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Abstract

We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS

(Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the

combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the

non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay

of carriers causes a depairing effect on excitons. This phenomenon gives rise to an attractive

interaction between excitons in the BEC regime, as well as a supercurrent that anomalously flows

anti-parallel to ∇θ(r) (where θ(r) is the phase of the condensate) in the BCS regime, both leading

to dynamical instabilities of an exciton-BEC. Our result suggests that substantial region of the

exciton-BEC phase in the phase diagram (in terms of the interaction strength and the decay rate)

is unstable.
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I. INTRODUCTION

A gas mixture of electrons and holes in a highly excited semiconductor provides a use-

ful playground to study various fundamental many-body phenomena, such as the exciton-

Mott transition (crossover)[1–7], as well as the electron-hole liquid and droplet formation[8–

11]. Perhaps the most striking phenomenon is the exciton-BEC[12, 13]. Indeed, signs of

this phase have been reported by some experimental groups, such as a sudden enhance-

ment of two-body inelastic scattering[14], and the appearance of an anomaly in its spatial

distribution[15] at low temperatures (∼ O(100mK))[15, 16]. Thus, although further analyses

are still necessary for these results, the achievement of exciton-BEC is very promising.

The realization of an exciton-BEC would enable us to examine the so-called BCS-BEC

crossover[17, 18], where the character of an exciton condensate continuously changes from

the weak-coupling BCS-type (where electron-hole pairs are largely overlapping one another

as in ordinary superconductors) to BEC of tightly bound excitons, with decreasing the car-

rier density n[19–21]. Although a similar crossover phenomenon has already been discussed

in cold Fermi gas physics[22, 23], a crucial difference from this atomic case is that the exciton

case is essentially in the non-equilibrium state[24], because continuous pumping to compen-

sate carrier loss is always necessary to sustain the system. Thus, the exciton system would

be useful for the study of interplay between strong correlations and non-equilibrium effects

in the BCS-BEC-crossover region. Since non-equilibrium Fermi condensates have been dis-

cussed in various fields, such as an exciton-polariton condensate[25], quench dynamics of

an ultracold gas[26], as well as neutron-star cooling[27], the realization of an exciton-BEC

would also contribute to study of these systems as well.

A crucial non-equilibrium effect is the instability of a condensate. One well-known ex-

ample is the Landau instability, where the supercurrent state becomes unstable when the

flow velocity exceeds a critical value. Thus, it will not be too surprising for such instability

to occur in a driven-dissipative system as well. Indeed, a dynamical instability has recently

been observed in a polariton gas[28, 29], which has also been theoretically studied in a boson

model[30], as well as a Dicke model[31], consisting of bosons coupled to localized fermions

by disorder. However, no studies have been done on how strong correlations in the Fermi

degrees of freedom affect the stability of a non-equilibrium condensate.

In this paper, by employing the combined BCS-Leggett theory[18] with the generalized
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FIG. 1: (Color online) Schematic explanation of the hydrodynamics of the condensate fraction

n0(r, t) (solid line) and the phase θ(r, t) of the condensate (dotted line). Following Eq. (1), the

local enhancemet of the condensate fraction induces a spatial modulation of the phase θ(r, t). Then,

following Eq. (2), the phase gradient ∇θ drives a supercurrent J ∝ β22∇θ. As described by the

dashed lines, this supercurrent either flows away from the enhanced spot to damp the condensate

fraction back to the steady-state (as in cases (a) and (d)), or amplify the local fluctuation even

more (as in cases (b) and (c)), destabilizing the steady-state.

random phase approximation[32, 33] extended to the Keldysh formalism[34], we present two

mechanisms of dynamical instabilities that occur in this system. One is triggered by an

attractive interaction between excitons, appearing in the BEC regime, and the other arises

in the BCS regime due to an anomalous supercurrent that flows anti -parallel to the twist

of the phase of the condensate ∇θ(r). We show that both the instabilities originate from

non-equilibrium-induced pair-breaking effects[35]. Substantial region of the phase diagram,

in terms of the interaction strength and the decay rate, is found to be unstable.

Figure 1 schematically illustrates the hydrodynamics of the dynamical instabilities we
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found in this paper, explaining how fluctuations of the Bose-condensate fraction δn0(r, t)

from its steady-state value n0 (as well as the phase fluctuations of the condensate δθ(r, t))

grow as a function of time in the dynamically unstable regimes. From our microscopic

analysis, the driven-dissipative Bose-condensate are found to approximately obey the hy-

drodynamic equations (which we derive in Sec. III),

1

η12
(α11 − β11∇2)δn0(r, t) + 2n0∂tδθ(r, t) = 0, (1)

∂tδn0(r, t) +∇ · J(r, t) = 0, (2)

where Eq. (2) can be regarded as a continuity equation associated with a “supercurrent”[36]

J(r, t) = 2n0
β22

η12
∇δθ(r, t). (3)

The (real) coefficients αij , βij, and ηij are derived from our microscopic calculations we

present in this paper. These equations (1), (2) essentially have the same structure as the

time-dependent Gross-Pitaevskii (GP) equations[37],

[

UBn0 −
∇2

2mB

]

δn0(r, t) + 2n0∂tδθ(r, t) = 0, (4)

∂tδn0(r, t) +∇ · JB(r, t) = 0, (5)

for a repulsively interacting BEC[38]. Here, UB is a repulsive interaction between bosons,

mB is the boson mass, and

JB(r, t) =
n0

mB
∇δθ(r, t), (6)

is a supercurrent of the bosons.

In the conventional case where all coefficients αij, βij, and ηij are positive, the uniform

steady-state is stable against perturbations (Fig. 1(a)). In this case, the supercurrent J

flows away from the locally enhanced condensate fraction δn0(r, t) to stabilize the system

back to the steady-state. However, we show in this paper both numerically and analytically

that the non-equilibrium nature of the electron-hole Bose-condensate can make coefficients

such as α11 and β22 switch to negative to give rise to anamolous hydrodynamics. Negative α11

correponds to the arise of an effective attractive interaction between the excitons (Compare

our hydrodynamic equation (1) and the GP equation (4).), and negative β22 corresponds

to the arise of an anomalous supercurrent that flows anti -parallel to the phase gradient ∇θ
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FIG. 2: (Color online) Model driven-dissipative electron-hole gas. An electron-hole system with

an attractive interaction −U is coupled to a pumping bath with the transfer matrix element Γb,

as well as a vacuum with the transfer matrix element Γv. The pumping bath is assumed to be

in a equilibrium state at the temperature Tb, where the particle distribution obeys the Fermi

distribution function fb(ω) = 1/[e(ω−µb)/Tb + 1], where µb is the chemical potential. The particle

distribution fv(ω) in the vacuum vanishes.

(Eq. (3)). As illustrated in Figs. 1(b) and (c), these can give rise to a flow of supercurrent

that amplifies the fluctuations, resulting in dynamical instabilities.

The rest of our paper is organized as follows. In Sec. II, we explain our driven-dissipative

electron-hole model, as well as our formalism. In Sec. III, we examine how the non-

equilibrium nature of this system affect the Bose-condensed phase. We show how non-

equilibrium induced pair-dissociation lead to dynamical instabilities, in a wide range of

parameter region. In Sec. IV, we give the concluding remarks and raise some important

remaining problems. Throughout our paper, we set ~ = kB = 1.

II. MODEL AND FORMALISM

The model driven-dissipative electron-hole gas we consider is illustrated in Fig. 2. The

corresponding Hamiltonian is given by, H = Hs +Ht +Henv, where

Hs =
∑

p

Ψ†
p[εpτ3 −∆(t)τ+ −∆∗(t)τ−]Ψp − U

∑

q

ρ+q ρ
−
−q, (7)

describes an electron-hole gas in the exciton-BEC phase. Ψ†
p = (a†p,e, a−p,h) is a Nambu

field, consisting of an electron creation (a†p,e) and a hole annihilation operator (a−p,h). Elec-

trons and holes are assumed to have the same mass m and kinetic energy εp = p2/(2m).

Pauli matrices τs (s = 1, 2, 3) and τ± = [τ1 ± iτ2]/2 act on the Nambu-space, and

ρsq =
∑

p Ψ
†

p+q/2τsΨp−q/2 is a generalized density operator.

In this paper, we assume an attractive contact-type interaction −U (< 0) between elec-

trons and holes for simplicity. Although Eq. (7) ignores long-range Coulomb interaction,
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since the gapless Goldstone mode appears in the exciton-BEC phase regardless of whether

the interaction is short- or long-ranged[39] (Note that since electron-hole pairs are neutral,

the Anderson-Higgs mechanism is absent.), we expect that our model can still capture low-

energy properties of the exciton-BEC, at least qualitatively. In this model, exciton-BEC is

characterized by the order parameter ∆(t) = U
∑

p

〈

a−p,h(t)ap,e(t)
〉

. Following the conven-

tional prescription[40], we measure the interaction strength in terms of the scattering length

as, given by 4πas/m = −U/[1 − U
∑pc

p 1/(2εp)] (where pc is a momentum cutoff). In this

scale, the weak-coupling BCS regime and the strong-coupling BEC regime are character-

ized as (kFas)
−1 <∼ 0 and (kFas)

−1 >∼ 0, respectively (where kF = (3π2N)1/3 is the Fermi

momentum with N being the particle number in the system).

Incoherent pumping and decay of the carriers are, respectively, driven by a coupling Γb

to a free Fermi bath and a coupling Γv to the vacuum as done in Refs.[31, 35, 41]. These

tunneling processes are described by,

Ht =
∑

λ=b,v

∑

p,q

∑

i

[ΓλΦ
λ†
q τ3Ψpe

−iq·Rieip·ri + h.c.]. (8)

Here, a particle in the exciton BEC system at ri is assumed to tunnel to the bath or vacuum

at Ri. The bath and vacuum are described by

Henv =
∑

λ=b,v

∑

q

Φλ†
q ελqτ3Φ

λ
q. (9)

The Nambu field Φ
b(v)
q = (c

b(v)
q,e , c

b(v)†
−q,h )

T consists of an electron annihilation operator c
b(v)
q,e and

a hole creation operator c
b(v)†
−q,h in the bath (vacuum). ε

b(v)
q is the kinetic energy of the bath

(vacuum). We assume that the bath and vacuum are huge compared to the exciton-BEC

system, and the former two are always in the equilibrium state. Carriers in the bath obey the

Fermi distribution function fb(ω) = [e(ω−µb)/Tb +1]−1 (where µb, Tb is the chemical potential

and the temperature of the bath, respectively). In this paper, we only treat the Tb = 0 case.

Since the vacuum has no particle, we assume a vanishing distribution fv(ω) = 0.

Our treatment of the pumping of excitons as a coupling to a free Fermi bath is, at a

glance, quite different from an experimental situation, which is rather a photon pumping

and its thermalization via phonon emission to the bulk semiconductor or exciton-exciton

scattering. However, since the attachment of the bath to the system phenomenologically

describes the injection and thermalization of carriers, we expect our model to capture the

6



fundamental elements of the above processes. Similarly, we expect our modelling of the

decay process of excitons as a coupling to a vacuum (which in reality would be photon

recombination) to capture the essence of the decay process, since the phase-breaking effect

due to the loss of electron-hole pairs[42] are taken into account.

Non-equilibrium effects on a strongly-interacting Bose-condensate are conveniently exam-

ined by using the single-particle Nambu-Keldysh Green’s function Ĝ , obeying the Dyson’s

equation[34],

Ĝ (r, t; r′, t′) = Ĝ0(r − r′, t− t′)

+

∫

dr1dr2dt1dt2Ĝ
0(r − r1, t− t1)Σ̂(r1, t1; r2, t2)Ĝ (r2, t2; r

′, t′). (10)

Here, Ĝ0 is a free Green’s function and Σ̂ is the self-energy that incorporates non-equilibrium

and interaction effects. In our RAK representation[34], the single-particle Green’s function

Ĝ , the self-energy Σ̂, as well as a free Green’s function Ĝ0, are represented as,

Ĝ =





Gaa Gab

Gba Gbb



 =





G R G K

0 G A



 , (11)

Σ̂ =





Σaa Σab

Σba Σbb



 =





ΣR ΣK

0 ΣA



 , (12)

and

Ĝ0(p, ω) =





G0
aa G0

ab

G0
ba G0

bb



 (p, ω) =





G0R G0K

0 G0A



 (p, ω)

=





[ω + iδ − εpτ3]
−1 −πiτ3(1− 2f(ωτ3))δ(ω − εpτ3)

0 [ω − iδ − εpτ3]
−1



 , (13)

composed of the retarded, advanced, and the Keldysh component represented by the super-

subscript R,A, and K, respectively. Here, (α, α′) = (a, a), (b, b), (a, b)-component represents

the retarded, advanced, and the Keldysh component, respectively, and (b, a)-component

is zero. While the retarded (advanced) component in the single-particle Green’s function

G
R(= [G A]†) gives information on the single-particle density of states of the system, the

Keldysh component G K gives information on the occupancy of the density of states. For

details of the Keldysh Green’s function method, see e.g., Ref.[34]. f(ω) in Eq. (13) is the

initial distribution of the system, which however, will be shown later to give no effects on

the steady-state properties. Note that G0
α,α′ ,Gα,α′ and Σα,α′ are matrices in Nambu space.
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In order to proceed, an approximated treatment of the self-energy Σ̂ is needed. In this

regard, we recall that, in the conventional equilibrium case, it is well-known that the so-

called BCS-Leggett theory[18] well describes the BCS-BEC crossover physics in the ground

state, at least qualitatively[43, 44]. In this framework, unlike in the conventional BCS theory

where the chemical potential is fixed at the Fermi energy µ = εF (implicitly assuming a weak

attractive interaction), the chemical potential of the system µ and the order parameter ∆0

are determined self-consistently by solving the gap equation

1

U
=

∑

p

1− 2nF(Ep)

2Ep

, (14)

together with the number equation,

N =
∑

p

[

1

2

(

1− ξp
Ep

)

(1− nF(Ep)) +
1

2

(

1 +
ξp
Ep

)

nF(Ep)

]

. (15)

Here, nF(ω) = [eω/T + 1]−1 is the Fermi distribution function, Ep =
√

ξ2p +∆2
0 describes

single-particle excitations, and ξp = εp−µ. These equations (14) and (15) are known to yield

the two limiting cases; the weak-coupling limit ((kFas)
−1 → −∞) where the conventional

BCS results (∆0 = (8/e2)εFe
π/(2kFas)

−1

, µ = εF) are obtained, and the strong-coupling limit

((kFas)
−1 → +∞) where µ = −Eb/2 (Eb = −1/(ma2s) is the binding energy of an exciton)

and ∆0 =
√

16/(3π)|µ|1/4ε3/4F . The strong-coupling limit (the so-called BEC limit) solution

µ = −Eb/2 indicates that the system is well described by a BEC of strongly bound excitons,

where the system earns half the binding energy when an electron or a hole is added to the

system by forming an exciton. These two limits continuously connects to each other by

gradually increasing the interaction strength from the weak-coupling to the strong-coupling

regime, describing the essential features of the BCS-BEC crossover physics[18].

In the Nambu-Keldysh Green’s function method, Eqs. (14) and (15) can be shown to

be equivalent to approximating the self-energy within the Hartree-Fock-Bogoliubov (HFB)

level, as given diagramatically in Fig. 3(a)[32, 35]. We provide its explicit form in Appendix

A, and give here only its final form,

[ΣHFB(r, t; r′, t′)]R = iU
∑

p′

∫

dω′

2π

∞

−∞

1

2
[G K

12(r, t; r, t+ 0+)τ+ + G
K
21(r, t; r, t+ 0+)τ−],

(16)

[ΣHFB(r, t; r′, t′)]K = 0, (17)

[ΣHFB(r, t; r′, t′)]A =
[

[ΣHFB(r, t; r′, t′)]R
]†
. (18)
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FIG. 3: (Color online) (a) The Hartree-Fock-Bogoliubov (HFB) self-energy Σ̂HFB and (b) the self-

energy correction within the second Born approximation Σ̂env. The solid and the dashed line are

the single-particle Nambu-Keldysh Green’s function of the system Ĝ and the reservoirs D̂λ=b,v,

respectively. The dotted line represents the coupling constant −U , and the cross represents the

hopping between the system and the resevoirs Γλ=b,v.

To extend this framework to the driven-dissipative case, we further add the diagram

shown in Fig. 3(b) as a self-energy that describes the tunneling effects to the bath and the

vacuum within the second-order Born approximation[35]. As derived in Appendix A, this is

given by,

[Σenv(ω)]R = −i
∑

λ=b,v

γλ, (19)

[Σenv(ω)]K = −2iτ3
∑

λ=b,v

γλ[1− 2fλ(ωτ3)], (20)

[Σenv(ω)]A =
[

[Σenv(ω)]R
]†
, (21)

where we have Fourier transformed the relative time t − t′, and have used the assumption

that the bath and vacuum are large enough to stay in the equilibrium state during the

dynamics. Here, γb(v) = πNtρb(v)|Γb(v)|2 characterizes the thermalization (decay) rate from

the bath (vacuum). We have assumed a Markovian bath (vacuum), i.e., the density of states

in the bath (vacuum) ρb(v) is constant. Nt is the number of tunneling paths. The imaginary

part in the retarded component (Eq. (19)) gives rise to a linewidth γ = γb + γv to the

single-particle excitation spectrum, and the Keldysh component (Eq. (20)) describes how

the bath and vacuum distribution fλ(ω) affects the distribution of the carriers in the system.

We now consider a uniform steady-state solution of the framework presented above, by

imposing the steady-state ansatz[31, 35, 41],

∆(t) = ∆0e
−2iµt. (22)
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Without loss of generality, ∆0 > 0 is assumed to be real. We can formally eliminate the

time dependence of the order parameter in Eq. (22) by employing the gauge transformation

(ap,σ=e,h, c
λ
q,σ=e,h) = (ãp,σ=e,h, c̃

λ
q,σ=e,h)e

−iµt. Practically, this is done by replacing εp, ε
λ
q, and

µb by ξp = εp − µ, ξλq = ελq − µ, and µb − µ, respectively[31]. After employing this gauge

transformation, the uniform steady-state single-particle Green’s function Ĝ(r, t; r′, t′) and

the self-energy Σ̂0(r, t; r
′, t′) depend only on relative coordinates, i.e., r−r′ and t− t′, which

simplifies the Dyson’s equation (10) to

Ĝ(p, ω) = Ĝ0(p, ω) + Ĝ0(p, ω)Σ̂0(p, ω)Ĝ(p, ω). (23)

The steady-state self-energy Σ̂0 is derived from Eqs. (16)-(21),

ΣR
0 (p, ω) = iU

∑

p′

∫

dω′

2π

1

2
[GK

12(p
′, ω′)τ+ +GK

21(p
′, ω′)τ−]− i

∑

λ=b,v

γλ, (24)

= −∆0τ1 − i
∑

λ=b,v

γλ, (25)

ΣK
0 (p, ω) = −2iτ3

∑

λ=b,v

γλ[1− 2fλ(ωτ3)], (26)

ΣA
0 (p, ω) = [ΣR

0 (p, ω)]
†. (27)

In deriving Eq. (25), we have used the definition of the order parameter,

∆0 = U
∑

p

〈

ã−p,hãp,e
〉

= −iU
∑

p

i

2

[〈

ã−p,hãp,e
〉

−
〈

ãp,eã−p,h

〉]

= −iU
∑

p

∫

dω′

2π

1

2
GK

12(p, ω
′), (28)

and the fact that ∆0 is assumed to be real. From the Dyson’s equation (23), the steady-state

10



single-particle Green’s function Ĝ(p, ω) is obtained as,

GR(p, ω) = [(ω + iδ)− ξpτ3 − ΣR
0 (p, ω)]

−1

= [(ω + iγ)1− ξpτ3 +∆0τ1]
−1 =

(ω + iγ)1+ ξpτ3 −∆0τ1
(ω + iγ)2 + E2

p

=
1

(ω + iγ)2 + E2
p





ω + iγ + ξp −∆0

−∆0 ω + iγ − ξp



 , (29)

GK(p, ω) = GR(p, ω)ΣK
0 (ω)G

A(p, ω)

+ (1 +GR(p, ω)ΣR
0 (p, ω))G

0K(p, ω)(1 + ΣA
0 (p, ω)G

A(p, ω)) (30)

=
−2i

[(ω −Ep)2 + γ2][(ω + Ep)2 + γ2]

×





F (ω)[(ω + ξp)
2 + γ2]− F (−ω)∆2

0 −2∆0[F−(ω)ω + F+(ω)(ξp + iγ)]

−2∆0[F−(ω)ω + F+(ω)(ξp − iγ)] F (ω)∆2
0 − F (−ω)[(ω − ξp)

2 + γ2]



 ,

(31)

GA(p, ω) =
[

GR(p, ω)
]†
. (32)

Here, F±(ω) = [F (ω) ± F (−ω)]/2 with F (ω) =
∑

λ=b,v γλ[1 − 2fλ(ω)]. We note that the

second term of Eq. (30) is shown to vanish by use of Eqs. (13), (25), (27), and (29). This

is an expected result, where the steady-state does not depend on the initial distribution of

the system f(ω) contained in G0K.

From the (1,2)-component of Eqs. (24), (25), and Eq. (31), the self-consistent condition

1

U
=

∑

p

∫

dω

π

F−(ω)ω + F+(ω)[ξp + iγ]

[(ω − Ep)2 + γ2][(ω + Ep)2 + γ2]
, (33)

is obtained. One can also derive the number of particles N =
∑

p,σ

〈

c†p,σcp,σ
〉

=

−2i
∑

p[G
<(p, ω)]11 from Eqs. (29) and (31) as (where G< = (−GR +GA +GK)/2),

N = 2
∑

p

∫

dω

π

[

(ω + ξp)
2 + γ2

]

γbfb(ω) + ∆2
0γ
[(

1− (γb/γ)fb(−ω)
)]

[(ω −Ep)2 + γ2][(ω + Ep)2 + γ2]
. (34)

These equations (33), (34) can be regarded as a non-equilibrium extention of the gap and

the number equations (14) and (15) in the BCS-Leggett theory, respectively[35]. By solving

these equations (33), (34) self-consistently, we determine the quantities (∆0, µb, µ) for a given

parameter set (as, N, γ, κ). Note that the non-equilibrium steady-state gap equation (33)

is complex, making it possible to determine three quantities (∆0, µb, µ) from two equations

(33) and (34).
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Our formalism recovers the conventional equilibrium limit, by taking γv/γb = 0 with

γ = γb + γv → 0+. This is the limit where the system is in the chemical equilibrium to the

bath, since the system decouples from the vacuum. This is seen from the imaginary part of

the gap equation (33), where it is satisfied when the chemical equilibrium between the bath

and the system is achieved, i.e., µb = µ. In this situation, the real part of the gap equation

(33) and the number equation (34) reduces to that of the equilibrium case (14) and (15),

respectively.

Once the steady-state exciton-BEC solution are determined, we can analyze the stability

of the obtained steady-state, by studying the equation of motion (EOM) of a small fluctua-

tion δ∆(r, t) ≡ ∆(r, t)−∆0 around the order parameter ∆(r, t) from the steady-state value

∆0[32, 33]. Note that δ∆(r, t) can also be written as δ∆(r, t) = (∆0 + δ|∆(r, t)|)eiδθ(r,t) −
∆0 ≃ δ|∆(r, t)| + i∆0δθ(r, t), where δ|∆(r, t)| and δθ(r, t) describe amplitude and phase

fluctuations, respectively. Setting δ|∆(r, t)| = δ|∆(q, ω)|eiq·r−iωt, δθ(r, t) = δθ(q, ω)eiq·r−iωt,

we obtain the linearized EOM from the Dyson’s equation (10) as,

M(q, ω)





δ|∆(q, ω)|
−∆0δθ(q, ω)



 =





0

0



 , (35)

where

M(q, ω) =





2
U
−Π11(q, ω) −Π12(q, ω)

−Π21(q, ω)
2
U
−Π22(q, ω)



 . (36)

Here, the correlation function is given by,

Πs,s′(q, ω) =
i

2

∑

p

∫ ∞

−∞

dν

2π
Tr

[

τsG
R
(

p+
q

2
, ν +

ω

2

)

τs′G
K
(

p− q

2
, ν − ω

2

)

+τsG
K
(

p+
q

2
, ν +

ω

2

)

τs′G
A
(

p− q

2
, ν − ω

2

)

]

, (37)

where Π11(q, ω) and Π22(q, ω) describe amplitude and phase fluctuations of an exciton-BEC,

respectively, and Π12(q, ω),Π21(q, ω) are their couplings. We summarized the derivation of

Eq. (35) in Appendix B.

The EOM in Eq. (35) has a nontrivial solution (δ|∆(q, ω)|,−∆0δθ(q, ω)) 6= (0, 0), when

det[M(q, ω = ωq)] = 0, (38)

which gives a (complex) mode dispersion ωq. In the Bose-condensed phase, a gapless solution

ωq = 0 at q → 0 of Eq. (38), or the so-called Nambu-Goldstone (NG) mode, associated

12



with the phase fluctuations




δ|∆(q → 0, ω = 0)|
−∆0δθ(q → 0, ω = 0)



 ∝





0

1



 , (39)

exists (Goldstone’s theorem[45]), even in the non-equilibrium steady-state. This can be

shown from the so-called Thouless criterion[46],

M22(q → 0, ω = 0) = Re

[

2

U
+

i

∆0

∑

k

∫

dω

2π
GK

12(k, ω)

]

= 0, (40)

M12(q → 0, ω = 0) = Im

[

2

U
+

i

∆0

∑

k

∫

dω

2π
GK

12(k, ω)

]

= 0. (41)

In deriving Eqs. (40) and (41), we have used the relations (which can be derived by use of

Eqs. (29), (31))

Re

[

− i
GK

12(k, ω)

∆0

]

=
i

2
Tr

[

τ2G
R(k, ω)τ2G

K(k, ω) + τ2G
K(k, ω)τ2G

A(k, ω)
]

, (42)

Im

[

− i
GK

12(k, ω)

∆0

]

=
i

2
Tr

[

τ1G
R(k, ω)τ2G

K(k, ω) + τ1G
K(k, ω)τ2G

A(k, ω)
]

, (43)

in the first equality, and the gap equation (33) in the second.

Noting that δ∆(r, t) ∝ eIm[ωq ]t, one finds that an exponential growth of fluctuations

occurs when Im[ωq] > 0. This is the condition for dynamical instability in our approach.

In practice, we determine the dynamical instability in the following way. Since we know on

physical grounds that Im[ωq] < 0 is always satisfied at large |q|, there exists at least one

momentum (≡ q̃) satisfying Im[ω̃q̃] = 0 if the state is dynamically unstable (Im[ωq] > 0).

Thus, to examine the stability of an exciton-BEC, we conveniently look for a real solution

of Eq. (38) with |q̃| > 0.

III. NON-EQUILIBRIUM-INDUCED DYNAMICAL INSTABILITY IN THE

BCS-BEC CROSSOVER REGION

Figure 4 shows the calculated order parameter ∆0 as a function of the decay rate γv at

the unitarity limit (kFas)
−1 = 0 (which corresponds to an intermediate coupling strength).

As expected, as the decay rate γv increases, the order parameter ∆0 is suppressed by non-

equilibrium effects. At a certain decay rate γv/γb ∼ 1, a transition to the normal state

occurs (∆0 = 0).
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FIG. 4: (Color online) Calculated order parameter ∆0 in the unitarity limit (kFas)
−1 = 0, in terms

of the decay rate γv. We set γb = 10−3εF.
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FIG. 5: (Color online) Steady-state phase diagram of a driven-dissipative electron-hole gas, in

terms of damping rate γv and the interaction strength (kFas)
−1. We set γb = 10−3εF (where

εF = k2F/(2m) is the Fermi energy). The solid line is the boundary between the normal phase

where ∆0 = 0 (“N”), and the exciton-BEC phase where ∆0 > 0 solution exists. In the exciton-

BEC phase, dynamical instabilities occur at the boundaries “A”, “B”, and “C”, where the mode

ωq starts to be associated with a negative damping rate Im[ωq] > 0 at (A) q = 0, Re[ωq] = 0, (B)

|q| 6= 0, Re[ωq] = 0, and (C) |q| 6= 0, Re[ωq] 6= 0. The exciton-BEC phase with ∆0 is thus unstable

in the shaded region (“Unstable BEC”), while the rest of the exciton-BEC phase is stable (“Stable

BEC”). On the right side of the dashed-dotted line, a gapped mode appears[61].
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FIG. 6: (Color online) (a1), (b1) Calculated dispersion ωRe
q . (a2), (b2) Calculated Re[detM(q, ω =

0)]. (a1), (a2) (kFas)
−1 = +1. The boundary “A” is at γAv /γb = 3.1 × 10−3 (dotted line). (b1),

(b2) (kFas)
−1 = −1. The boundary “B” is at γBv /γb = 2.10×10−2 (dotted line). For all the figures,

we set γb = 10−3εF.

Our principal results are captured in Fig. 5, which shows the steady-state phase diagram

of an interacting electron-hole gas. The solid line shows the boundary between the normal

phase (where ∆0 = 0) and the exciton-BEC phase (where ∆0 > 0 solution exists), and in the

shaded region of the exciton-BEC phase, a dynamical instability takes place. Our results

indicate that a uniform steady-state exciton-BEC is unstable in a wide parameter region of

the phase diagram, implying that non-equilibrium effects may become a large obstacle for

an experimental realization of the exciton-BEC phase[47].

At present, it is unclear what happens after the dynamical instability takes place, which

remains as our future work. However, we can still obtain some implications from the char-
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7.4× 10−2). The interaction strength is (kFas)
−1 = −2, and we set γb = 10−3εF.

acter of the instability. In this regard, we find that different types of dynamical instabilities

take place at the boundaries “A”, “B”, and “C” in Fig. 5. Figure 6(a1) shows a solution of

Re[det[M(q, ωRe
q )]] = 0, (44)

in the vicinity of the boundary “A”, which gives the dispersion ωRe
q of a collective mode

with its linewidth neglected. Here, as discussed in Sec. II, a gapless NG mode is obtained

as a result of the Thouless criterion (40), (41). We clearly see that the sound velocity of

the NG mode gradually decreases as the decay rate γv increases, until it reaches zero at the

boundary “A” (dotted line), leading to a dynamical instability. We plotted in Fig. 6(a2)

the |q| dependence of Re[detM(q, ω)] at ω = 0. Noting that Im[detM(q, ω)] = 0 is always

satisfied at ω = 0, Re[detM(q̃, ω = 0)] = 0 means that a pole exists at q̃. Starting from the

stable region (solid and dashed line), as γv increases, the curvature of Re[detM(q, ω = 0)]

at small |q| gradually decreases, which approaches zero at the boundary “A” (dotted line).

Beyond this boundary (dashed-dotted line), Re[detM(q, ω = 0)] becomes downward-convex

at small |q|, which leads to the appearance of a pole starting from q̃ → 0. This shows that,

at the boundary “A”, the instability condition Im[ωq] > 0 is obtained in the long wavelength

and low energy limit (Re[ωq] = 0), implying a collapse of exciton-BEC.

At the boundaries “B” and “C”, on the other hand, instability occurs at finite momentum

|q|. The dispersion ωRe
q determined from Eq. (44) in the vicinity of the boundary “B” is
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plotted in Fig. 6(b1), showing a dispersion with a local minimum (dashed line), similar to a

roton minimum in a superfluid 4He. The mode touches ω = 0 at the boundary “B” (dotted

line), which leads to a dynamical instability at |q| 6= 0. There, as shown in Fig. 6(b2), the

condition Im[ωq] > 0 is realized at |q| 6= 0,Re[ωq] = 0 (dotted line). We also find regimes

(boundary “C”) where dynamical instabiliity occurs at |q| 6= 0,Re[ωq] 6= 0, as shown in Fig.

7. Type “B” implies instability being accompanied by a pattern formation, and type “C”

implies a transition to a non-steady-state with space modulation.

To grasp the essence of the above-mentioned dynamical instabilities, we now derive the

(approximate) hydrodynamic equations (1) and (2) by expandng M(q, ω) in Eq. (35) in

terms of q and ω. The form of this expansion can be restricted from symmetry considera-

tions; firstly, from the inversion symmetry, M(q, ω) = M(−q, ω). Secondly, since δ|∆(r, t)|
and δθ(r, t) are real,

M(q, ω) = M∗(q,−ω). (45)

Finally, the Goldstone’s theorem (Eqs. (40) and (41)) assures M12(q → 0, ω = 0) =

M22(q → 0, ω = 0) = 0. These yield, up to O(q2, ω),

M(q, ω) =





α11 + β11q
2 − iη11ω −β12q

2 + iη12ω

α21 + β21q
2 − iη21ω β22q

2 − iη22ω



 , (46)

where the coefficients αij, βij, and ηij (i, j = 1, 2) are real numbers. As a result, the form of

the determinant can be determined (up to O(q2, ω)) as,

detM(q, ω) = A(ω2 + iΓω − cq2), (47)

giving rise to the so-called diffusive Goldstone’s mode[30, 31],

ωq = −i
Γ

2
±

√

cq2 − Γ2

4
. (48)

The real numbers A, c and Γ are determined from coefficients αij, βij , and ηij in Eq. (46).

We note that the obtained EOM breaks the time reversal symmetry (ω → −ω, |δ∆(q, ω)| →
|δ∆(q,−ω)|, δθ(q, ω) → −δθ(q,−ω)), due to the tunneling from the bath and the vacuum

through γb and γv.

However, in the limit where γb and γv are both small (i.e., γ = γb + γv → 0+ with γv/γb

fixed), it can be shown that Eq. (35) further reduces to

(α11 − β11∇2)δ|∆(r, t)|2 + 2∆2
0η12∂tδθ(r, t) = 0, (49)

η12∂tδ|∆(r, t)|2 + 2∆2
0β22∇2δθ(r, t) = 0, (50)
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where the time reveral symmetry is recovered. Here, we have used Eq. (45), as well as the

relations that holds in this limit,

Π11(q, ω) = Π11(q,−ω), (51)

Π12(q, ω) = −Π21(q, ω), (52)

Π22(q, ω) = Π22(q,−ω), (53)

Π12(q, ω = 0) = Π21(q, ω = 0) = 0, (54)

which can be obtained from relations (Take the γ → 0+ limit of Eqs. (29), (31).),

GR
11(k,−ω) = [GA

11(k,−ω)]∗ = −GA
22(k, ω) = −[GR

22(k, ω)]
∗, (55)

GR
22(k,−ω) = [GA

22(k,−ω)]∗ = −GA
11(k, ω) = −[GR

11(k, ω)]
∗, (56)

GR
12(k,−ω) = GA

12(k, ω), (57)

GK
11(k,−ω) = −[GK

11(k,−ω)]∗ = −GK
22(k, ω) = [GK

22(k, ω)]
∗, (58)

GK
12(k,−ω) = GK

12(k, ω), (59)

and

G
R/A/K
12 (k, ω) = G

R/A/K
21 (k, ω). (60)

Note that this limit does not necessarily correspond to the equilibrium limit, since the ratio

between the thermalization rate γb and the decay rate γv is kept finite (unless γv/γb = 0).

Using the fact that the Bose-condensate fraction n0 =
∑

p |
〈

c−p,hcp,e
〉

|2 is proportional to

∆2
0, we obtain the hydrodynamic equations (1) and (2) of the fluctuations of the condensate

fraction δn0(r, t) around the steady-state value n0 and the phase fluctuations δθ(r, t). As

already pointed out in the introduction, by comparing the obtained hydrodynamic equations

(1), (2) to the Gross-Pitaevskii (GP) equations (4), (5), we find that α11/η12 may be regarded

as an effective interaction Ueff between excitons multiplied by the condensate fraction n0 of

excitons.

The coupled equations (49), (50) gives the determinant

detM(q, ω) = β22q
2(α11 + β11q

2)− η212ω
2, (61)

and the mode dispersion as,

ωq = ±
√

β22q2(α11 + β11q2)

η12
. (62)
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FIG. 8: (Color online) (a), (b) Coefficients α11 and β22 (a) in the BEC regime (kFas)
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where type “A” instability takes place, and (b) in the BCS regime (kFas)
−1 = −1 where type “B”

instability takes place. (c) The solutions of α11 = 0 and β22 = 0 in the steady-state phase diagram.

As in Fig. 5, dynamical instabilities occur at the boundaries “A”, “B”, and “C”. The shaded

area represent the dynamical unstable region, while the white area represents the region where the

uniform steady-state BEC is stable. We briefly note that dynamical instabilities “B” and “C” in

the BCS regime occur slightly above the boundaries α11 = 0 and β22 = 0, while type “A” occurs

(almost) at α11 = 0.

When all the coefficients are positive, Eq. (62) gives a stable sound mode. However, one

sees in Fig. 8(a) that α11 becomes negative in the BEC regime when γv exceeds a certain

value. According to Eq. (62), this leads to a dynamical instability. (Note however that Eq.

(62) is only valid at γ = γb + γv → 0+.) As seen in Fig. 8(c), since this sign change occurs

(almost) at the boundary “A” in the BEC side ((kFas)
−1 >∼ 0), this instability is considered

to be caused by an effective attractive interaction between excitons. We briefly note that

this situation corresponds to the case illustrated in Fig. 1(b).

This anomaly “A” is attributed to pair-dissociation induced by pumping and decay.

Figure 9 shows the occupied spectral weight function L(p, ω) =
∫∞

−∞
dteiωt

〈

c†p(t)cp(0)
〉

, which

describes the occupancy of single-particle density of states. We clearly see from Fig. 9(a)

that the pumping supplies carriers to the upper branch of the single-particle excitation

spectrum (ω = Ep, where Ep =
√

(εp − µ)2 +∆2
0), as opposed to the equilibrium case (Fig.
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9(b)) where only the lower branch (ω = −Ep) is occupied. This indicates that pair-breaking

occurs in a non-equilibrium situation[35, 41].

Keeping this in mind, the above-mentioned attractive interaction Ueff can be shown to

be caused by this non-equilibrium induced pair-breaking effects, by expanding (γ → 0+)

α11
γ→0+−−−→ 2

U
− 2i

∑

k

∫

dν

2π

[

[

G12

(

k +
q

2
, ν +

ω

2

)

G12

(

k − q

2
, ν − ω

2

)

+G11

(

k +
q

2
, ν +

ω

2

)

G22

(

k − q

2
, ν − ω

2

)

]K
]

q→0,ω=0

= −4i
∑

k

∫

dν

2π

[

[

G12

(

k +
q

2
, ν +

ω

2

)

G12

(

k − q

2
, ν − ω

2

)

]K
]

q→0,ω=0

, (63)

in terms of ∆0, where Eq. (60) is used in obtaining the first equality, and the Thouless

criterion (40) and Eq. (42) in the second. Here, we have introduced a short-hand notation,

[ĜĜĜ · · · ĜĜ]R = GRGRGR · · ·GRGR (64)

[ĜĜĜ · · · ĜĜ]A = GAGAGA · · ·GAGA (65)

[ĜĜĜ · · · ĜĜ]K = GRGR · · ·GRGK +GRGR · · ·GRGKGA

+ · · ·+GRGR · · ·GRGKGAGA · · ·GA + · · ·+GRGKGAGA · · ·GA +GKGAGA · · ·GA.

(66)

This expansion is justified in the BEC regime, where ∆0 can be regarded to be small com-

pared to the binding energy (i.e., ∆0 ≪ |µ| ≃ Eb/2)[50]. In this regime, the single-particle
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Green’s function Ĝ can be expanded as,

GR(k, ω) = [(ω + iγ)1− ξkτ3 +∆0τ1]
−1 = G̃0R(k, ω)

−[ ˆ̃G0(k, ω)τ1
ˆ̃G0(k, ω)]R∆0 + [ ˆ̃G0(k, ω)τ1

ˆ̃G0(k, ω)τ1
ˆ̃G0(k, ω)]R∆2

0 + · · · , (67)

GA(k, ω) = [GR(k, ω)]†, (68)

and

GK(k, ω) = GR(k, ω)ΣK
0 (ω)G

A(k, ω)

= G̃0K(k, ω)− [ ˆ̃G0(k, ω)τ1
ˆ̃G0(k, ω)]K∆0 + [ ˆ̃G0(k, ω)τ1

ˆ̃G0(k, ω)τ1
ˆ̃G0(k, ω)]K∆2

0 + · · · ,

(69)

where

ˆ̃G0(k, ω) = [Ĝ0(k, ω)− Σ̂env(ω)]
−1

=





[ω + iγ − ξkτ3]
−1 −iτ3(1− 2fλ(ωτ3))

γ
(ω−ξkτ3)2+γ2

0 [ω − iγ − ξkτ3]
−1





γ→0+−−−→





[ω + iδ − ξkτ3]
−1 −πiτ3(1− 2fλ(ωτ3))δ(ω − ξkτ3)

0 [ω − iδ − ξkτ3]
−1



 . (70)

is a Green’s function with ∆0 = 0. (Note however that its distribution is modified by the

bath and the vacuum distribution fλ(ω)). Substituting Eqs. (67), (68), and (69) into Eq.

(63), we get

α11 ≃ −4i∆2
0

∑

k

∫ ∞

−∞

dν

2π

[

[

G̃0
11(k +

q

2
, ν +

ω

2
)G̃0

22(k +
q

2
, ν +

ω

2
)

×G̃0
11(k − q

2
, ν − ω

2
)G̃0

22(k − q

2
, ν − ω

2
)
]K

]

q→0,ω=0

= −4i∆2
0

∑

k

∫ ∞

−∞

dν

2π

[

[

G̃0
11(k +

q

2
, ν +

ω

2
)[G̃0

11(−k − q

2
,−ν − ω

2
)]∗

×G̃0
11(k − q

2
, ν − ω

2
)[G̃0

11(−k +
q

2
,−ν +

ω

2
)]∗

]K
]

q→0,ω=0

,(71)

where we have used Eqs. (55) and (56) in the last equality.

Equation (71) can be depicted diagramatically as in Fig. 10. This diagram shows that

the effective exciton-exciton interaction Ueff can be expressed as an exchange process of
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FIG. 10: (Color online) Diagramatical expression of effective interaction between excitons Ueff from

an exchange process of electrons and holes. The solid line represents G̃0
11, and the double solid line

represents the incoming or outgoing exciton.

particles between the two incoming excitons[51, 52]. By using Eq. (70) and performing the

ν-integral, we obtain

α11 ≃ ∆2
0

∑

k

[

1

ξ+ξ−

ξ+ + ξ−
(ξ+ + ξ−)2 − (ω + iδ)2

2
(

1− γb
γ
fb(ξ+)−

γb
γ
fb(ξ−)

)

− 1

ξ+ξ−

ξ+ − ξ−
(ξ+ − ξ−)2 − (ω + iδ)2

(

− 2γb
γ

)

(fb(ξ+)− fb(ξ−))

]

q→0,ω=0

= ∆2
0

∑

k

[

1

ξ3k

(

1− 2γb
γ

fb(ξk)
)

− 1

ξ2k

2γb
γ

(

− dfb(ξk)

dξk

)

]

, (72)

where ξ± = ξ±k+q/2.

In the equilibrium case where dissociated pairs are absent, i.e., fb(ξk) = 0 (Note that

ξk = k2/(2m) + |µ| > 0.), only the first term in Eq. (72) exists. In this case, α11 is always

positive, indicating that the effective exciton-exciton interaction Ueff is repulsive[51, 52]. On

the other hand, in the non-equilibrium case where quasiparticle excitations due to pair-

dissociation effects are present (fb(ξk) > 0), the second term in Eq. (72) arises. Noting

−(dfb(ξk)/dξk) > 0, this term gives a negative contribution, clearly indicating that the non-

equilibrium induced pair-breaking effect gives rise to an attractive interaction. Our numerical

analysis shows that the attractive channel from the second term can become superior to the

repulsive channel from the first term, giving rise to the dynamical instability “A”.

The above can be interpreted as follows. As mentioned earlier, the exciton-exciton in-

teraction Ueff is obtained from scattering processes shown in Fig. 11(a)[51, 52], which is

accompanied by exchange of particles between two excitons. When two excitons labeled

as l = 1 and l = 2 with the energies ωl
i are virtually dissociated into electrons and
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l=1

l=2

l=2l=1 l=2l=1 l=2l=1
(initial) (intermediate) (final)

FIG. 11: (Color online) (a) Scattering process giving the effective interaction Ueff . (b) Scattering

process where two excitons in the initial state virtually dissociate into electrons and holes in the

intermediate state. (c) Scattering process where one of the two excitons are initially dissociated.

In the intermediate state, while the depairing of an exciton occurs, the electron and hole in the

initial state form an exciton. In panels (b) and (c), the lower (upper) level schematically represents

the exciton state (dissociated electron-hole mixture).

holes in the intermediate state (Fig. 11(b)), the resulting effective interaction involves

[ωl=1
i −ωl=1

m ]−1× [ωl=2
i −ωl=2

m ]−1 > 0, where ωl
m (> ωl

i) is the energy of a dissociated exciton.

The positivity of this factor means that this process gives a repulsive interaction[51, 52].

On the other hand, when some excitons are dissociated in the non-equilibrium steady-state,

we obtain an additional contribution to Ueff schematically shown in Fig. 11(c). In this

case, starting from the the initial state with one exciton and an electron and hole, in the

intermediate states, while the exciton is dissociated, the electron and hole in the initial state

form an exciton. This process gives an attractive contribution to Ueff being proportional to

[ωl=1
i − ωl=1

m ]−1 × [ωl=2
i − ωl=2

m ]−1 < 0. When the contribution from the latter exceeds the

former to give an attractive exciton-exciton interaction, the system becomes unstable.

So far, we have shown that the pair-dissociation seen in Fig. 9(a) plays a crucial role for

the occurance of the dynamical instability “A” in the BEC side. Below, we show that in

fact, the non-equilibrium induced pair-dissociation is responsible for dynamical instabilities

in all regimes, including the BCS regime where types “B” and “C” instabilities occur. For

this purpose, it is convenient to divide the pair-correlation function Π = Πinter + Πintra into

the inter-band

Πinter
s,s′ (q, ω) =

i

2

∑

p

∫ ∞

−∞

dν

2π
Tr

[

τsGl

(

p+
q

2
, ν +

ω

2

)

τs′Gu

(

p− q

2
, ν − ω

2

)

+τsGu

(

p+
q

2
, ν +

ω

2

)

τs′Gl

(

p− q

2
, ν − ω

2

)

]K

, (73)
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FIG. 12: (Color online) Schematic explanations for inter- and intra-band excitations.

and the intra-band

Πintra
s,s′ (q, ω) =

i

2

∑

p

∫ ∞

−∞

dν

2π
Tr

[

τsGl

(

p+
q

2
, ν +

ω

2

)

τs′Gl

(

p− q

2
, ν − ω

2

)

+τsGu

(

p+
q

2
, ν +

ω

2

)

τs′Gu

(

p− q

2
, ν − ω

2

)

]K

, (74)

contributions[53, 54] (See Fig. 12.), by splitting the single-particle Green’s function Ĝ =

Ĝl + Ĝu into the lower branch (ω = −Ep) contribution Ĝl and the upper branch (ω = Ep)

contribution Ĝu to the single-particle excitations. We gave the concrete definition of Ĝl and

Ĝu in Appendix C. Here, the inter-band contribution Πinter describes effects of two-particle

excitations such as molecular dissociation into two quasi-particles, which is present even in

the equilibrium state. Figures 13(a1) and (b1) show the spectrum ImΠinter
11 (q, ω) in the non-

equilibrium and the equilibrium cases, respectively. Here, we see no qualitative differences

between the two cases, where both spectra exhibits an energy gap of ω ≃ 2∆0, i.e., the least

amount of energy required to dissociate pairs.

On the other hand, the intra-band contribution Πintra describes the scattering effects

between quasi-particles. In contrast to the inter-band excitations, this process only appears

when quasi-particles already exist (i.e., dissociated pairs are present) in the steady-state,

which is characteristic of the non-equilibrium case (See Fig. 9.). As a result, as seen

in ImΠintra
11 (q, ω) in Figs. 13(a2) and (b2) for the non-equilibrium and the equilibrium

case, respectively, this quantity gives finite contribution only in the non-equilibrium case.

Note that at small |q|, ImΠintra(q, ω) gives a remarkable contribution only at low energy

ω ≪ ∆0. This feature is quite similar to the continuum spectrum in the density fluctuations
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FIG. 13: (Color online) Calculated spectrum of pair-correlation function ImΠ = ImΠinter +

ImΠintra. (a1), (b1) Inter-band Im[Πinter
11 (q, ω)] contribution. (a2), (b2) Intra-band contribu-

tion Im[Πintra
11 (q, ω)]. (a1), (a2) Non-equilibrium case γv/γb = 0.1. (b1), (b2) Equilibrium case

γv/γb = 0. Interaction strength is set to (kFas)
−1 = −1.

of an interacting electron gas[55], which is reasonable because quasi-particle scattering can

be regarded somewhat as a single-particle excitation process of “quasi-particle density”

fluctuations.

Figure 14 demonstrates how the contribution from quasi-particle scatterings Πintra is cru-

cial for the appearance of dynamical instabilities. Figures 14(a1) and (a2) shows a spectral

weight function Im[M−1(q, ω)]11 (in the amplitude-amplitude fluctuations channel) in the

BEC ((kFas)
−1 = +1) and the BCS regime ((kFas)

−1 = −1), respectively, where the peak

structure characterizes the collective behavior of the steady-state. In both figures, diverging

spectra at the pole detM(q̃, ω̃) = 0 are seen (circled), indicating that the condensate is

dynamically unstable. However, when we neglect the intra-band contribution Πintra from

M(q, ω) by replacing Π(q, ω) in Eq. (36) to Πinter(q, ω), i.e.,

M inter(q, ω) =





2
U
− Πinter

11 (q, ω) −Πinter
12 (q, ω)

−Πinter
21 (q, ω) 2

U
− Πinter

22 (q, ω)



 , (75)

the pole disappears, as seen in Figs. 14(a2) and (b2). This clearly indicates that the quasi-

particle scattering is the process that triggers the dynamical instability. Since this process

can only occur when dissociated pairs are present in the steady-state, we conclude that all
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FIG. 14: (Color online) (a1), (b1) Calculated spectral function Im[M−1(q, ω)]11. (a2), (b2) The

same as (a1) and (b1), with intra-band contribution Πintra neglected (Im[[M inter]−1(q, ω)]11). (a1),

(a2) BEC regime (kFas)
−1 = +1. (b1), (b2) BCS regime (kFas)

−1 = −1. The decay rate is set to

γv/γb = 0.1 in both the figures, which are both in the unstable region. Circles in (a1) and (b1)

point at poles of detM(q, ω).

the dynamical instabilities we found in this paper are attributed to the pair-dissociation

induced by non-equilibrium effects.

It is worth mentioning that, in Fig. 14(b1) in the BCS side ((kFas)
−1 = −1), we see a

large spectral weight from the amplitude mode (also called the Higgs mode)[37, 56–58] at

ω ≃ 2∆0 = 0.29εF, which exists in the (equilibrium) BCS superconductors[59]. In contrast

to the NG mode, this mode is essentially unaffected by non-equilibrium effects, since quasi-

particle scattering occurs only at low energy ω ≪ ∆0, as seen in Fig. 13(a2).

We now discuss why the dynamical instability also occurs at non-zero |q| (“B” and “C”)

in the BCS side ((kFas)
−1 <∼ 0. In this regime, Figure 8(b) shows that both the coefficient α11

and the coefficient β22 switch their sign to negative. In this case, a “supercurrent” J (Eq.

(3))[36] anomalously flows in the anti -parallel direction to the phase gradient ∇δθ(r, t). In

the BCS regime, one finds,

β22 =
v2µ

12∆2
0

α11, (76)

in the small linewidth limit γ → 0+, where vµ =
√

2µ/m. (For the derivation, see Appendix
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D.) This means that when α11 < 0, the anomalous supercurrent also occurs (β22 < 0).

When this happens, Eq. (62) indicates that Im[ωq] becomes positive at momentum |q| >
√

|α11|/β11, leading to types “B” and “C” dynamical instabilities. Equivalently, Eq. (61)

qualitatively explains the non-monotonic behavior of detM(q, ω = 0) found in Fig. 6(b2),

recalling that α11β22q
2 > 0 and β11β22q

4 < 0. Note that higher order terms O(q6) are

required to explain the up-turning behavior of detM(q, ω = 0) seen in Fig. 6(b2).

These “finite-momentum-type” instabilities may be understood from the following com-

pensation mechanism. Suppose a local enhancement of the condensate fraction δn0(r, t)

occurs. In the ordinary case when α11 > 0 and β22 > 0, as described schematically in Fig.

1(a), this local enhancement decays as the condensate twists its phase δθ(r, t) away from

this spot to make a supercurrent J ∼ β22n0∇δθ(r, t) flow away. On the other hand, when

the response to the amplitude fluctuations is anomalous [α11 < 0], for relatively small spatial

modulation (low enough |q| that α11 + β11q
2 < 0), the condensate twists its phase δθ(r, t)

towards this spot (Eq. (1)). If β22 > 0 (as in Fig. 1(b)), following Eq. (2), this phase

twist would make the supercurrent flow to amplify the condensate density, leading to the

type “A” instability. However, as illustrated in Fig. 1(d), because β22 is actually negative in

this regime, the supercurrent flows anti -parallel to ∇δθ(r, t), stabilizing the system. When

spatial modulation is large enough (large |q|) that (α11 − β11∇2)δn0(r, t) > 0, however, the

above compensation mechanism of the supercurrent no longer works, causing the anomaly

in the phase channel [β22 < 0] to destabilize the system (as illustrated in Fig. 1(c)). As a

result, the dynamical instability starts at non-zero |q|.
We briefly note that, although the approximate EOMs (1) and (2), as well as the approx-

imate mode dispersion (62), are useful to understand the physics of the “finite-momentum-

type” instabilities (as discussed above), Figure 8(c) shows that the dynamical instabilities

“B” and “C” occur at the decay rate slightly larger than that of where the sign change of α11

and β22 occurs, while according to the approximate mode (62), the steady-state immediately

becomes unstable at the sign change. This is due to the neglect of amplitude-phase cou-

pling α21, β12, etc. in Eq. (62), when taking the γ → 0+ limit. Since this amplitude-phase

coupling is associated with the violation of number conservation[60] due to the tunneling of

particles between the system and the reservoirs, it works as a damping of fluctuations. This

helps the condensate to stabilize, making it possible to have regimes with both α11 and β22

negative for finite γ.
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We finally note that a gapped mode appears in the right side of the dashed-dotted line in

Fig. 5[61]. This mode may be understood as a relaxation oscillation between the condensate

and the dissociated carriers[62]. We briefly note that such a gapped mode is also seen in a

driven-dissipative exciton-polariton condensate[63].

IV. SUMMARY

To summarize, we have discussed the stability of a driven-dissipative Bose-condensed

electron-hole gas in the BCS-BEC-crossover region. Within the framework of the combined

BCS-Leggett-Keldysh formalism with GRPA, we showed how non-equilibrium effects lead to

dynamical instabilities of an exciton-BEC. We find different types of dynamical instabilities,

where one is due to an attractive interaction between excitons, and the other is triggered

by an anomalous current that flows anti-parallel to the phase gradient of the exciton-BEC.

Our results indicate that the simple exciton-BEC characterized by the ordinary BCS-type

order parameter is actually unstable in a wide region of the phase diagram in terms of the

interaction strength and the decay rate.

All of the dynamical instabilities discussed in this paper stem from pair-dissociation,

induced by the non-equilibrium nature. Since similar depairing effects are present in an

exciton-polariton condensate[41], it can be shown that dynamical instabilities arise in this

non-equilibrium system as well[64]. In addition, depairing effects are also present in other

non-equilibrium condensates in the BCS-BEC crossover regime, such as quenched Fermi con-

densates in an ultracold Fermi gas[26], as well as the neutron stars in its cooling process[27],

making us expect that analogous phenomena arise in these systems as well.

We end up by listing some important future problems. First, we have not discussed

detailed physics in the shaded region in Fig. 5. Since this region is not necessarily in the

normal phase, it is an interesting challenge to clarify what happens there. Inclusion of strong-

coupling effects beyond the mean-field theory[3, 4, 20, 65, 66] is also an important task,

which would be particularly important at finite temperatures cases. In addition, inclusions

of realistic situations, such as the long-range Coulomb interaction[3, 4], spin degrees of

freedom[20], mass difference between electrons and holes[65, 66], as well as detailed treatment

of electron-hole annihilation process, would also be important for detailed comparison to

experiments.
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Appendix A: Non-equilibrium BCS-Leggett theory

In our non-equilibrium BCS-Leggett theory, the self-energy is given by Σ̂ = Σ̂HFB +Σ̂env,

diagramatically shown in Fig. 3. The Hartree-Fock-Bogoliubov self-energy depicted in Fig.

3(a)[32, 35] can be explicitly written as,

ΣHFB
α,α′ (r, t; r′, t′) = iU

∑

β,β′=a,b

∑

s,s′=±

ηα,βα′,β′δs,−s′Tr[τsGβ′,β(r, t; r
′, t′)]τs′δ(r − r′)δ(t− t′ + 0+)

= iU
∑

s=±

1

2





Tr[τsG
K(r, t; r, t+ 0+)] 0

0 Tr[τsG
K(r, t; r, t+ 0+)]





α,α′

τ−s

×δ(r − r′)δ(t− t′ + 0+) (A1)

= i
U

2

∑

s=1,2

1

2





Tr[τsG
K(r, t; r, t+ 0+)] 0

0 Tr[τsG
K(r, t; r, t+ 0+)]





α,α′

τs

×δ(r − r′)δ(t− t′ + 0+), (A2)

where ηα,α
′

β′,β′ = (δα,α′δβ,−β′ + δα,−α′δβ,β′)/2. In the third line, we transformed τs=± into τs=1,2

for latter convenience. The retarded component can also be written as

[

ΣHFB(r, t; r′, t′)
]R

= −
[

∆(r, t)τ+ +∆∗(r, t)τ−
]

δ(r − r′)δ(t− t′ + 0+) (A3)

= −
[

Re[∆(r, t)]τ1 − Im[∆(r, t)]τ2
]

δ(r − r′)δ(t− t′ + 0+), (A4)

which can be derived from the definition of the order parameter,

∆(r, t) = U
〈

ah(r, t)ae(r, t)
〉

= −i
U

2
i
[〈

ah(r, t)ae(r, t)
〉

−
〈

ae(r, t)ah(r, t)
〉]

= −i
U

2
G

K
12(r, t; r, t+ 0+). (A5)

The explicit form of Fig. 3(b) is given by,

Σenv
α,α′(r, t; r′, t′) =

∑

λ=b,v

Nt|Γλ|2
∫

dRdR′Dλ
α,α′(R−R′, t− t′), (A6)
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describing the coupling to the bath and the vacuum within the second-order Born approxi-

mation, driving the system to a non-equilibrium state. In obtaining Eq. (A6), we have taken

the random average over the tunneling points ri and Ri. Here, D
λ=b(v)
α,α′ (R−R′, t− t′) is the

non-interacting Keldysh Green’s function for the particles in the bath (vacuum), where the

Fourier transformed form is given by,

D̂λ(q, ω) =





Dλ
aa Dλ

ab

Dλ
ba Dλ

bb



 (q, ω) =





[Dλ]R [Dλ]K

0 [Dλ]A



 (q, ω)

=





[ω + iδ − ελqτ3]
−1 −πiτ3(1− 2fλ(ωτ3))δ(ω − ελqτ3)

0 [ω − iδ − ελqτ3]
−1



 , (A7)

and Nt is the number of tunneling positions. Since Eq. (A6) only depends on t− t′, we can

employ Fourier transform as,

Σenv
α,α′(ω) =

∑

q

∑

λ=b,v

Nt|Γλ|2Dλ
α,α′(q, ω). (A8)

This can further be calculated by summing over q as,

Σenv
α,α′(ω) =

∑

λ=b,v





−iγλ −2iτ3γλ[1− 2fλ(ωτ3)]

0 iγλ





α,α′

. (A9)

Here, γλ = πNtρλ|Γλ|2 describes the pumping (λ = b) and decay (λ = v) rate of particles.

We have further assumed in obtaining Eq. (A9) that the bath and the vacuum are white,

i.e., the density of states of the bath and vacuum ρλ does not depend on energy ω.

Appendix B: Equation of motion with respect to δ∆(r, t)

We now turn to derive the equation of motion (35) for a small deviation of the order

parameter from the steady-state value δ∆(r, t) = ∆(r, t)−∆0 = δ|∆(r, t)|+ i∆0δθ(r, t). In

this regard, we introduce the so-called Wigner representation[34], where we transform the

coordinates (r, t; r′, t′) into a relative coordinate rr ≡ r − r′, tr ≡ t − t′ and the center of

motion coordinate rg = (r + r′)/2, tg = (t + t′)/2. With this representation, the retarded

30



component of the self-energy (A2), (A4), (A9) is written as

ΣR(rr, tr; rg, tg) = i
U

2

∑

s=1,2

1

2
Tr[τsG

K(rr, tr; rg, tg)]τsδ(rr)δ(tr + 0+)− iγ

= i
U

2

∑

s=1,2

∑

p′

∫ ∞

−∞

dω′

2π

1

2
Tr[τsG

K(p′, ω′; rg, tg)]τs − iγ (B1)

= −
[

Re[∆(rg, tg)]τ1 − Im[∆(rg, tg)]τ2
]

− iγ. (B2)

Thus, the small deviation of the self-energy from the steady-state value δΣR = ΣR − ΣR
0 is

given by,

δΣR(p, ν; rg, tg) = i
U

2

∑

s=1,2

∑

p′

∫ ∞

−∞

dω′

2π

1

2
Tr[τsδG

K(p′, ω′; rg, tg)]τs (B3)

= −
[

δ|∆(rg, tg)|τ1 −∆0δθ(rg, tg)τ2
]

, (B4)

where δGK(p, ν; rg, tg) = G K(p, ν; rg, tg) − GK(p, ν) is a small deviation of the Keldysh

component of the single-particle Green’s function from the steady-state, driven by δ∆(rg, tg).

To proceed, it would be convenient to introduce a short-handed notation[34],

(A⊗B)(r, t; r′, t′) =

∫

dr1

∫ ∞

−∞

dt1A(r, t; r1, t1)B(r1, t1; r
′, t′). (B5)

With this notation, the Dyson’s equation (10) can be represented as,

Ĝ = Ĝ0 + Ĝ0 ⊗ Σ̂⊗ Ĝ , (B6)

or

([Ĝ0]−1 − Σ̂)⊗ Ĝ = 1, (B7)

where

([Ĝ0]−1 ⊗ Ĝ )(r, t; r′, t′) =





i∂t − (−∇2

2m
− µ)τ3 0

0 i∂t − (−∇2

2m
− µ)τ3



 Ĝ (r, t; r′, t′). (B8)

From Eq. (B7), the retarded component G
R is given by,

([G0R]−1 − ΣR)⊗ G
R = 1, (B9)

which yields,

−δΣR ⊗GR + [GR]−1 ⊗ δGR = 0, (B10)
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where δGR = G R −GR. Thus, we obtain

δGR = GR ⊗ δΣR ⊗GR = −GR ⊗ [δ|∆|τ1 −∆0δθτ2]⊗GR, (B11)

where we have used Eq. (B4) in the last equality. The advanced component δGA = G A−GA

is immediately obtained by taking the Hermite conjugate of the retarded component, i.e.,

δGA = [δGR]† = −GA ⊗ [δ|∆|τ1 −∆0δθτ2]⊗GA. (B12)

The Keldysh component of the single-particle Green’s function G K can be obtained from

the Dyson’s equation (B7) as,

[G0R]−1 ⊗ G
K − ΣR ⊗ G

K − ΣK ⊗ G
A = 0, (B13)

which relates δGK to δGR/A as, (Note that ΣK = ΣK
0 within our approximation.)

[GR]−1 ⊗ δGK − δΣR ⊗GK − ΣK
0 ⊗ δGA = 0, (B14)

or

δGK = GR ⊗ δΣR ⊗GK +GR ⊗ ΣK
0 ⊗ δGA

= −
[

GR ⊗ [δ|∆|τ1 −∆0δθτ2]⊗GK +GR ⊗ ΣK
0 ⊗GA ⊗ [δ|∆|τ1 −∆0δθτ2]⊗GA

]

= −
[

GR ⊗ [δ|∆|τ1 −∆0δθτ2]⊗GK +GK ⊗ [δ|∆|τ1 −∆0δθτ2]⊗GA
]

. (B15)

Here, we have used Eqs. (B4), (B12) in obtaining the second line, and Eq. (31) in obtaining

the third.
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When δ∆(rg, tg) = δ∆(q, ω)eiq·rg−iωtg ,

δGK(p, ν; rg, tg) = −
∫

drr

∫ ∞

−∞

dtre
−ip·rr+iνtr

∫

dr1

∫ ∞

−∞

dt1

×
[

GR
(

rg +
rr

2
− r1, tg +

tr
2
− t1

)

×
[

δ|∆(r1, t1)|τ1 −∆0δθ(r1, t1)τ2

]

GK
(

− rg +
rr

2
+ r1,−tg +

tr
2
+ t1

)

+GK
(

rg +
rr

2
− r1, tg +

tr
2
− t1

)

×
[

δ|∆(r1, t1)|τ1 −∆0δθ(r1, t1)τ2

]

GA
(

− rg +
rr

2
+ r1,−tg +

tr
2
+ t1

)

]

= −
∫

drr

∫ ∞

−∞

dtre
−ip·rr+iνtr

∫

dr1

∫ ∞

−∞

dt1

×
∑

p′

∑

p′′

∑

q′

∫

dν ′

2π

dν ′′

2π

dω′

2π

×eip
′·(rg+rr/2−r1)−iν′(tg+tr/2−t1)eiq

′·r1−iω′t1eip
′′·(−rg+rr/2+r1)−iν′′(−tg+tr/2+t1)

×
[

GR(p′, ν ′)
[

δ|∆(q′, ω′)|τ1 −∆0δθ(q
′, ω′)τ2

]

δq,q′2πδ(ω − ω′)GK(p′′, ν ′′)

+GK(p′, ν ′)
[

δ|∆(q′, ω′)|τ1 −∆0δθ(q
′, ω′)τ2

]

δq,q′2πδ(ω − ω′)GA(p′′, ν ′′)

]

= −eiq·rg−iωtg

[

GR
(

p+
q

2
, ν +

ω

2

)[

δ|∆(q, ω)|τ1 −∆0δθ(q, ω)τ2

]

GK
(

p− q

2
, ν − ω

2

)

+GK
(

p+
q

2
, ν +

ω

2

)[

δ|∆(q, ω)|τ1 −∆0δθ(q, ω)τ2

]

GA
(

p− q

2
, ν − ω

2

)

]

.

(B16)

Substituting Eq. (B16) into Eq. (B4) and equating it with Eq. (B3), we obtain,

δ|∆(q, ω)|τ1 −∆0δθ(q, ω)τ2

=
U

2

∑

s=1,2

i

2

∑

p

∫ ∞

−∞

dν

2π

×Tr

[

τsG
R
(

p+
q

2
, ν +

ω

2

)[

δ|∆(q, ω)|τ1 −∆0δθ(q, ω)τ2

]

GK
(

p− q

2
, ν − ω

2

)

+τsG
K
(

p+
q

2
, ν +

ω

2

)[

δ|∆(q, ω)|τ1 −∆0δθ(q, ω)τ2

]

GA
(

p− q

2
, ν − ω

2

)

]

τs,

(B17)

or




δ|∆(q, ω)|
−∆0δθ(q, ω)



 =
U

2





Π11(q, ω) Π12(q, ω)

Π21(q, ω) Π22(q, ω)









δ|∆(q, ω)|
−∆0δθ(q, ω)



 , (B18)
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where

Πs,s′(q, ω) =
i

2

∑

p

∫ ∞

−∞

dν

2π
Tr

[

[

τsĜ
(

p+
q

2
, ν +

ω

2

)

τs′Ĝ
(

p− q

2
, ν − ω

2

)]K
]

. (B19)

We have used the short-hand notation introduced in Eqs. (64)-(66). Dividing both sides by

U/2, and transposing the right-hand side to the left-hand side gives the desired Eq. (35).

Appendix C: Lower and upper branch contributions to single-particle Green’s func-

tion

We give here the definition of the lower (Ĝl) and the upper (Ĝu) branch contribution of

the single-particle Green’s function Ĝ(= Ĝl + Ĝu). First, the retarded component (29) can

be split into the lower and the upper branch contribution as

GR(p, ω) = GR
u (p, ω) +GR

l (p, ω), (C1)

where

GR
l (p, ω) =

1

2

[

1− ξp
Ep

τ3 −
∆0

Ep

τ1

] 1

ω + iγ + Ep

. (C2)

GR
u (p, ω) =

1

2

[

1+
ξp
Ep

τ3 +
∆0

Ep

τ1

] 1

ω + iγ − Ep

. (C3)

Since GR
l (p, ω) and GR

u (p, ω) give the dispersion at ω = −Ep and ω = Ep with linewidth γ,

respectively, these correspond to the lower and the upper branch contribution, respectively.

The advanced component of the lower (GA
l ) and the upper branch (GA

u ) are given respectively

by,

GA
l (p, ω) = [GR

l (p, ω)]
†, (C4)

GA
u (p, ω) = [GR

u (p, ω)]
†. (C5)

The Keldysh component (31) can also be split into the upper and lower branch con-

tributions by use of Eq. (C1). Since the Keldysh component is anti-Hermitian (i.e.,

GK(p, ω) = −[GK(p, ω)]†)[34], it can be expressed with GR(p, ω) and GA(p, ω) as

GK(p, ω) = GR(p, ω)F (p, ω)− [GR(p, ω)F (p, ω)]†

= GR(p, ω)F (p, ω)− F (p, ω)GA(p, ω), (C6)
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where F (p, ω)(= F †(p, ω)) has information on the distribution function. The explicit form

is written as

F (p, ω) = F−(ω)1+
ξ2p + γ2

E2
p + γ2

F+(ω)τ3 +
∆0ξp

E2
p + γ2

F+(ω)τ1 −
∆0γ

E2
p + γ2

F+(ω)τ2. (C7)

Thus, by using Eq. (C1), we can also split the Keldysh component as

GK(p, ω) = GK
u (p, ω) +GK

l (p, ω), (C8)

GK
l (p, ω) = GR

l (p, ω)F (p, ω)− F (p, ω)GA
l (p, ω), (C9)

GK
u (p, ω) = GR

u (p, ω)F (p, ω)− F (p, ω)GA
u (p, ω), (C10)

where GK
l and GK

u describe the lower and the upper branch contribution, respectively.

Appendix D: Derivation of Eq. (76)

Here, we derive Eq. (76) in the main text that holds in the BCS regime by expanding

M22(q, 0) in powers of q. To do so, we first expand the single-particle Green’s function

GR/A/K(k + q, ω), similarly to Eqs. (67), (68), and (69). We find from Eq. (29) that

[GR(k + q, ω)]−1 = (ω + iγ)1− ξk+qτ3 +∆0τ1 = [GR(k, ω)]−1 − δξkqτ3, (D1)

where ξk+q = ξk + δξkq = ξk + vk · q + q2/(4m), making it possible to expand GR(k+ q, ω)

as

GR(k + q, ω) = GR(k, ω) + [Ĝ(k, ω)τ3Ĝ(k, ω)]Rδξkq

+ [Ĝ(k, ω)τ3Ĝ(k, ω)τ3Ĝ(k, ω)]Rδξ2kq + · · · . (D2)

We also obtain from Eqs. (30) and (D2),

GK(k + q, ω) = GR(k + q, ω)ΣK
0 (ω)G

A(k + q, ω)

= GK(k, ω) + [Ĝ(k, ω)τ3Ĝ(k, ω)]Kδξkq + [Ĝ(k, ω)τ3Ĝ(k, ω)τ3Ĝ(k, ω)]Kδξ2kq + · · · ,

(D3)

enabling us to expand GK(k + q, ω) in terms of δξkq as well, noting GA = [GR]†.

We now restrict ourselves to the BCS regime. In this regime, since the dominant contri-

bution in the k-summention is at |k| ≃ √
2mµ = mvµ ≫ |q| (µ > 0), we can approximate

δξkq ≃ vµ · q. (D4)
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Using Eqs. (D2)-(D4), we obtain

M22(q, 0) =
2

U
− i

2

∑

k

∫

dω

2π
Tr

[

τ2G
R(k + q, ω)τ2G

K(k, ω) + τ2G
K(k + q, ω)τ2G

A(k, ω)
]

≃ − i

2

∑

k

∫

dω

2π
Tr

[

[

τ2Ĝ(k, ω)τ3Ĝ(k, ω)τ3Ĝ(k, ω)τ2Ĝ(k, ω)
]K

]

(vµ · q)2 +O(q4)

≃ −iρ(0)
v2µq

2

3

∫ ∞

−∞

dξ

∫

dω

2π
Tr

[

[

τ2Ĝ(k, ω)τ3Ĝ(k, ω)τ3Ĝ(k, ω)τ2Ĝ(k, ω)
]K
]

+O(q4), (D5)

where we have used the Thouless criterion (40). In the third line of Eq. (D5), we replaced the

density of states ρ(ω) of free carriers with that at ω = 0, when replacing the k-summention

by a ξ(≡ k2/(2m) − µ)-integral. This is justified when µ > 0 and µ ≫ γ,∆0. This thus

gives

β22 = −iρ(0)
v2µ
3

∫ ∞

−∞

dξ

∫

dω

2π
Tr

[

[

τ2Ĝ(k, ω)τ3Ĝ(k, ω)τ3Ĝ(k, ω)τ2Ĝ(k, ω)
]K
]

= −iρ(0)
v2µ
6

∫ ∞

−∞

dξ

∫

dω

2π
Tr

[

[

τ2Ĝ(k, ω)τ3Ĝ(k, ω)τ3Ĝ(k, ω)τ2Ĝ(k, ω)

+τ3Ĝ(k, ω)τ2Ĝ(k, ω)τ2Ĝ(k, ω)τ3Ĝ(k, ω)
]K
]

= iρ(0)
v2µ
6

∫ ∞

−∞

dξ

∫

dω

2π

×
[

(G12G12 −G22G22)(−G12G12 +G22G11) + (G11G11 −G12G12)(G11G22 −G12G12)

+(−G12G12 +G22G11)(G12G12 −G22G22) + (G11G22 −G12G12)(G11G11 −G12G12)

+(G12G11 −G22G12)(G11G12 −G12G11) + (−G11G12 +G12G22)(−G12G22 +G22G12)

+(G11G12 −G12G11)(G12G11 −G22G12) + (−G12G22 +G22G12)(−G11G12 +G12G22)
]K

,

(D6)

where we omitted (k, ω) in the third line. In obtaining the second line in Eq. (D6), we have

used the cyclic property of the trace and Eq. (60) in the third. (The Keldysh component in

Eq. (60) holds only in the small linewidth limit γ → 0+.)

By further using Eq. (42), as well as

−i
G

R/A
12 (k, ω)

∆0
=

i

2
Tr

[

τ2Ĝ(k, ω)τ2Ĝ(k, ω)
]R/A

, (D7)
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we obtain,

β22 = −iρ(0)
v2µ
6

∫ ∞

−∞

dξ

∫

dω

2π

[

4
G12(k, ω)

∆0

G12(k, ω)

∆0

+(G11(k, ω)−G22(k, ω))(G11(k, ω)−G22(k, ω))
G12(k, ω)

∆0

+
G12(k, ω)

∆0
(G11(k, ω)−G22(k, ω))(G11(k, ω)−G22(k, ω))

]K

. (D8)

Here, we have also used Eqs. (55)-(59) to drop the antisymmetric part from the ω-integral.

In fact, we can show that

∫ ∞

−∞

dξ
[

2
G12(k, ω)

∆0

G12(k, ω)

∆0
+ (G11(k, ω)−G22(k, ω))(G11(k, ω)−G22(k, ω))

G12(k, ω)

∆0

+
G12(k, ω)

∆0
(G11(k, ω)−G22(k, ω))(G11(k, ω)−G22(k, ω))

]K

= 0, (D9)

which thus gives

β22 = −iρ(0)
v2µ
3∆2

0

∫ ∞

−∞

dξ

∫

dω

2π

[

GR
12(k, ω)G

K
12(k, ω) +GK

12(k, ω)G
A
12(k, ω)

]

. (D10)

On the other hand, α11 in the BCS regime can be expressed as

α11 =
2

U
− 2iρ(0)

∫ ∞

−∞

dξ

∫

dω

2π

[

GR
12(k, ω)G

K
12(k, ω) +GK

12(k, ω)G
A
12(k, ω)

]

= −4iρ(0)

∫ ∞

−∞

dξ

∫

dω

2π

[

GR
12(k, ω)G

K
12(k, ω) +GK

12(k, ω)G
A
12(k, ω)

]

, (D11)

where we have used Eqs. (40). Combining Eqs. (D10) and (D11) gives the desired Eq. (76).
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