 〉
VSCF(q,ω) , we exploit the SCF-MMEF [29]:

(εkl − εk+ql′ + ~ω)〈c†klck+ql′〉 = (fkl − fk+ql′)(k + ql′|kl)Veff(q, ω)+

i~
∑

k′mm′v
εk′m=εkl∓~ωv

W±k′−k,v ±∆Wk′−k,vfkl∣∣∣∂εk′,m∂k′

∣∣∣ (k + ql′|k′ + qm′)(k′m|kl)〈c†k′mck′+qm′〉+

i~
∑

k′mm′v
εk′+qm′=εk+ql′∓~ωv

W±k′−k,v ±∆Wk′−k,vfk+ql′∣∣∣∂εk′+q,m′∂k′

∣∣∣ (k + ql′|k′ + qm′)(k′m|kl)〈c†k′mck′+qm′〉−

i~
∑

k′mm′v
εk′m′=εkm±~ωv

W±k′−k,v ±∆Wk′−k,vfk′m′∣∣∣∂εk′,m′∂k′

∣∣∣ (km|k′m′)(k′m′|kl)〈c†kmck+ql′〉−

i~
∑

k′mm′v
εk′+qm=εk+qm′±~ωv

W±k′−k,v ±∆Wk′−k,vfk′+qm∣∣∣∂εk′+q,m∂k′

∣∣∣ (k + ql′|k′ + qm)(k′ + qm|k + qm′)〈c†klck+qm′〉

(B10)

By discretizing the Brillouin zone, Eq. (B10) can be
written in the matrix form and solved numerically for X .

EX = F + i~(R−R′ −R′′)X . (B11)

Each pair (q, ω) results in its own Eq. (B11). The ma-
trices and vectors in Eq. (B11) are defined as

E{kl′l}{k′m′m} = δ{kl′l}{k′m′m}(εkl−εk+ql′+~ω), (B12a)

X{kl′l} = 〈c†klck+ql′〉, (B12b)

F{kl′l} = (fkl − fk+ql′)(k + ql′|kl), (B12c)
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R{kl′l}{k′m′m} =
∑
v

εk′m=εkl∓~ωv

W±k′−k,v ±∆Wk′−k,vfkl

|∂εk′,m∂k′ |
(k + ql′|k′ + qm′)(k′m|kl)+

∑
v

εk′+qm′=εk+ql′∓~ωv

W±k′−k,v ±∆Wk′−k,vfk+ql′

|∂εk′+q,m′∂k′ |
(k + ql′|k′ + qm′)(k′m|kl),

R′{kl′l}{km′l} =
∑
k′mv

εk′+qm=εk+qm′±~ωv

W±k′−k,v ±∆Wk′−k,vfk′+qm

|∂εk′+q,m∂k′ |
(k + ql′|k′ + qm)(k′ + qm|k + qm′),

R′′{kl′l}{kl′m} =
∑
k′m′v

εk′m′=εkm±~ωv

W±k′−k,v ±∆Wk′−k,vfk′m′

|∂εk′,m′∂k′ |
(km|k′m′)(k′m′|kl).

(B12d)

The set of variables {kl′l} corresponds to a position in
the X vector. Equation (B11) is solved for X for every
(q, ω). We introduce a vector V as V{kl′l} = (kl|k + ql′),
so the polarization is

Pl(q, ω) =
−2e

L
VTX . (B13)

The factor of 2 captures the spin degeneracy, like in aG-
NRs. In the case of zGNRs, where the spin degeneracy
is broken, Eq. (B10) should be solved for each spin ori-
entation separately, and the total linear polarization is
sum of the linear polarization corresponding to each spin.
By knowing Pl, we calculate the dielectric function [Eq.
(B6)] and the conductivity [Eq. (B7)].

Appendix C: Interaction Hamiltonian in quasi-1D
systems

As before, we assume that a GNR of length L (along
x) and width W lies in the z = d plane, as shown in Fig.
1. A substrate of dielectric constant εs(ω) = ε0κs(ω)
fills the z < 0 half-space. The substrate volume is
Vs = LWsTs, where L, Ws, and Ts are its length, width,
and thickness, respectively. For calculation of the elec-
tron energy dispersion and the Bloch wave functions, see
Appendix A.

For each perturbation operator [δV(r)], we define
M(q) = δV (q), as the interaction strength. δV (q) is the
Fourier transfer of δV(r) over x and the overline denotes
the average over y. All the interaction Hamiltonians can
be written in the following general form

Hint =
∑
kq,l′l

Mint(q)(k + ql′|kl)c†k+ql′ckl ⊗ Bq,v, (C1)

where c and c† are the electron annihilation and creation
operators, respectively. For phononic mechanisms Bq,v =

bq,v + b†−q,v, while b and b† are the phonon annihilation
and creation operators, respectively. The overlap inte-
grals are defined as (k+ ql′|kl) =

∫
uc
d3ru∗k+ql′(r)ukl(r).

The details of their calculation is in Appendix A. For
non-phononic mechanisms, Bq,v is an identity operator.
Based on Fermi’s golden rule, the scattering rate [Γ±v (kl)]
for the mechanism v is

Γ±v (kl) =
∑
l′

εk′l′=εkl±~ωv

2

∣∣∣∣∂εk′l′∂k′

∣∣∣∣−1

W±k′−k,v|(k
′l′|kl)|2,

(C2)

where W±k′−k,vis the scattering weight. For the phononic

mechanisms, W±k′−k,v = L
2~ |Mint(k

′ − k)|2(Nv + 1
2 ±

1
2 ),

Nv being the number of vth-type phonons. + and − signs
correspond to absorption and emission processes, respec-
tively. For the non-phononic mechanisms, W±k′−k,v =
L
4~ |Mint(k

′ − k)|2.

1. Electron scattering with intrinsic phonons

The scattering weight for the acoustic (LA) and non-
polar optical (LO) phonons can be readily written as

W±k′−k,LA =
1

2

D2
LAkBT

2~%v2
s

,

W±k′−k,LO =
1

2
(NLO +

1

2
± 1

2
)
D2
LO

2%ωLO
,

(C3)

where % is the line mass density of the GNR. We approx-
imate ωq,LA = vs|q| where vs = 2× 104 m

s , and ωq,LO =

ωLO = 194 meV. DLA = 12 meV and DLO = 50 eV
nm are

the deformation potentials. We assume the LA phonon
scattering elastic.
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2. Electron scattering with ionized impurities

The bare potential energy seen at z = d due to an
impurity located at Ri = (xi, yi, zi) in the substrate is

δV (q, y)
∣∣∣
Ri

=
−e2K0

(∣∣∣q√(y − yi)2 + (d− zi)2
∣∣∣)

2πε0κbL
e−iqxi ,

(C4)
where we took the Fourier transform with respect to x.

κb = 1+κs(ω=0)
2 denotes the background permittivity and

K0(·) is the second type modified Bessel function. To
find the total electric potential energy, we should take a
sum of Eq. (C4) over the location of all impurities. But,
we only know the average density of impurities. So, we
take an average of Φ(q) over all possible ensemble of im-
purities, ({Ri}’s) [62]. Here, we assume that impurities
are distributed uniformly on z = 0 plane with the sheet
density of Ni. For a uniform distribution the average
over all possible ensemble of impurities vanishes, so we
approximate Φ(q, y) with its rms. After taking an aver-
age over y, including the screening, and in the limit of
W �Ws, the interaction strength [Mii(q) = δV (q)] is

Mii(q) =

√
Ni
L

−e2

[∫ Ws
2

−Ws2
dyK0

(∣∣∣q√y2 + d2
∣∣∣)2
] 1

2

2πε0κbε(q, ω = 0)
.

(C5)

Accordingly, the scattering weight is

W±k′−k,ii =
1

4

Nie
4

4π2~ε2
0κ

2
b

∫ Ws
2

−Ws2
dyK0

(
|k − k′|

√
y2 + d2

)2

|ε(k − k′, ω = 0)|2
.

(C6)

3. Electron scattering with surface optical phonons

Applying the electromagnetic boundary conditions
yields the dispersion relation of κs(ω) + 1 = 0, which its
solutions are the surface optical modes, ωSO. SO phonon
modes for hBN and SiO2 are provided in Ref. [29]. As-
suming that the substrate has only one transverse optical

mode, κs(ω) = κ∞ +
ω2

TO(κ0−κ∞)

ω2
TO−ω2 , ωSO and ωTO are re-

lated by

ω2
SO(κ∞ + 1) = ω2

TO(κ0 + 1). (C7)

Now, we calculate the electric potential due to SO
phonons. In the nonretarded regime, the electric poten-
tial can be written as

Φ(r) =
∑
Q

aQe
−Q|z|+iQ·ρ, (C8)

where r = ρ+ zẑ (the cylindrical coordinates). Q = QQ̂
is a two-dimensional vector on the xy plane, i.e., Q ≡
Qxx̂ + Qy ŷ. The polarization, the dynamic equation of
motion, and the electric displacement field in the crystal
lattice are given by

P (r) = e∗Nuc,sV
−1
s u(r), (C9a)

−µω2u(r) = −µω2
TOu(r) + e∗E(r), (C9b)

D(r) ≡ ε0κs(ω)E(r) = ε0κ∞E(r) + P (r). (C9c)

Vs and Nuc,s are the volume and the number of unit
cells of the substrate, respectively. u(r) is the relative
displacement of two adjacent atoms, with the reduced
mass of µ. Incorporating Eqs. (C9c) and (C8) into Eq.
(C9a), we obtain∑

Q

aQQ(ẑ + iQ̂)eQz+iQ·ρΘ(−z) =
e∗Nuc,su(r)

Vsε0(κ∞ + 1)
.

(C10)

Considering the above equation, here is an ansatz for the
displacement operator of mode Q, uQ(r):

uQ(r) =
uQe

Qz+iQ·ρ√
Nuc,s

(ẑ + iQ̂)Θ(−z)BQ. (C11)

where Θ(z) is the heavyside step function, and BQ =

bQ + b†−Q. The total displacement is u(r) =
∑
Q uQ(r).

Yet, uQ needs to be determined. The energy of each

mode is (2NSO + 1)~ωSO

2 . Also, the average energy of
each mode over time is half the potential energy and half
the kinetic energy. So for each mode of uQ(r) we can
write [63–72]∫

d3r
1

2
%sω

2
SO〈uQ(r)u†Q(r)〉 =

1

2
(2NQ + 1)

~ωQ
2

,

(C12)

%s is
Nuc,sµ
Vs

. We solve the above equation for uQ, replace

it in Eq. (C11), and get

u(r) =
∑
Q

√
~QeQz+iQ·ρ√
2%sAsωSO

(ẑ + iQ̂)Θ(−z)BQ. (C13)

Also, by using Eq. (C7), we solve Eqs. (C9) for e∗ at
ω = ωSO:

e∗2 =
µVsω

2
SO

Nuc,s
ε0(κ∞ + 1)2

(
1

κ∞ + 1
− 1

κ0 + 1

)
.

(C14)

Incorporating Eq. (C14) and Eq. (C13) into Eq. (C10),
we solve for aq and substitute it in Eq. (C8) to get

Φ(r) =
∑
Q

√
2π~
e2As

Ξ√
Q
e−Q|z|+iQ·ρ. (C15)
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where Ξ2 = e2ωSO

4πε0

(
1

κ∞+1 −
1

κ0+1

)
. Consequently, the

interaction Hamiltonian is

δV(r) =
∑
Q

√
2π~
As

Ξ√
Q
e−Q|z|+iQ·ρBQ. (C16)

We take the Fourier transform of δV(r) with respect to
x at z = d, take an average over y, and change variables
to obtain

δV(q) =Ξ

√
2π~
As

∑
q′

e−d
√
q2+q′2

4
√
q2 + q′2

sinc

(
q′W

2π

)
B(q,q′),

(C17)

where sinc( q
′W
2π ) = sin( q

′W
2 )( q

′W
2 )−1. The equation of

motion of any electronic operator is at least parabolic in
terms of δV(q). Also, the SO-phonon modes are assumed
to be dispersionless, i.e., the number of SO phonons are
independent of their wave vector. So, we can rewrite the
interaction strength as

MSO(q) =

√
~
L

Ξ

ε(q, ω = 0)

×

∫ dQy
e−2d
√
q2+Q2

y√
q2 +Q2

y

sinc2

(
QyW

2π

) 1
2

,

(C18)

and yet, nothing changes in the equation of motion of

electronic operators. The sinc2( q
′W
2π ) term in Eq. (C18)

is a window function which mimics the momentum con-
servation along the width of the ribbon. Unlike narrow
ribbons, for wide ribbons (larger W ) this window func-
tion narrows down and asymptotically goes to the Dirac
delta function as W →∞. The scattering weight is

W±k′−k,SO =
Ξ2(NSO + 1

2 ±
1
2 )

2|ε(k − k′, ω = 0)|2

×

∫ dQy
e−2d
√
q2+Q2

y√
q2 +Q2

y

sinc2

(
QyW

2π

) .
(C19)

4. Electron scattering from line-edge roughness

The charge density can be assumed as n =
−en0Π( yW )δ(z), where n0 is the surface carrier density,
δ(·) denotes the Dirac delta function, and Π(.) denotes
the rectangular function [1 for its argument being within
(0,1), 1/2 for argument equal to 0 or 1, and zero else-
where]. The change in the carrier density due to the
line-edge roughness, ∆(x), at one edge is [73]

δn(r) = ∆(x)
∂n

∂y
= −en0∆(x)δ(y − W

2
)δ(z), (C20)

which causes the electric potential energy of

δV (r) =

∫∫∫
d3r′

e2n0∆(x′)δ(y′ − W
2 )δ(z′)

4πε0κb|r − r′|
. (C21)

We take the Fourier transform of δV (r) with respect to
x at z = 0, and then we take an average over y. So the
interaction strength for the LER is

MLER(q) =
e2n0

πε0κb

∆(q)
∫ W

2

−W2
dyK0(q|y − W

2 |)

Wε(q, ω = 0)
, (C22)

where ∆(q) is the Fourier transform of the LER function.
Here, we consider an exponential correlation function:

〈∆(x)∆(0)〉 = ∆2e−
|x|
ξ , |∆(q)|2 =

1

L

2∆2ξ

1 + q2ξ2
, (C23)

where ∆ and ξ are the rms roughness and the correlation
length, respectively. The scattering weight is

W±k′−k,LER =
1

4

e4n2
0

~π2ε2
0κ

2
b

[
2∆2ξ

1 + (k − k′)2ξ2

]

×

[∫ 1

0
dηK0(|k − k′|Wη)

]2
|ε(k − k′, ω = 0)|2

.
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S. Wang, et al., Nature communications 5 (2014).

[44] G. D. Nguyen, F. M. Toma, T. Cao, Z. Pedramrazi,
C. Chen, D. J. Rizzo, T. Joshi, C. Bronner, Y.-C. Chen,
M. Favaro, et al., The Journal of Physical Chemistry C
120, 2684 (2016).

[45] P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez,
J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli,
D. Passerone, et al., Nature 531, 489 (2016).

[46] L. Brey and H. Fertig, Physical Review B 75, 125434
(2007).

[47] M. Bagheri and M. Bahrami, Journal of Applied Physics
115, 174301 (2014).

[48] C. E. Villegas, M. R. Tavares, G.-Q. Hai, and
P. Vasilopoulos, Physical Review B 88, 165426 (2013).

[49] A. Shylau, S. Badalyan, F. Peeters, and A.-P. Jauho,
Physical Review B 91, 205444 (2015).

[50] D. R. Andersen and H. Raza, Journal of Physics: Con-
densed Matter 25, 045303 (2012).

[51] D. R. Andersen and H. Raza, Physical Review B 85,
075425 (2012).

[52] C. V. Gomez, M. Pisarra, M. Gravina, J. M. Pitarke, and
A. Sindona, Physical Review Letters 117, 116801 (2016).

[53] A. Iurov, G. Gumbs, D. Huang, and V. Silkin, Physical
Review B 93, 035404 (2016).

[54] T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and
N. A. Mortensen, Phys. Rev. B 90, 241414 (2014).

[55] I. Silveiro, J. M. P. Ortega, and F. J. G. De Abajo, Light:
Science & Applications 4, e241 (2015).

[56] S. Thongrattanasiri, A. Manjavacas, and F. J. Garcia de
Abajo, Acs Nano 6, 1766 (2012).

[57] N. D. Mermin, Phys. Rev. B 1, 2362 (1970).
[58] Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev.

Lett. 97, 216803 (2006).
[59] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G.

de Abajo, V. Pruneri, and H. Altug, Science 349, 165
(2015).

[60] R. Kundu, Modern Physics Letters B 25, 163 (2011).
[61] Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and

M. J. Puska, Physical Review B 81, 245402 (2010).
[62] W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590

(1957).
[63] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, J.

Appl. Phys. 90 (2001).
[64] J. I. Gersten, Surface Science 92, 579 (1980).
[65] J. J. Licari and R. Evrard, Phys. Rev. B 15, 2254 (1977).
[66] N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).
[67] Z.-Y. Ong and M. V. Fischetti, Phys. Rev. B 86, 165422

(2012).
[68] M. A. Stroscio and M. Dutta, Phonons in nanostructures

(Cambridge University Press, 2001).
[69] S. Q. Wang and G. D. Mahan, Phys. Rev. B 6, 4517

(1972).
[70] L. Wendler, Physica status solidi (b) 129, 513 (1985).
[71] A. Betti, G. Fiori, and G. Iannaccone, Applied Physics

Letters 98, 212111 (2011).
[72] D. Vasileska, “Polar optical phonon scattering,” (2016).
[73] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.

54, 437 (1982).

http://dx.doi.org/10.1103/PhysRev.108.590
http://dx.doi.org/10.1103/PhysRev.108.590
http://dx.doi.org/http://dx.doi.org/10.1016/0039-6028(80)90224-1
http://dx.doi.org/10.1103/PhysRevB.15.2254
http://dx.doi.org/10.1103/PhysRevB.40.6175
http://dx.doi.org/10.1103/PhysRevB.86.165422
http://dx.doi.org/10.1103/PhysRevB.86.165422
http://dx.doi.org/10.1103/PhysRevB.6.4517
http://dx.doi.org/10.1103/PhysRevB.6.4517
https://nanohub.org/resources/11522

	Plasmons in graphene nanoribbons
	Abstract
	Introduction
	Electron scattering in GNRs. SCF-MMEF overview
	Plasmons in Armchair GNRs
	Plasmons in Zigzag GNRs
	Conclusion
	Acknowledgments
	GNR band structure 
	aGNRs
	zGNRs

	SCF-MMEF in 1D
	Interaction Hamiltonian in quasi-1D systems
	Electron scattering with intrinsic phonons
	Electron scattering with ionized impurities
	Electron scattering with surface optical phonons
	Electron scattering from line-edge roughness

	References


