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Near-field thermal radiative transfer between two coated spheres

Braden Czapla and Arvind Narayanaswamy
Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA

In this work, we present an expression for the near-field thermal radiative transfer between two
spheres with arbitrary numbers of coatings. We numerically demonstrate that the spectrum of
heat transfer between layered spheres exhibits novel features due to the newly introduced interfaces
between coatings and cores. These features include broad super-Planckian peaks at non-resonant
frequencies and near-field selective emission between metallic spheres with polar material coatings.
Spheres with cores and coatings of two different polar materials are also shown to exceed the total
conductance of homogeneous spheres in some cases.

I. INTRODUCTION

Optical metamaterials are a class of artificial materi-
als which exhibit electromagnetic behavior not otherwise
observed in nature, such as negative refractive index,1–4

cloaking,5–8 and superlensing9–12 to name a few. Of par-
ticular interest are hyperbolic metamaterials (HMMs),
those whose permissible wavevector components form a
hyperbolic isofrequency surface instead of the spherical
surface found in typical isotropic materials. The simplest
means of achieving HMM behavior is through layering
different isotropic materials. When the layer thicknesses
are much smaller than the free-space wavelength of light
propagating through them, the entire nanocomposite can
be viewed as a homogeneous material with hyperbolic ef-
fective optical properties.13,14

Hyperbolic metamaterials have found many uses in
the field of near-field thermal radiative transfer. Ap-
propriately designed HMMs have demonstrated the abil-
ity to tailor the spectrum of radiative transfer and to
achieve heat transfer beyond that of Planck’s blackbody
limit.15–21 To date, this has been achieved mostly by
using layered planar surfaces.22–24 That configuration
is attractive because the analytic solution to near-field
thermal radiative transfer between two semi-infinite half
spaces is well-known, relatively straightforward to com-
pute, and easily generalizes to include layered media.25–28

Determining analytic solutions to more complicated
geometries opens up additional avenues of investigation
for HMMs. Two geometries of interest are sphere-sphere
and sphere-plane configurations. The formula for heat
transfer between two homogeneous spheres has been
determined29,31,32 and can be used to approximate the
sphere-plane configuration33 in the limit that one sphere
is much greater than the other.34 The solution method
in Ref. 29 cannot be easily extended to include coated
spheres. Though the formalisms used in Refs. 31 and
32, which are based on the T-Matrix method,35,36 can
in principle be used to calculate near-field radiation be-
tween coated spheres, they have not been applied for the
purpose.

In this work, we present a new expression for the near-
field thermal radiative transfer between two spheres, ei-
ther of which may have any number of coatings. The ex-
pression is derived using the framework of fluctuational

electrodynamics and a Green’s function formalism. The
key advance in this work is evaluating the radiative trans-
fer between spheres using surface integrals instead of vol-
ume integrals, which permits the same formalism and nu-
merical code to be used for coated as well as uncoated
spheres, irrespective of the number of coatings. This ap-
proach is well-suited for near-field radiative transfer anal-
ysis of coated spheres because, like in the case of two ho-
mogeneous spheres, the main geometric parameters of
interest are still the center-to-center distance between
the spheres (or alternatively the minimum gap between
spheres) and the overall dimensions of each sphere, not
the details of the coatings themselves. The details of the
coatings on a sphere are encoded in the effective Mie re-
flection coefficients of the various vector spherical waves
at the interface between the outer-most coating of that
sphere and the intervening medium (usually vacuum).

We will show that coated spheres have some advan-
tages over homogeneous spheres. Coated spheres exhibit
broad, super-Planckian peaks (peaks exceeding that of
blackbodies) which are due neither to surface phonon po-
lariton nor surface plasmon polariton resonances and not
commonly observed in homogeneous spheres (see Fig. 2).
We will also show that coated spheres with silver cores
and silica coatings transition from silica-like behavior at
gaps much smaller than the coating thickness to silver-
like behavior for larger gaps (see Fig. 3). Lastly, we
present coated spheres whose total conductance exceeds
that of homogeneous spheres of either of its constitutive
components (see Fig. 4). These advantages make coated
spheres a promising platform for research and experimen-
tation.

The structure of the paper is as follows: In Section
II, the geometry of the two sphere problem is described.
In Section III, the expression for thermal conductance
is derived using the fluctuation-dissipation theorem, re-
sulting in an expression which includes a transmissivity
function for energy transfer. In Section IV, the trans-
missivity function is evaluated from the dyadic Green’s
functions for the two coated spheres. Finally, in Section
V, numerical results are presented for the conductance
between two coated spheres.
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II. GEOMETRY

The geometry of the problem is shown in Fig. 1. Two
spheres, denoted A and B, are composed of an arbitrary
number of coatings, N and M coatings, respectively, atop
a core. As shown in Fig 1B, the outer radius of any
coating ρ (0 < ρ ≤ N for sphere A and 0 < ρ ≤ M
for sphere B) in sphere s (s = A or B) is given by rρ,s
and the outer radius of the core is given by r0,s. For
simplicity, the outermost radii of spheres A and B are
denoted rN,A = a and rM,B = b, respectively. Though
only the internal structure of sphere A is shown in Fig.
1B, sphere B is similar, but with outer radius b on layer
M . The exterior region, denoted C, is vacuum.

As shown in Fig 1A, a coordinate system is placed with
its origin at the center of sphere A, henceforth referred
to as the A-coordinate system. Similarly, a second co-
ordinate system is placed with its origin at the center
of sphere B and referred to as the B-coordinate system.
The two coordinate systems are oriented such that their
z-axes are aligned along the vector connecting the origin
of the A-coordinate system to that of the B-coordinate
system. The spheres are separated by a center-to-center
gap d. The minimum gap separating spheres A and B is
D = d− a− b.

The same location may be represented by the position
vector rA in the A-coordinate system or rB in the B-
coordinate system. In order to differentiate between two
different locations, we will use r and r̃, the need for which
arises from the use of Green’s functions.

III. MATHEMATICAL FORMULATION

The radiative heat transfer from object A to object B,
QA→B , is given by

QA→B = −
∮
SB

[n̂B(r̃) · P (r̃)] dr̃ (1)

where n̂(r̃) and P (r̃) are the unit outward normal of sur-
face B and Poynting vector, respectively, at the location
r̃. The Poynting vector is related to the cross-spectral
density of the components of the electric and magnetic
fields and defined as

P (r̃) =

∫ ∞
0

dω

2π
〈E(r̃)×H∗(r̃) +E∗(r̃)×H(r̃)〉 (2)

where ω is the angular frequency, 〈·〉 denotes an ensem-
ble average; (·)∗ is the complex conjugate; and E(r̃) and
H(r̃) are the Fourier transformed electric and magnetic
fields, respectively. The frequency dependence of E(r̃),
H(r̃), and other fields and Green’s functions will be sup-
pressed for ease of notation. Inside each sphere, E(r̃) and
H(r̃) are given by

E(r̃) =

∫
V

[
p(r)·Ge(r; r̃)−Jm(r)·GE(r; r̃)

]
dr (3a)

FIG. 1. Geometry of two sphere problem. (A) Exterior view
of two sphere configuration. (B) Interior view of sphere A.
Sphere B is the similar, but with M layers and outer radius
b.

H(r̃) =

∫
V

[
m(r)·Gm(r; r̃) +Je(r)·GM (r; r̃)

]
dr (3b)

where p(r) = iωµ0µJ
e(r); m(r) = iωε0εJ

m(r); i
is the imaginary unit; µ0 and ε0 are the permeability
and permittivity of free space; µ and ε are the rela-

tive permeability and permittivity; and G(r; r̃) is the
dyadic Green’s function (DGF) relating sources and fields
at r and r̃. The subscripts on the DGFs denote the
electric (e) and magnetic (m) variants and we define

GE(r; r̃) = ∇×Ge(r; r̃) and GM (r; r̃) = ∇×Gm(r; r̃),
where ∇ operates on functions involving r alone. More
details about the DGF are given in App. B 1.

Je(r) and Jm(r) are the Fourier transforms of the
electric and magnetic current densities, respectively. The
spectral densities of the components of Je(r) and Jm(r)
are related by the fluctuation-dissipation theorem of the
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second kind:37,38〈
Je
p(r)Je∗

q (r)
〉

= 2ωε0=(ε)Θ(ω, T )δ(r − r̃) δpq (4a)〈
Jm
p (r)Jm∗

q (r)
〉

= 2ωµ0=(µ)Θ(ω, T )δ(r − r̃) δpq (4b)〈
Je
p(r)Jm∗

q (r)
〉

= 0 (4c)

where p, q = 1, 2, 3 are the Cartesian components of
the current densities, =(·) denotes the imaginary com-
ponent, ~ is the reduced Planck’s constant, kb is Boltz-
mann’s constant, T is the thermodynamic temperature,
and Θ = (~ω/2) coth (~ω/2kbT ) is the average energy of
a harmonic oscillator of frequency ω at temperature T .

Using Eqs. 1 - 4c, the linearized spectral conductance
between two objects is given by39

G(ω, T ) = lim
TA,TB→T

QA→B
TA − TB

=
kbX

2

sinh2(X)
T eA→B(ω) (5)

where X = ~ω/2kbT , and T eA→B(ω) is the transmissivity
function for energy transfer. The total linearized conduc-
tance is obtained from

Gt(T ) =

∫ ∞
0

dω

2π
G(ω, T ) =

∫ ∞
0

dλG(λ, T ) (6)

where c is the speed of light in vacuum and λ = 2πc/ω
is the free-space wavelength. The definition of total con-
ductance in the second integral in Eq. 6 is the result of a
change of integration variables from frequency to wave-
length. In the discussion of the numerical results (Section
V), the wavelength dependent definition of spectral con-
ductance will be employed.

IV. DETERMINATION OF TRANSMISSIVITY
FUNCTION

Since emission and absorption of electromagnetic
waves are volumetric phenomena, it might seem intuitive
to expect the expression for the transmissivity function

for energy transfer to contain two volume integrals. Our
previous work39 has shown that if the two volumes are
isothermal, the properties of the vector Helmholtz equa-
tion (shown later as Eq. B1 in App. B) allow us to
reduce the volume integrals into two surface integrals, so
that the transmissivity function is given by

T eA→B(ω) = 2<Tr

∮
SB

dr

∮
SA

dr̃

[

ω2

c2

[
n̂(r)× µCGe(r, r̃)

]
·
[
n̂(r̃)× εCG

T

m(r, r̃)

]∗
+
[
n̂(r)×GM (r, r̃)

]
·
[
n̂(r̃)×G

T

E(r, r̃)

]∗ ]
(7)

where <(·) denotes the real part, Tr (·) denotes the trace,

(·)T is the transpose, and r and r̃ are locations on the
surfaces SB and SA of spheres B and A, respectively.

Although r and r̃ will be integrated over the surfaces
of spheres B and A, respectively, both position vectors
must be defined within a medium. This gives us the op-
tion of defining the position vectors as either approaching
the surfaces of the spheres from the inside or the outside
of the spheres. Because the fluctuating charges respon-
sible for emission and absorption are contained within
the spheres, it would be natural to assume r and r̃ ap-
proach the spheres’ surfaces from the inside. This is the
approach favored in Ref. 29 and is referred to as the
“interior formula” by Narayanaswamy and Zheng.39 In
the approach we adopt here, r and r̃ instead approach
the surfaces of their respective spheres from region C,
which is referred to as the “exterior method.”39 The ad-
vantage of this approach is that the same formalism can
be used for uncoated spheres or spheres with any number
of coatings.

Since r is integrated over the surface of sphere B and
r̃ is integrated over the surface of sphere A, it is most
convenient to evaluate Eq. 7 using DGFs with r ap-
pearing as rB and r̃ appearing as r̃A. The appropriate
DGFs when r̃, r ∈ C are given by (see App. B 2 for a
full discussion on their determination):

Ge(r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×



 DlM
ν,m

[
M (1)

νm(kCrB) +R(M)
ν (b)M (3)

νm(kCrB)
]

+DlN
ν,m

[
N (1)

νm(kCrB) +R(N)
ν (b)N (3)

νm(kCrB)
]
[M (1)

l,−m(kC r̃A) +R
(M)
l (a)M

(3)
l,−m(kC r̃A)

]

+

 J lMν,m

[
M (1)

νm(kCrB) +R(M)
ν (b)M (3)

νm(kCrB)
]

+J lNν,m

[
N (1)

νm(kCrB) +R(N)
ν (b)N (3)

νm(kCrB)
]
[ N (1)

l,−m(kC r̃A) +R
(N)
l (a)N

(3)
l,−m(kC r̃A)

]


(8a)
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GE(r; r̃) = ik2C

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×



 DlN
ν,m

[
M (1)

νm(kCrB) +R(N)
ν (b)M (3)

νm(kCrB)
]

+DlM
ν,m

[
N (1)

νm(kCrB) +R(M)
ν (b)N (3)

νm(kCrB)
]
[M (1)

l,−m(kC r̃A) +R
(M)
l (a)M

(3)
l,−m(kC r̃A)

]

+

 J lNν,m

[
M (1)

νm(kCrB) +R(N)
ν (b)M (3)

νm(kCrB)
]

+J lMν,m

[
N (1)

νm(kCrB) +R(M)
ν (b)N (3)

νm(kCrB)
]
[ N (1)

l,−m(kC r̃A) +R
(N)
l (a)N

(3)
l,−m(kC r̃A)

]


(8b)

Gm(r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×



 J lNν,m

[
M (1)

νm(kCrB) +R(N)
ν (b)M (3)

νm(kCrB)
]

+J lMν,m

[
N (1)

νm(kCrB) +R(M)
ν (b)N (3)

νm(kCrB)
]
[M (1)

l,−m(kC r̃A) +R
(N)
l (a)M

(3)
l,−m(kC r̃A)

]

+

 DlN
ν,m

[
M (1)

νm(kCrB) +R(N)
ν (b)M (3)

νm(kCrB)
]

+DlM
ν,m

[
N (1)

νm(kCrB) +R(M)
ν (b)N (3)

νm(kCrB)
]
[ N (1)

l,−m(kC r̃A) +R
(M)
l (a)N

(3)
l,−m(kC r̃A)

]


(8c)

GM (r; r̃) = ik2C

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×



 J lMν,m

[
M (1)

νm(kCrB) +R(M)
ν (b)M (3)

νm(kCrB)
]

+J lNν,m

[
N (1)

νm(kCrB) +R(N)
ν (b)N (3)

νm(kCrB)
]
[M (1)

l,−m(kC r̃A) +R
(N)
l (a)M

(3)
l,−m(kC r̃A)

]

+

 DlM
ν,m

[
M (1)

νm(kCrB) +R(M)
ν (b)M (3)

νm(kCrB)
]

+DlN
ν,m

[
N (1)

νm(kCrB) +R(N)
ν (b)N (3)

νm(kCrB)
]
[ N (1)

l,−m(kC r̃A) +R
(M)
l (a)N

(3)
l,−m(kC r̃A)

]


(8d)

where we define m̃ = max {|m| , 1} for compactness; k =

(ω/c)
√
εµ is the magnitude of the wavevector; M

(p)
lm (kr)

and N
(p)
lm (kr) (p = 1 or 3) are vector spherical waves

(VSWs) of order (l,m); and R(M)
ν (r) and R(N)

ν (r) are

the Mie reflection coefficients at r = |r| for M (1)
νm(kr)

and N (1)
νm(kr) waves, respectively (see App. C for defi-

nitions).

The value of p determines the behavior of the VSWs

in the radial direction. For p = 1, M
(p)
lm (kr) is an in-

coming wave scaled radially by z
(1)
l (kr), the spherical

Bessel function of the first kind, where r = |r|. For

p = 3, M
(p)
lm (kr) is an outgoing wave scaled radially

by z
(3)
l (kr), the spherical Hankel function of the first

kind. The definition of N
(p)
lm (kr) and the relations be-

tween VSWs and vector spherical harmonics are given in

App. A. M
(p)
lm (kr) and N

(p)
lm (kr) are related to one an-

other by kM
(p)
lm (kr) = ∇ ×N (p)

lm (kr) and kN
(p)
lm (kr) =

∇ ×M (p)
lm (kr). For any two VSWs P and Q, the term

PQ, such as those appearing in Eqs. 8a-8d, denotes the
dyadic product of the two vectors.40

CM , CN , DM , DN , FM , FN , JM , and JN are un-
known coefficients multiplying the VSWs. They are re-
lated to one another through a set of coupled linear equa-
tions, given by

ClMn,m −
∞∑
ν=m̃

[
DlM
ν,mR

(M)
ν (b)Aνmnm(kCdBA)

+DlN
ν,mR

(N)
ν (b)Bνmnm(kCdBA)

]
= 0 (9a)

ClNn,m −
∞∑
ν=m̃

[
DlN
ν,mR

(N)
ν (b)Aνmnm(kCdBA)

+DlM
ν,mR

(M)
ν (b)Bνmnm(kCdBA)

]
= 0 (9b)

DlM
n,m −

∞∑
ν=m̃

[
ClMν,mR

(M)
ν (a)Aνmnm(kCdAB)

+ClNν,mR
(N)
ν (a)Bνmnm(kCdAB)

]
= Almnm(kCdAB)

(9c)

DlN
n,m −

∞∑
ν=m̃

[
ClNν,mR

(N)
ν (a)Aνmnm(kCdAB)

+ClMν,mR
(M)
ν (a)Bνmnm(kCdAB)

]
= Blmnm(kCdAB)

(9d)
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F lMn,m −
∞∑
ν=m̃

[
J lMν,mR

(M)
ν (b)Aνmnm(kCdBA)

+J lNν,mR
(N)
ν (b)Bνmnm(kCdBA)

]
= 0 (9e)

F lNn,m −
∞∑
ν=m̃

[
J lNν,mR

(N)
ν (b)Aνmnm(kCdBA)

+J lMν,mR
(M)
ν (b)Bνmnm(kCdBA)

]
= 0 (9f)

J lMn,m −
∞∑
ν=m̃

[
F lMν,mR

(M)
ν (a)Aνmnm(kCdAB)

+F lNν,mR
(N)
ν (a)Bνmnm(kCdAB)

]
= Blmnm(kCdAB)

(9g)

J lNn,m −
∞∑
ν=m̃

[
F lNν,mR

(N)
ν (a)Aνmnm(kCdAB)

+F lMν,mR
(M)
ν (a)Bνmnm(kCdAB)

]
= Almnm(kCdAB)

(9h)

where Aνmnm and Bνmnm are well known translation
coefficients41–44 and dAB = −dBA = d. The linear sys-
tem is identical to that given by Mackowski 45 (see Eqs.
11 and 12 of Ref. 45) but for one small difference: the
scattered field coefficients used in this work, such as ClMn,m
and ClNn,m, are analogous to −aimn/αin and −binm/βin in
Mackowski’s work.

The linear system is obtained by writing the DGFs
as expansions of their VSW eigenfunctions in the coor-
dinate systems of both spheres and then re-expanding
some of the VSWs such that they may all be written into
a consistent coordinate system. This allows for bound-
ary conditions on the DGFs to be enforced. The de-
tails of this procedure may be found in App. B. It is
important to note that the principles of this procedure
are well established for dealing with pairs or even clus-
ters of spheres. Previous works have used this technique
in not only a wide range of electromagnetic scattering
problems,46,47 but also in other wave scattering prob-
lems, such as those found in acoustics.48,49 Though the
linear system of equations in Eqs. 9a-9h is analogous to
Waterman’s T-matrix representation,50,51 additional dif-
ficulties are introduced due to our interest in near-field
phenomena. The criterion for convergence when model-
ing near-field phenomena is more stringent than for far-
field phenomena alone.30

For the DGFs given by Eqs. 8a-8d, the transmissivity
function can be evaluated as

T eA→B (ω) = (kfa)
2

(kfb)
2
∞∑

m=−∞

∞∑
l=m̃

∞∑
ν=m̃

×
[
ε(M)
ν (b)

∣∣DlM
ν,m

∣∣2 + ε(N)
ν (b)

∣∣DlN
ν,m

∣∣2] ε(M)
l (a)

+
[
ε(M)
ν (b)

∣∣J lMν,m∣∣2 + ε(N)
ν (b)

∣∣J lNν,m∣∣2] ε(N)
l (a)

 (10)

where

ε(P )
ν (w) =

−2

(kfw)
2

[
<
(
R(P )
ν (w)

)
+
∣∣∣R(P )

ν (w)
∣∣∣2] (11)

and P may be M or N and w = a or b. Equation 10
obeys the reciprocity principle. See App. D for proof.

It is worth noting that our choices of symbol and defi-
nition of ε(P )

ν (w) were not arbitrary. The spectral emis-
sivity of an isolated sphere of radius w is given by52

ε (ω) =

∞∑
m=−∞

∞∑
l=m̃

[
ε
(M)
l (w) + ε

(N)
l (w)

]
(12)

V. NUMERICAL RESULTS

In this section, all numerical results will be shown for
T = 300 K. In order to compute the transmissivity func-
tion efficiently, it must be rewritten into a more computa-
tionally efficient form. See App. E for details. Addition-
ally, simulated values of spectral and total conductance
will be normalized by the conductance between the same
two spheres assuming them to be blackbodies. The spec-
tral conductance between two blackbodies is given by

GBB(λ, T ) =


(

8π3c3~2

kbT 2λ6

)
exp

(
2π~c
kbTλ

)
(

exp
(

2π~c
kbTλ

)
− 1
)2

AAFA→B (13)

and the total conductance is given by

Gt,BB(T ) =

∫ ∞
0

GBB(λ, T )dλ = 4σT 3AAFA→B (14)

where AA is the surface area of object A, FA→B is the
radiative view factor from object A to object B, and σ =
π2k4b/60c2~3 is the Stefan-Boltzmann constant.

A. Dielectric coating atop metal core

Planar stratified HMMs have previously been investi-
gated for heat transfer applications, due to their broad-
band super-Planckian thermal emission properties.19,20

Though use of non-planar layered media is relatively
rare in the study of near-field heat transfer, a thermal
MEMS device with a layer of polar material atop a curved
chromium sensor has been used in extreme near-field ex-
periments by Kim et al.53 It is important to note that
a single layer of material does not make the device an
HMM. Regardless, our work may still give insight into
the behavior of the device. Despite their device having
coatings, Kim et al. modeled their curved probe as ho-
mogeneous, composed of the polar material only. The
authors provided only a post hoc justification of this as-
sumption: the seeming agreement between modeled and
measured results.

Numerical investigation of heat transfer can shed light
on the validity of such an assumption. The simplest test
case is to simulate the heat transfer between two iden-
tical single-coated spheres. For the simulations here we
use a metallic core and a dielectric coating, composed
of silver54 and silica,55 respectively. Varying the spheres’
dimensions, the position of the metal/dielectric interface,
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FIG. 2. (A) Spectral conductance between sets of identical
coated spheres with varying core/coating interface positions
(normalized by that of two blackbody spheres). Spheres have
a silver core and silica layer with outer radii of 10 µm and
minimum separation gap of 1 µm. Surface phonon polariton
(SPhP), Fabry-Perot (FP), and epsilon near zero (ENZ) peaks
are labeled. Legend appearing in (C) also applies to curves
appearing in (A). (B) Real (n) and imaginary (κ) components
and magnitude (|n + iκ|) of the complex refractive index of
silica. (C) Cumulative spectral contribution to conductance
for the curves depicted in (A). Select data points may be
found in tabular form in the supplemental materials.56

and the separation gap allows for characterization of the
impact of dielectric coatings atop metallic cores.

Figure 2 shows the effect of altering the position of the
metal/dielectric interface on the spectrum of radiative
heat transfer. The coated spheres have an outer radius,
coating thickness, and core radius of R, t, and R − t,
respectively. Their geometries are fixed such that R = 10
µm and minimum separation gap D = 1 µm.

The spectral conductance is shown in Fig. 2A. For the
case of a homogeneous silica sphere (t/R = 1), the result
is a relatively wideband distribution of frequencies con-
tributing to the radiative transfer which exactly repro-
duces the results of previous work.29 The two well-known
surface phonon polariton (SPhP) peaks are present at
8.75 µm and 20.3 µm (labeled in Fig. 2A). As the sil-
ver core is allowed to grow, the spectrum incrementally
changes into the case of two bare silver spheres. Spheres
with t/R = 0.1, 0.05, and 0.01 exhibit spectral conduc-
tances which appear to be roughly scaled versions of each
other, the scaling proportional to the thickness of the
coating.

The sequence in which the spectrum of radiative trans-
fer for silica spheres transitions to that of silver spheres
is not uniform across the spectrum. Although the magni-
tude of the spectral conductance of silver is always lower
than that of silica, increasing the proportion of silver to
silica may actually increase the spectral conductance for
some wavelengths at some intermediate coating thick-
nesses. This is evident in the spectrum of spheres with
t/R = 0.2 at 12.5 µm and 23.5 µm and t/R = 0.1 at
the wavelength of 10 µm, where a broad super-Planckian
peak, not associated with a SPhP, manifests. At these
wavelengths, the conductance of the coated spheres ex-
ceeds that of pure silica spheres.

When a thin layer of polar material (actually, the class
of materials is broader and any material which has nar-
row absorption bands may serve as such a thin film mate-
rial) is coated on a metallic substrate, the wavelength at
which the magnitude of the dielectric function (or equiva-
lently the complex refractive index) of the polar material
reaches a minimum, λENZ (ENZ denoting epsilon near
zero), takes special significance.57 At this wavelength
alone, the interface between the coating and vacuum be-
haves as a highly reflective mirror. The interface between
the metallic substrate and the thin film is highly reflec-
tive at all wavelengths considered here because of the
high dielectric function of metals for mid-infrared wave-
lengths.

Near λENZ , electromagnetic waves experience reflec-
tive conditions at both interfaces leading to a larger
number of reflections than at other wavelengths, if the
thin film is not too absorptive. The result of a greater
number of reflections is the appearance of an optically
thicker film. Because amorphous silica has a relatively
high damping, these interesting effects manifest them-
selves in the near-field only when the thickness becomes
very small. Amorphous silica has a λENZ point at 7.95
µm (see Fig. 2B). Hence, the standalone peak in Fig. 2A
for t/R = 0.01 at 8.06 µm is an epsilon near zero mode.
As the thickness is increased, this peak can no longer be
resolved because of its proximity to a SPhP peak.

Another class of peaks which appears in the spectrum
of thermal radiative transfer of coated structures is the
Fabry-Perot-like resonance. This type of resonance re-
sults from the interference of the multiple reflections of
waves within a thin film. Because Fabry-Perot-like reso-
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nances require the constructive interference of waves, the
location of the peak will drift as the thickness of the coat-
ing changes. This type of peak is evident in Fig. 2A for
t/R = 0.1 at 10.0 µm and t/R = 0.05 at 9.55 µm.

The cumulative spectral contribution to conductance is
shown in Fig. 2C. The cumulative contribution at wave-
length λ is given by

CSC(λ) =

∫ λ
0
dλ′G(λ′, T )∫∞

0
dλ′G(λ′, T )

(15)

where λ′ is a dummy integration variable. The slopes
of the cumulative contribution curves indicate how rel-
atively dominant a wavelength is in contributing to the
total conductance. A greater slope indicates a greater
relative contribution to the total conductance and vice
versa.

The curves for spheres with t/R ≥ 0.2 have relatively
small slopes across most wavelengths. This is consis-
tent with the fairly wideband behavior demonstrated in
Fig. 2A. As t/R decreases, however, wavelengths dif-
ferentiate into two categories: those with nearly zero
slope and those with very steep slope. For t/R = 0.10
and t/R = 0.05, the curves become nearly vertical at
the SPhP wavelengths. In the most extreme case, for
t/R = 0.01, the curve is nearly vertical at 7.95 µm and
19.79 µm and nearly horizontal elsewhere. These wave-
lengths correspond to ENZ points of the silica layer. If
the minimum separtion gap between the spheres were
to be decreased, SPhP peaks would grow and eventu-
ally dominate over ENZ peaks. The dominance of SPhP
modes in the extreme near-field will be made clear in the
discussion of Fig. 3.

As we have shown, adding a very thin layer of a mate-
rial supporting surface polaritons to a metallic substrate
creates a selective near-field emitter (this was already
known to be true in the far-field57,58). Experimental
measurement of spheres with very thin coatings would
allow for probing of resonant heat transfer, some of which
may be due to SPhPs, while supressing heat transfer at
other wavelengths. Because SPhPs are known to domi-
nate heat transfer between polar materials in the extreme
near-field, isolating the contributions from SPhPs by us-
ing a coated sphere would serve as a superior experimen-
tal method compared to measuring the effects of SPhPs
with homogeneous spheres like in past experiments.59–61

Figure 3 shows the effect of varying the separation gap
between spheres with outer radii of 5 µm on total con-
ductance. According to classical radiative transfer, the
distance dependence in the far-field is due to changes in
view factor. Indeed, for gaps such that D/R ≥ 2, all
cases are well approximated as graybodies, as indicated
by the curves’ near-zero slopes. In that regime, the to-
tal conductance of spheres of constant radius increases as
the fraction of silica increases.

As the separation gap decreases, the conductance be-
tween spheres with a silica coating begins to be domi-
nated by the surface phonon polaritonic contributions.

FIG. 3. Distance dependence of total conductance between
two identical coated spheres. Spheres have a silver core and
silica layer with outer radii of 5 µm. Total conductance is
normalized by that of two blackbodies and minimum sepa-
ration gap is normalized by the outer radii of the spheres.
Data points may be found in tabular form in the supplemen-
tal materials.56

At a separation gap such that D/R = 0.004, a coating
of just 50 nm of silica can achieve 70% of the conduc-
tance of a fully silica sphere. This allows for the creation
of spheres with silica-like behavior in the near-field but
tunable radiative transfer behavior in the far-field. As
a simple rule of thumb, the conductance between two
silica coated silver spheres exceeds 70% of that between
two homogeneous silica spheres for D/t . 1/4. For larger
gaps, the conductance is more like that of silver.

This observation partially validates the assumption
made by Kim et al.53 Their device had a 100 nm silica
coating atop an optically opaque chromium thermocou-
ple. Their measurements were perfomed in the extreme
near-field, at gaps ranging from 1 nm to 50 nm. For the
smallest gaps, we have shown that the SPhP contribu-
tions will be dominant and modeling the whole body as
homogeneous silica is a reasonable approximation. How-
ever, should the gaps of interest be larger or the materials
not be dominated by SPhPs, more care must be taken to
properly approximate near-field thermal radiative trans-
fer of coated bodies.

B. Dielectric coating atop dielectric core

We have observed that two spheres with dielectric coat-
ings and metallic cores have their total conductance ef-
fectively capped at that of two homogeneous spheres
with the same dielectric material. A natural question
is whether or not two coated spheres can ever exceed the
total conductance of two homogeneous spheres which are
composed of any of the coated spheres’ constitutive ma-
terials. Because of the importance of SPhPs in near-field
radiative heat transfer, we simulate the conductance be-
tween two coated spheres whose cores and coatings both
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support SPhPs. As shown in Fig. 4A, we simulate iden-
tical spheres with beryllia55 cores and alumina55 coat-
ings, or vice versa, with outer radii of 5 µm and a min-
imum separation gap of 100 nm. Those spheres simu-
lated with an alumina coating and a beryllia core such
that 0.01 ≤ t/R ≤ 0.5 all exceed the total conductance
between two homogeneous alumina spheres (which them-
selves exceed that of two homogeneous beryllia spheres).
The maximum occurs at t/R ≈ 0.05. Although spheres
with beryllia coatings and alumnia cores never exceed the
total conductance of homogeneous alumina spheres, they
too exhibit a slight local maximum at the same value
of t/R. The maximum total conductance of the coated
spheres outperforms homogeneous alumina spheres by
8.5%.

When looking at the spectral conductance of the ho-
mogeneous spheres and the coated sphere with the max-
imum conductance, it becomes apparent how the coated
spheres are able to outperform the homogeneous spheres.
As shown in Fig. 4B, the coated spheres exhibit spec-
tral features similar to features found in the spectra of
its components. Most importantly, the coated spheres
strongly reproduce the SPhP peaks of homogeneous alu-
mina at 12.2 µm and 20.8 µm while capturing a portion of
the enhancement due to the SPhP peak of homogeneous
beryllia at 10.0 µm (SPhP peaks labeled in Fig. 4). This
suggests that it may be possible to “stack” the effect of
SPhPs at multiple wavelengths by choosing coatings of
materials with spectrally spread SPhP peaks.

VI. CONCLUSIONS

In this paper, we have presented a new formula for cal-
culating the near-field thermal radiative transfer between
two spheres, which allows for the inclusion of any number
of coatings. Since we lack the formalism to analyze the
radiative transfer between two homogeneous spheres with
anisotropic properties, we are unable, at this stage, to re-
place the two coated spheres with equivalent hyperbolic
metamaterial spheres. Instead, the effective properties of
the coated spheres are characterized by the Mie reflection
coefficients.

We have demonstrated that spheres with metallic
cores and coatings of polar materials also exhibit super-
Planckian peaks at wavelengths not corresponding to sur-
face phonon polaritons. Such spheres behave like polar
materials in the extreme near-field but like metals in the
far-field. This creates the possibility of measuring near-
field radiative transfer due to surface phonon polaritons
while suppressing contributions from other modes of heat
transfer. We have also shown that a coating of alumina
atop a beryllia core can outperform homogeneous alu-
mina or beryllia for an optimal coating thickness, demon-
strating that the surface phonon polariton contribution
from material inside the sphere may also contribute to
the conductance between two spheres.

This work will also be useful in the development of

FIG. 4. (A) Total conductance between two identical coated
spheres (normalized by that of two blackbody spheres) as a
function of the core/coating interface position. Spheres have
a beryllia core and an alumina coating, or vice versa. The
spheres have outer radii of 5 µm and a minimum separation
gap of 100 nm. Dashed lines represent the total conductance
of homogeneous beryllia and alumina spheres of the same ge-
ometry. Surface phonon polaritonic peaks (SPhP) for the
homoegenous spheres are labeled. (B) Spectral conductance
of spheres from (A) for homogeneous beryllia, homogeneous
alumina, and the coated sphere with the maximum total con-
ductance (alumina coating and beryllia core with t/R = 0.05).
All spectral conductances are normalized by that of two black-
body spheres. Select data points may be found in tabular
form in the supplemental materials.56

methods to estimate the heat transfer between curved
surfaces such as proximity approximations62–64 or the
thermal discrete dipole approximation.65,66 Future work
should be devoted to developing a formalism of near-
field radiative transfer between spheres which permits
anisotropic dielectric properties.
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Appendix A: Mathematical definitions and useful
relations

The vector spherical waves of interest are given by

M
(p)
lm (kr) =z

(p)
l (kr)V

(2)
lm(θ, φ) (A1)

N
(p)
lm (kr) =ζ

(p)
l (kr)V

(3)
lm(θ, φ)

+

√
l(l + 1)

kr
z
(p)
l (kr)V

(1)
lm(θ, φ) (A2)

where z
(p)
l (kr) is the spherical Bessel (p = 1) or spher-

ical Hankel (p = 3) function of the first kind and

ζ
(p)
l (kr) =

1

kr

d

d(kr)

(
krz

(p)
l (kr)

)
. V

(1)
lm(θ, φ), V

(2)
lm(θ, φ),

and V
(3)
lm(θ, φ) are the vector spherical harmonics of or-

der (l,m) for polar and azimuthal angles θ and φ, respec-
tively. They are defined as

V
(1)
lm(θ, φ) = Ylm(θ, φ)r̂ (A3)

V
(2)
lm(θ, φ) =

r√
l(l + 1)

∇Ylm(θ, φ)× r̂ (A4)

V
(3)
lm(θ, φ) =

r√
l(l + 1)

∇Ylm(θ, φ) (A5)

where Ylm(θ, φ) is the scalar spherical harmonic of order

(l,m) and r̂, θ̂, and φ̂ are the unit vectors of the spherical
coordinate system. Scalar spherical harmonics are given
by

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (A6)

where Pml (x) is the associated Legendre polynomial.67

The Wronskian of z(1)n (x) and z(3)n (x) is given by

W (z(1)n (x), z(3)n (x)) = z(1)n (x)ζ(3)n (x)− z(3)n (x)ζ(1)n (x)

= i/x2 (A7)

The following integral identities are useful in evaluat-
ing surface intgerals on the sphere:∮

S

r̂ ·
(
M

(u)
lm (k1r)×M (v)∗

pq (k2r)
)
dr = 0 (A8)∮

S

r̂ ·
(
N

(u)
lm (k1r)×N (v)∗

pq (k2r)
)
dr = 0 (A9)∮

S

r̂ ·
(
M

(u)
lm (k1r)×N (v)∗

pq (k2r)
)
dr

= r2z
(u)
l (k1r)ζ

(v)∗
p (k2r)δlpδmq (A10)∮

S

r̂ ·
(
N

(v)
lm (k1r)×M (v)∗

pq (k2r)
)
dr

= −r2ζ(u)l (k1r)z
(v)∗
p (k2r)δlpδmq (A11)

Appendix B: Determination of the dyadic Green’s
functions

1. Form of the dyadic Green’s functions

A dyadic Green’s function gives the vectorial response
at a location due to a vector source at another location,
the two positions being the arguments of the DGF. A
convenient method to compute the DGFs in Eq. 7 is to
expand them in terms of the eigenfunction solutions to
the vector Helmholtz equation, given by

∇×∇× F (r)− k2F (r) = 0 (B1)

where F (r) is the electric or magnetic field at location r
and k = (ω/c)

√
εµ. In spherical coordinates, the eigen-

functions of the vector Helmholtz equation are the vector

spherical waves M
(p)
lm (kr) and N

(p)
lm (kr).

Each region has a DGF composed of two parts: a ho-

mogeneous DGF,G0(r; r̃), corresponding to waves which
travel directly from r̃ to r and a scattered DGF corre-
sponding to waves which have experienced scattering at
inhomogeneities. When expanding a DGF into its VSW
eigenfunctions, the choice of coordinate system for r and
r̃ becomes important because they appear in the argu-
ments of vector spherical waves. Assuming that r, r̃ ∈ C,

G0(r; r̃) can be written in the A-coordinate system as

G0(r; r̃)

ikC
=



∞∑
m=−∞

∞∑
l=m̃

(−1)m
{
M

(3)
lm(kCrA)M

(1)
l,−m(kC r̃A) +N

(3)
lm(kCrA)N

(1)
l,−m(kC r̃A)

}
for rA > r̃A

∞∑
m=−∞

∞∑
l=m̃

(−1)m
{
M

(1)
lm(kCrA)M

(3)
l,−m(kC r̃A) +N

(1)
lm(kCrA)N

(3)
l,−m(kC r̃A)

}
for rA < r̃A

(B2)

where we define m̃ = max {|m| , 1}. With respect to
the center of the A-coordinate system, the homogeneous
DGF for rA > r̃A (rA < r̃A) corresponds to outgoing (in-
coming) VSWs at rA. The double surface integral in Eq.

7 for computing T eA→B requires rA ∈ SB and r̃A ∈ SA.

Hence, we must choose the branch of G0(r; r̃) for which
rA > r̃A.

The scattered DGF captures the collective effect of
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all scattering events at interfaces. The scattered DGF
splits naturally into two parts: a part representing waves

scattered off of a single sphere only, G
(sc)′
e (r; r̃), and

a part representing waves scattered off of both spheres,

G
(sc)′′
e (r; r̃). G

(sc)′′
e (r; r̃) obviously includes multiple re-

flections between the two spheres. Because we chose
to write Eq. B2 in the A-coordinate system, we must

also express G
(sc)′
e (r; r̃), representing waves scattered by

sphere A only, in the A-coordinate system. That part of

the scattered DGF is related to the branch of G0(r; r̃)

for rA < r̃A. In that case, G
(sc)′
e (r; r̃) can be thought of

as arising from VSWs emitted at r̃ which travel inward
before reflecting off of sphere A and proceeding to r. It

is given by

G
(sc)′
e (r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

(−1)m× R
(M)
l (a)M

(3)
lm(kCrA)M

(3)
l,−m(kC r̃A)

+R
(N)
l (a)N

(3)
lm(kCrA)N

(3)
l,−m(kC r̃A)

 (B3)

where R
(M)
l (a) and R

(N)
l (a) are the Mie reflection coef-

ficients at the surface of sphere A for M
(1)
lm(kC r̃A) and

N
(1)
lm(kC r̃A) waves, respectively.
Some waves may reflect off of both spheres multiple

times on their journey from r̃ to r. The DGF which
takes into account those multiple scatterings is given by

G
(sc)′′
e (r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×



[
ClM

(1)

ν,m M (3)
νm(kCrA) + ClN

(1)

ν,m N (3)
νm(kCrA) +DlM(1)

ν,m M (3)
νm(kCrB) +DlN(1)

ν,m N (3)
νm(kCrB)

]
M

(1)
l,−m(kC r̃A)

+
[
F lM

(1)

ν,m M (3)
νm(kCrA) + F lN

(1)

ν,m N (3)
νm(kCrA) + J lM

(1)

ν,m M (3)
νm(kCrB) + J lN

(1)

ν,m N (3)
νm(kCrB)

]
N

(1)
l,−m(kC r̃A)

+
[
ClM

(3)

ν,m M (3)
νm(kCrA) + ClN

(3)

ν,m N (3)
νm(kCrA) +DlM(3)

ν,m M (3)
νm(kCrB) +DlN(3)

ν,m N (3)
νm(kCrB)

]
M

(3)
l,−m(kC r̃A)

+
[
F lM

(3)

ν,m M (3)
νm(kCrA) + F lN

(3)

ν,m N (3)
νm(kCrA) + J lM

(3)

ν,m M (3)
νm(kCrB) + J lN

(3)

ν,m N (3)
νm(kCrB)

]
N

(3)
l,−m(kC r̃A)


(B4)

where the coefficients on the VSWs are unknowns to be
determined from the boundary conditions, which will be
discussed shortly.

All DGFs of the form discussed in this work are com-
posed of dyadic products40 of VSWs. For any dyadic
product, the VSW to the right can be any of the VSWs to

the right in G0(r; r̃), i.e., M
(1)
l,−m(kC r̃A), N

(1)
l,−m(kC r̃A),

M
(3)
l,−m(kC r̃A), or N

(3)
l,−m(kC r̃A). The vector to the

left has to be an outgoing VSW in either of the coor-
dinate systems in order to satifsfy the far-field boundary
conditions. Hence, the vector to the left can be a lin-

ear combination of the following VSWs: M (3)
νm(kCrA),

N (3)
νm(kCrA), M (3)

νm(kCrB), and N (3)
νm(kCrB). The ex-

pression in Eq. B4 takes into account all these possibili-
ties.

The magnetic DGF takes the same form as the electric
DGF, but with a corresponding set of unknown magnetic
coefficients, denoted with a tilde. That is to say that each
C, D, F , and J has a corresponding magnetic counter-

part: C̃, D̃, F̃ , and J̃ . The same holds true for the Mie

reflection coefficients — every R has a counterpart R̃.
As will become apparent, only the waves in the DGFs
representing scattering off of both sphere A and sphere
B will contribute to the heat transfer between the two

spheres (see App. B 2 for more details). This is com-
pletely analogous to the result for heat transfer between
two semi-infinite half spaces.39

In order to simplify the DGFs and determine the un-
known coefficients, two steps must be taken. First, the
scattered fields must be converted into a single coordi-
nate system. Second, boundary conditions on the DGFs
must be enforced at the interfaces between different me-
dia. This will allow us to express the boundary conditions
in terms of the coefficients multiplying the VSWs.

The vector addition translation theorem is used to con-
vert the coordinate system of VSWs.41–44 To convert an
outgoing VSW in the B-coordinate system into VSWs in
the A-coordinate system, the following expression can be
used:

M (3)
νm(krB) =

∞∑
n=m̃

[
Aνmnm(kdBA)M (1)

nm(krA)

+Bνmnm(kdBA)N (1)
nm(krA)

]
, (B5)

N (3)
νm(krB) =

∞∑
n=m̃

[
Bνmnm(kdBA)M (1)

nm(krA)

+Aνmnm(kdBA)N (1)
nm(krA)

]
, (B6)

when the translation rB − rA = ẑdBA is restricted to
the z-axis and |rA| < |dBA| = d. Similarly, conversion of
outgoing VSWs from the A-coordinate system to VSWs
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in the B-coordinate system, we use

M (3)
νm(krA) =

∞∑
n=m̃

[
Aνmnm(kdAB)M (1)

nm(krB)

+Bνmnm(kdAB)N (1)
nm(krB)

]
, (B7)

N (3)
νm(krA) =

∞∑
n=m̃

[
Bνmnm(kdAB)M (1)

nm(krB)

+Aνmnm(kdAB)N (1)
nm(krB)

]
, (B8)

where rA − rB = ẑdAB and |rB| < |dAB | = d.
At any location r on a boundary and for any r̃, the

DGFs must satisfy

Continuity of n̂(r)× µ(r)Ge(r; r̃) (B9)

Continuity of n̂(r)×GE(r; r̃) (B10)

Continuity of n̂(r)× ε(r)Gm(r; r̃) (B11)

Continuity of n̂(r)×GM (r; r̃) (B12)

Utilizing Eqs. B2-B12 leads to a set of linear equations
between the coefficients multiplying the various VSWs
that appear in Eq. B4. Some details have been omitted
here. For example, the DGFs used to derive the linear
equations not only include those when r is in region C
(Eqs. B2-B4), but also those when r is inside spheres
A and B (not given in this paper). The resultant set of
linear equations are given in Eqs. 9a-9h where

DlM
ν,m =

DlM(1)

ν,m

R
(M)
ν (b)

=
DlM(3)

ν,m

R
(M)
l (a)R

(M)
ν (b)

(B13)

DlN
ν,m =

DlN(1)

ν,m

R
(N)
ν (b)

=
DlN(3)

ν,m

R
(M)
l (a)R

(N)
ν (b)

(B14)

J lMν,m =
J lM

(1)

ν,m

R
(M)
ν (b)

=
J lM

(3)

ν,m

R
(N)
l (a)R

(M)
ν (b)

(B15)

J lNν,m =
J lN

(1)

ν,m

R
(N)
ν (b)

=
J lN

(3)

ν,m

R
(N)
l (a)R

(N)
ν (b)

(B16)

ClMν,m =
ClM

(1)

ν,m

R
(M)
ν (a)

=
ClM

(3)

ν,m

R
(M)
l (a)R

(M)
ν (a)

(B17)

ClNν,m =
ClN

(1)

ν,m

R
(N)
ν (a)

=
ClN

(3)

ν,m

R
(M)
l (a)R

(N)
ν (a)

(B18)

F lMν,m =
F lM

(1)

ν,m

R
(M)
ν (a)

=
F lM

(3)

ν,m

R
(N)
l (a)R

(M)
ν (a)

(B19)

F lNν,m =
F lN

(1)

ν,m

R
(N)
ν (a)

=
F lN

(3)

ν,m

R
(N)
l (a)R

(N)
ν (a)

(B20)

The coefficients for the magnetic DGFs, C̃, D̃, F̃ , and

J̃ (see discussion following Eq. B4), are related to the
coefficients of the electric DGFs by interchanging ε and µ

and noticing R̃(M)
ν (r) = R(N)

ν (r) and R̃(N)
ν (r) = R(M)

ν (r).
Accordingly, we get

D̃lM
ν,m = J lNν,m (B21)

D̃lN
ν,m = J lMν,m (B22)

J̃ lMν,m = DlN
ν,m (B23)

J̃ lNν,m = DlM
ν,m (B24)

C̃lMν,m = F lNν,m (B25)

C̃lNν,m = F lMν,m (B26)

F̃ lMν,m = ClNν,m (B27)

F̃ lNν,m = ClMν,m (B28)

2. Simplification of dyadic Green’s function

The derivation of the simplified electric DGF, previ-
ously presented as Eq. 8a in its final form, is given below.
The electric DGF is given by

Ge(r; r̃) = G0(r; r̃) +G
(sc)′
e (r; r̃) +G

(sc)′′
e (r; r̃) (B29)

where G0(r; r̃), G
(sc)′
e (r; r̃), and G

(sc)′′
e (r; r̃) are given

by Eqs. B2-B4, and represent scattering off of nei-
ther sphere, only sphere A, and spheres A and B, re-
spectively. For reasons which will become apparently

shortly, we will group G0(r; r̃) and G
(sc)′
e (r; r̃) together.

G0(r; r̃) +G
(sc)′
e (r; r̃) is the DGF for an isolated sphere

A in the absence of sphere B.
Using Eqs. B2 and B3, we get:

G0(r; r̃) +G
(sc)′
e (r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

(−1)m×

M
(3)
lm(kCrA)

M (1)
l,−m(kC r̃A)

+R
(M)
l (a)M

(3)
l,−m(kC r̃A)


+N

(3)
lm(kCrA)

 N (1)
l,−m(kC r̃A)

+R
(N)
l (a)N

(3)
l,−m(kC r̃A)




(B30)

Using Eqs. B13-B20, Eq. B4 simplifies to:
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G
(sc)′′
e (r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×

 ClMν,mR
(M)
ν (a)M (3)

νm(kCrA) + ClNν,mR
(N)
ν (a)N (3)

νm(kCrA)

+DlM
ν,mR

(M)
ν (b)M (3)

νm(kCrB) +DlN
ν,mR

(N)
ν (b)N (3)

νm(kCrB)

M (1)
l,−m(kC r̃A)

+R
(M)
l (a)M

(3)
l,−m(kC r̃A)


+

 F lMν,mR
(M)
ν (a)M (3)

νm(kCrA) + F lNν,mR
(N)
ν (a)N (3)

νm(kCrA)

+J lMν,mR
(M)
ν (b)M (3)

νm(kCrB) + J lNν,mR
(N)
ν (b)N (3)

νm(kCrB)

 N (1)
l,−m(kC r̃A)

+R
(N)
l (a)N

(3)
l,−m(kC r̃A)




(B31)

In order to conveniently evaluate T eA→B (Eq. 7), it will
prove useful to convert the VSWs on the left in the dyadic

products of the DGF to the B-coordinate system. To do
so, we employ the vector addition translation theorem,
given in Eqs. B7-B8. Accordingly, we get

G
(sc)′′
e (r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×

[
DlM
ν,mR

(M)
ν (b)M (3)

νm(kCrB) +DlN
ν,mR

(N)
ν (b)N (3)

νm(kCrB)
]M (1)

l,−m(kC r̃A)

+R
(M)
l (a)M

(3)
l,−m(kC r̃A)


+
[
J lMν,mR

(M)
ν (b)M (3)

νm(kCrB) + J lNν,mR
(N)
ν (b)N (3)

νm(kCrB)
] N (1)

l,−m(kC r̃A)

+R
(N)
l (a)N

(3)
l,−m(kC r̃A)



+

∞∑
n=m̃



 ClMν,mR
(M)
ν (a)Aνmnm(kdAB)

+ClNν,mR
(N)
ν (a)Bνmnm(kdAB)

M (1)
nm(krB)

+

 ClNν,mR
(N)
ν (a)Aνmnm(kdAB)

+ClMν,mR
(M)
ν (a)Bνmnm(kdAB)

N (1)
nm(krB)


M (1)

l,−m(kC r̃A)

+R
(M)
l (a)M

(3)
l,−m(kC r̃A)



+

∞∑
n=m̃



 F lMν,mR
(M)
ν (a)Aνmnm(kdAB)

+F lNν,mR
(N)
ν (a)Bνmnm(kdAB)

M (1)
nm(krB)

+

 F lNν,mR
(N)
ν (a)Aνmnm(kdAB)

+F lMν,mR
(M)
ν (a)Bνmnm(kdAB)

N (1)
nm(krB)


 N (1)

l,−m(kC r̃A)

+R
(N)
l (a)N

(3)
l,−m(kC r̃A)





(B32)

Equations 9c-9d and 9g-9h may then be used to elim-
inate summation over the index ν of the C and F co-

efficients in Eq. B32. After further simplification, we
get
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G
(sc)′′
e (r; r̃) = ikC

∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

(−1)m×



 DlM
ν,m

[
M (1)

νm(krB) +R(M)
ν (b)M (3)

νm(kCrB)
]

+DlN
ν,m

[
N (1)

νm(krB) +R(N)
ν (b)N (3)

νm(kCrB)
]
[M (1)

l,−m(kC r̃A) +R
(M)
l (a)M

(3)
l,−m(kC r̃A)

]

+

 J lMν,m

[
M (1)

νm(krB) +R(M)
ν (b)M (3)

νm(kCrB)
]

+J lNν,m

[
N (1)

νm(krB) +R(N)
ν (b)N (3)

νm(kCrB)
]
[N (1)

l,−m(kC r̃A) +R
(N)
l (a)N

(3)
l,−m(kC r̃A)

]


− ikC

∞∑
m=−∞

∞∑
l=m̃

(−1)m


M

(3)
lm(krA)

[
M

(1)
l,−m(kC r̃A) +R

(M)
l (a)M

(3)
l,−m(kC r̃A)

]
+N

(3)
lm(krA)

[
N

(1)
l,−m(kC r̃A) +R

(N)
l (a)N

(3)
l,−m(kC r̃A)

]
 (B33)

Adding Eq. B30 and Eq. B33, we obtain the Eq.

8a for Ge(r; r̃). The rationale for splitting Ge(r; r̃)

into G0(r; r̃) + G
(sc)′
e (r; r̃) and G

(sc)′′
e (r; r̃) should be

clearer now: only the coefficients of VSWs appearing in

G
(sc)′′
e (r; r̃) manifest in the final expression for T eA→B

(Eq. 7).

The form of the magnetic DFG, Gm(r; r̃), is identi-

cal, but for D̃, J̃ , R̃ in place of D,J,R in Eq. 8a. See
Eqs. B21-B28 for relations between coefficients of VSWs

in Gm and Ge. GE(r; r̃) and GM (r; r̃) are obtained

from their defintions: GE(r; r̃) = ∇ × Ge(r; r̃) and

GM (r; r̃) = ∇×Gm(r; r̃)

Appendix C: Computation of effective Mie reflection
coefficients

The expressions for Mie reflection coefficients,
R(M)
ν (rρ,s) and R(N)

ν (rρ,s) (see Sec. II for the geom-
etry as well as definition of terms), are well known
from the literature for both uncoated and single-coated
spheres.68–71 The full, multi-layered Mie reflection coeffi-
cients can be determined recursively in a manner similar
to that of Fresnel reflection coefficients for planar strati-
fied media.72 The recurrence relation is given by

R(M)
ν (rρ,s)= −uν(rρ,s) +R

(M)
ν (rρ−1,s)α

(M)
ν (rρ,s)

1 +R
(M)
ν (rρ−1,s)β

(M)
ν (rρ,s)

(C1)

R(N)
ν (rρ,s)= −vν(rρ,s) +R

(N)
ν (rρ−1,s)α

(N)
ν (rρ,s)

1 +R
(N)
ν (rρ−1,s)β

(N)
ν (rρ,s)

(C2)

where

uν(rρ,s) =
z
(1)
ν (kρ+1,srρ,s)

z
(3)
ν (kρ+1,srρ,s)

× 1
Zρ+1

ζ(1)ν (kρ+1rρ,s)

z
(1)
ν (kρ+1rρ,s)

− 1
Zρ

ζ(1)ν (kρrρ,s)

z
(1)
ν (kρrρ,s)

1
Zρ+1

ζ
(3)
ν (kρ+1rρ,s)

z
(3)
ν (kρ+1rρ,s)

− 1
Zρ

ζ
(1)
ν (kρrρ,s)

z
(1)
ν (kρrρ,s)

 (C3)

vν(rρ,s) =
ζ
(1)
ν (kρ+1rρ,s)

ζ
(3)
ν (kρ+1rρ,s)

× 1
Zρ+1

z(1)ν (kρ+1rρ,s)

ζ
(1)
ν (kρ+1rρ,s)

− 1
Zρ

z(1)ν (kρrρ,s)

ζ
(1)
ν (kρrρ,s)

1
Zρ+1

z
(3)
ν (kρ+1rρ,s)

ζ
(3)
ν (kρ+1rρ,s)

− 1
Zρ

z
(1)
ν (kρrρ,s)

ζ
(1)
ν (kρrρ,s)

 (C4)

α(M)
ν (rρ,s) =

z
(1)
ν (kρ+1rρ,s)

z
(3)
ν (kρ+1rρ,s)

z
(3)
ν (kρrρ,s)

z
(1)
ν (kρrρ,s)

× 1
Zρ+1

ζ(1)ν (kρ+1rρ,s)

z
(1)
ν (kρ+1rρ,s)

− 1
Zρ

ζ(3)ν (kρrρ,s)

z
(3)
ν (kρrρ,s)

1
Zρ+1

ζ
(3)
ν (kρ+1rρ,s)

z
(3)
ν (kρ+1rρ,s)

− 1
Zρ

ζ
(1)
ν (kρrρ,s)

z
(1)
ν (kρrρ,s)

 (C5)

α(N)
ν (rρ,s) =

ζ
(1)
ν (kρ+1rρ,s)

ζ
(3)
ν (kρ+1rρ,s)

ζ
(3)
ν (kρrρ,s)

ζ
(1)
ν (kρrρ,s)

× 1
Zρ+1

z(1)ν (kρ+1rρ,s)

ζ
(1)
ν (kρ+1rρ,s)

− 1
Zρ

z(3)ν (kρrρ,s)

ζ
(3)
ν (kρrρ,s)

1
Zρ+1

z
(3)
ν (kρ+1rρ,s)

ζ
(3)
ν (kρ+1rρ,s)

− 1
Zρ

z
(1)
ν (kρrρ,s)

ζ
(1)
ν (kρrρ,s)

 (C6)

β(M)
ν (rρ,s) =

z
(3)
ν (kρrρ,s)

z
(1)
ν (kρrρ,s)

× 1
Zρ+1

ζ(3)ν (kρ+1rρ,s)

z
(3)
ν (kρ+1rρ,s)

− 1
Zρ

ζ(3)ν (kρrρ,s)

z
(3)
ν (kρrρ,s)

1
Zρ+1

ζ
(3)
ν (kρ+1rρ,s)

z
(3)
ν (kρ+1rρ,s)

− 1
Zρ

ζ
(1)
ν (kρrρ,s)

z
(1)
ν (kρrρ,s)

 (C7)
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β(N)
ν (rρ,s) =

ζ
(3)
ν (kρrρ,s)

ζ
(1)
ν (kρrρ,s)

× 1
Zρ+1

z(3)ν (kρ+1rρ,s)

ζ
(3)
ν (kρ+1rρ,s)

− 1
Zρ

z(3)ν (kρrρ,s)

ζ
(3)
ν (kρrρ,s)

1
Zρ+1

z
(3)
ν (kρ+1rρ,s)

ζ
(3)
ν (kρ+1rρ,s)

− 1
Zρ

z
(1)
ν (kρrρ,s)

ζ
(1)
ν (kρrρ,s)

 (C8)

In Eqs. C3-C8, Z = Z0

√
µ/ε is the electromagnetic

impedance for a dielectric material and Z0 =
√
µ0/ε0

is the impedance of free space. Additionally, we define
kN+1,A = kM+1,B = kC . The recursion relation is ter-

minated by R(M)
ν (r0,s) = −uν(r0,s) and R(N)

ν (r0,s) =
−vν(r0,s).

Appendix D: Reciprocity of transmissivity function

The transmissivity function obeys the reciprocity re-
lation T eA→B (ω) = T eB→A (ω). Proof of this property
for Eq. 10 is a useful check of the validity of our derived
transmissivity function. Because of the properties of elec-
tric and magnetic fields, DGFs must obey the following
reciprocity relations:?

µ(r)G
T

e (r; r̃) = µ(r̃)Ge(r̃; r) (D1)

ε(r)G
T

m(r; r̃) = ε(r̃)Gm(r̃; r) (D2)

G
T

E(r; r̃) = GM (r̃; r) (D3)

To use these relations, the locations of the r and r̃
must be interchanged while holding the locations of the
spheres fixed. The DGFs from the right-hand sides of
Eqs. D1-D3 can be written with their own set of unknown
coefficients, which we accent with a “ ˘ ” symbol. They
arise when considering heat transfer from sphere B to A.
From Eqs. D1-D3,

^

DνM
l,−m = DlM

ν,m (D4)
^

DνN
l,−m = J lMν,m (D5)
^

JνMl,−m = DlN
ν,m (D6)

^

JνNl,−m = J lNν,m (D7)

Using Eqs. D4-D7, showing T eA→B (ω) = T eB→A (ω)
follows naturally from Eq. 10. We get

T eB→A (ω) = (kfb)
2

(kfa)
2
∞∑

m=−∞

∞∑
l=m̃

∞∑
ν=m̃

×
[
ε
(M)
l (a)

∣∣∣^DνM
l,−m

∣∣∣2 + ε
(N)
l (a)

∣∣∣^DνN
l,−m

∣∣∣2] ε(M)
ν (b)

+

[
ε
(M)
l (a)

∣∣∣^JνMl,−m∣∣∣2 + ε
(N)
l (a)

∣∣∣^JνNl,−m∣∣∣2] ε(N)
ν (b)


= T eA→B (ω) (D8)

Here, the l and ν indices and m and −m swap roles, but
the overall sum is equal.

Appendix E: Computational implementation

To be of any practical use, the transmissivity function
must be numerically calculable. A number of numerical
problems are introduced, however, due to the presence
of spherical Bessel and Hankel functions of high order,
which may experience issues with underflow and overflow
on computers.34 To avoid such problems, we make two
changes in the calculation of the transmissivity function.

First, instead of using the set of coefficients multiplying
the VSWs in Eqs. 9a-9h, we use the related coefficients
defined in Eqs. B13-B20 denoted with a (1) superscript.
These coefficients are analogous to the unknown coef-
ficients used in Ref. 29 and the scattering coefficients
used in Ref. 31. Second, we introduce prefactors to
the translation and VSW coefficients which help stabi-
lize the linear system used to solve for the VSW coef-
ficients. The details of this procedure are discussed in
greater detail by Sasihithlu and Narayanaswamy.34 The
prefactors take the form of a ratio of spherical Bessel
or Hankel functions. For example, the prefactor for

DlM(1)

ν,m is z
(1)
l (kCa)/z(1)ν (kCb). The linear system is mod-

ified in such a way that we solve directly for the value

of
(
z
(1)
l (kCa)/z(1)ν (kCb)

)
DlM(1)

ν,m , and other such coeffi-

cients. The expression for the transmissivity function
may then be modified such that the VSW coefficients,
with the appropriate prefactors, appear explicitly.

After some manipulation, we get

T eA→B (ω) = 4
(a
b

)2 ∞∑
m=−∞

∞∑
l=m̃

∞∑
ν=m̃

×



=
(
F
(M)
ν (b)

)
∣∣∣E(M)
ν (b)

∣∣∣2
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z
(1)
ν (kCb)

DlM(1)

ν,m

∣∣∣∣∣
2

+
=
(
F
(N)
ν (b)

)
∣∣∣E(N)
ν (b)

∣∣∣2
∣∣∣∣∣z(1)l (kCa)

ζ
(1)
ν (kCb)

DlN(1)

ν,m

∣∣∣∣∣
2
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(
F
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l (a)

)

+
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F
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z
(1)
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(1)
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2

+
=
(
F
(N)
ν (b)

)
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ζ
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2


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(
F
(N)
l (a)

)



(E1)

where

R
(M)

ν (w) =
z
(3)
ν (kCw)

z
(1)
ν (kCw)

R(M)
ν (w) (E2)

R
(N)

ν (w) =
ζ
(3)
ν (kCw)

ζ
(1)
ν (kCw)

R(N)
ν (w) (E3)
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F(M)
ν (w) =

(
1 +R

(M)

ν (w)
)

×

(
ζ
(1)
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z
(1)
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+
ζ
(3)
ν (kCw)

z
(3)
ν (kCw)

R
(M)

ν (w)

)∗
(E4)

F(N)
ν (w) =

(
1 +R

(N)

ν (w)
)∗

×

(
z
(1)
ν (kCw)

ζ
(1)
ν (kCw)

+
z
(3)
ν (kCw)

ζ
(3)
ν (kCw)

R
(N)

ν (w)

)
(E5)

E(M)
ν (b) = R

(M)

ν (b)

(
ζ
(3)
ν (kCb)

z
(3)
ν (kCb)

− ζ
(1)
ν (kCb)

z
(1)
ν (kCb)

)
(E6)

E(N)
ν (b) = R

(N)

ν (b)

(
z
(3)
ν (kCb)

ζ
(3)
ν (kCb)

− z
(1)
ν (kCb)

ζ
(1)
ν (kCb)

)
(E7)

and w = a or b.
The above results are obtained using the relation

ε(P )
ν (w)=2=


[
z(1)ν (kfw)+R(P )

ν (w)z(3)ν (kfw)
]
×[

ζ(1)ν (kfw)+R(P )
ν (w)ζ(3)ν (kfw)

]∗
 (E8)

and simplified using Wronskian relations (see Eq. A7).
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32 M. Krüger, G. Bimonte, T. Emig, and M. Kardar, Phys
Rev B 86, 115423 (2012).

33 C. Otey and S. Fan, Phys Rev B 84, 245431 (2011).
34 K. Sasihithlu and A. Narayanaswamy, Opt Express 22,

14473 (2014).
35 P. Waterman, Proc IEEE 53, 805 (1965).
36 B. Peterson and S. Ström, Phys Rev D 10, 2670 (1974).
37 S. M. Rytov, Theory of Electric Fluctuations and Thermal

Radiation (Air Force Cambridge Research Center, Bedford,
Mass., 1959), Tech. Rep. (1967).

38 W. Eckhardt, Optics Commun 41, 305 (1982).
39 A. Narayanaswamy and Y. Zheng, J Quant Spectrosc and

Radiat Transfer 132, 12 (2013).
40 W. M. Lai, D. Rubin, and E. Krempl, Introduction to Con-

tinuum Mechanics, fourth ed., edited by W. M. Lai, D. Ru-
bin, and E. Krempl (Butterworth-Heinemann, Boston).

41 W. C. Chew, J of Electromagnet Wave 6, 133 (1992).
42 W. C. Chew, Waves and Fields in Inhomogeneous Media,

edited by D. G. Dudley (IEEE Press, 1995).
43 K. T. Kim, Prog Electromagn Res 48, 45 (2004).
44 T. J. Dufva, J. Sarvas, and J. C.-E. Sten, Prog Electro-

magn Res 4, 79 (2008).
45 D. W. Mackowski, Proc Roy Soc London Ser A 433 (1991).
46 D. W. Mackowski, J Opt Soc Am A 11, 2851 (1994).
47 Y.-L. Xu and B. A. S. Gustafson, in IAU Colloq. 150:

Physics, Chemistry, and Dynamics of Interplanetary Dust,
Vol. 104 (1996) p. 419.

48 N. A. Gumerov and R. Duraiswami, J Acoust Soc Am 112,
2688 (2002).

49 P.-D. Létourneau, Y. Wu, G. Papanicolaou, J. Garnier,
and E. Darve, Wave Motion 70, 113 (2017).

50 M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, J
Quant Spectrosc and Radiat Transfer 55, 535 (1996).

51 M. I. Mishchenko and P. Martin, J Quant Spectrosc and
Radiat Transfer 123, 2 (2013).

52 G. W. Kattawar and M. Eisner, Appl Opt 9, 2685 (1970).
53 K. Kim, B. Song, V. Fernández-Hurtado, W. Lee,

http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/ 10.1103/PhysRevLett.95.137404
http://dx.doi.org/ 10.1103/PhysRevLett.95.137404
http://dx.doi.org/10.1126/science.1136481
http://dx.doi.org/10.1126/science.1136481
http://dx.doi.org/ 10.1038/nature07247
http://dx.doi.org/10.1103/PhysRevE.72.016623
http://dx.doi.org/ 10.1126/science.1133628
http://dx.doi.org/ 10.1126/science.1133628
http://dx.doi.org/10.1038/nphoton.2007.28
http://dx.doi.org/ 10.1038/nmat2461
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/ 10.1126/science.1108759
http://dx.doi.org/ 10.1126/science.1108759
http://dx.doi.org/10.1126/science.1138746
http://dx.doi.org/10.1126/science.1138746
http://dx.doi.org/10.1038/nmat2141
http://dx.doi.org/10.1103/PhysRevLett.82.719
http://dx.doi.org/10.1103/PhysRevLett.82.719
http://dx.doi.org/10.1103/PhysRevLett.90.077405
http://dx.doi.org/10.1103/PhysRevLett.90.077405
http://dx.doi.org/10.1364/OE.19.018774
http://dx.doi.org/10.1364/OE.19.018774
http://dx.doi.org/ 10.1103/PhysRevLett.107.045901
http://dx.doi.org/10.1063/1.3600779
http://dx.doi.org/10.1063/1.3600779
http://dx.doi.org/10.1103/PhysRevLett.109.104301
http://dx.doi.org/10.1103/PhysRevLett.109.104301
http://dx.doi.org/10.1063/1.4754616
http://dx.doi.org/10.1063/1.4754616
http://dx.doi.org/10.1364/OE.21.015014
http://dx.doi.org/10.1103/PhysRevB.87.115403
http://dx.doi.org/10.1140/epjb/e2007-00254-8
http://dx.doi.org/10.1016/j.jqsrt.2009.02.007
http://dx.doi.org/10.1016/j.jqsrt.2009.02.007
http://dx.doi.org/10.1103/PhysRevB.85.155418
http://dx.doi.org/10.1103/PhysRevB.85.155418
http://dx.doi.org/10.1103/PhysRevB.4.3303
http://dx.doi.org/10.1016/j.jqsrt.2007.08.017
http://dx.doi.org/10.1016/j.jqsrt.2007.08.017
http://dx.doi.org/10.1016/j.jqsrt.2009.05.010
http://dx.doi.org/10.1016/j.jqsrt.2009.05.010
http://dx.doi.org/ 10.1038/nnano.2016.17
http://dx.doi.org/10.1103/PhysRevB.77.075125
http://dx.doi.org/10.1103/PhysRevB.77.075125
http://dx.doi.org/10.1364/OE.19.00A772
http://dx.doi.org/10.1364/OE.19.00A772
http://dx.doi.org/10.1115/1.2957596
http://dx.doi.org/10.1115/1.2957596
http://dx.doi.org/10.1103/PhysRevB.86.115423
http://dx.doi.org/10.1103/PhysRevB.86.115423
http://dx.doi.org/10.1103/PhysRevB.84.245431
http://dx.doi.org/10.1364/OE.22.014473
http://dx.doi.org/10.1364/OE.22.014473
http://dx.doi.org/10.1109/PROC.1965.4058
http://dx.doi.org/10.1103/PhysRevD.10.2670
http://dx.doi.org/10.1016/0030-4018(82)90402-3
http://dx.doi.org/10.1016/j.jqsrt.2013.01.002
http://dx.doi.org/10.1016/j.jqsrt.2013.01.002
http://dx.doi.org/https://doi.org/10.1016/B978-0-7506-8560-3.00010-4
http://dx.doi.org/https://doi.org/10.1016/B978-0-7506-8560-3.00010-4
http://dx.doi.org/10.1163/156939392X01075
http://dx.doi.org/10.2528/PIERB07121203
http://dx.doi.org/10.2528/PIERB07121203
http://rspa.royalsocietypublishing.org/content/433/1889/599
http://dx.doi.org/10.1364/JOSAA.11.002851
http://dx.doi.org/10.1121/1.1517253
http://dx.doi.org/10.1121/1.1517253
http://dx.doi.org/10.1016/j.wavemoti.2016.08.012
http://dx.doi.org/10.1016/0022-4073(96)00002-7
http://dx.doi.org/10.1016/0022-4073(96)00002-7
http://dx.doi.org/10.1016/j.jqsrt.2012.10.025
http://dx.doi.org/10.1016/j.jqsrt.2012.10.025
http://dx.doi.org/10.1364/AO.9.002685


16

W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H.
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Cuevas, P. Reddy, and E. Meyhofer, Nat Nanotechnol 10,
253 (2015).

65 S. Edalatpour and M. Francoeur, J Quant Spectrosc and
Radiat Transfer 133, 364 (2014).

66 S. Edalatpour, M. Francoeur, Phys Rev B 94, 045406
(2016).

67 F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and
B. V. Saunders, “NIST Digital Library of Mathematical
Functions,” http://dlmf.nist.gov/, Release 1.0.15 of 2017-
06-01.

68 T. Kaiser and G. Schweiger, Comput in Phys 7, 682 (1993).
69 C. F. Bohren and D. R. Huffman, Absorption and Scatter-

ing of Light by Small Particles (Wiley-VCH, 2004).
70 X. Zhou and G. Hu, Phys Rev E 74, 026607 (2006).
71 Y. Zheng and A. Ghanekar, J Appl Phys 117, 064314

(2015).
72 A. Narayanaswamy and Y. Zheng, Phys Rev A 88, 012502

(2013).
73 C.-T. Tai, Dyadic Green Functions in Electromagnetic

Theory (Institute of Electrical & Electronics Engineers
(IEEE), 1994).

http://dx.doi.org/ 10.1038/nature16070
http://dx.doi.org/ 10.1103/PhysRevB.91.235137
http://dx.doi.org/ 10.1103/PhysRevB.91.235137
http://dx.doi.org/10.1063/1.4875699
http://dx.doi.org/10.1063/1.4875699
http://dx.doi.org/10.1063/1.91406
http://dx.doi.org/10.1063/1.91406
http://dx.doi.org/10.1103/PhysRevB.78.115303
http://dx.doi.org/10.1103/PhysRevB.78.115303
http://dx.doi.org/10.1021/nl901208v
http://dx.doi.org/10.1021/nl901208v
http://dx.doi.org/ 10.1021/nl301708e
http://dx.doi.org/10.1038/nphoton.2009.144
http://dx.doi.org/10.1103/PhysRevB.83.161406
http://dx.doi.org/10.1103/PhysRevB.83.161406
http://dx.doi.org/10.1038/nnano.2015.6
http://dx.doi.org/10.1038/nnano.2015.6
http://dx.doi.org/10.1016/j.jqsrt.2013.08.021
http://dx.doi.org/10.1016/j.jqsrt.2013.08.021
http://dx.doi.org/10.1103/PhysRevB.94.045406
http://dx.doi.org/10.1103/PhysRevB.94.045406
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dx.doi.org/10.1063/1.168475
http://dx.doi.org/10.1103/PhysRevE.74.026607
http://dx.doi.org/10.1063/1.4907913
http://dx.doi.org/10.1063/1.4907913
http://dx.doi.org/10.1103/PhysRevA.88.012502
http://dx.doi.org/10.1103/PhysRevA.88.012502

	Near-field thermal radiative transfer between two coated spheres
	Abstract
	Introduction
	Geometry
	Mathematical formulation
	Determination of transmissivity function
	Numerical results
	Dielectric coating atop metal core
	Dielectric coating atop dielectric core

	Conclusions
	Acknowledgments
	Mathematical definitions and useful relations
	Determination of the dyadic Green's functions
	Form of the dyadic Green's functions
	Simplification of dyadic Green's function

	Computation of effective Mie reflection coefficients
	Reciprocity of transmissivity function
	Computational implementation
	References


