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We present a theoretical analysis of the role that strain plays on the electronic structure of
chromium nitride crystals. We use LSDA+U calculations to study the elastic constants, deforma-
tion potentials and strain dependence of electron and hole masses near the fundamental gap. We
consider the lowest energy antiferromagnetic models believed to describe CrN at low temperatures,
and apply strain along different directions. We find relatively large deformation potentials for all
models, and find increasing gaps for tensile strain along most directions. Most interestingly, we find
that compressive strains should be able to close the relatively small indirect gap (' 100 meV) at
moderate amplitudes ' 1.3%. We also find large and anisotropic changes in the effective masses
with strain, with principal axes closely related to the magnetic ordering of neighboring layers in
the antiferromagnet. It would be interesting to consider the role that these effects may have on
typical film growth on different substrates, and the possibility of monitoring optical and transport
properties of thin films as strain is applied.

I. INTRODUCTION

Transition metal nitrides (TMNs) form a large family
of materials that play a crucial role in many technological
applications. Properties that make them useful include
hardness and corrosion resistance, along with interesting
electrical properties.1

Among these materials, chromium nitride (CrN) is
used in coatings for bipolar plates in fuel cells,2–4 and
as non-carbon support for the oxygen reduction reaction
on platinum.5 Most interestingly, this material presents
unusual electronic and magnetic properties in crystalline
form. These include a phase transition that involves
both the magnetic ordering and lattice structure, chang-
ing from paramagnetic cubic rock salt structure at high
temperatures to antiferromagnetic orthorhombic Pnma
structure at low temperatures. The Nèel temperature
has been reported by various groups to be TN ' 280K.6

There is, however, some discordance in experiments as
to the nature of the electronic characteristics accompa-
nying the structural and magnetic transformation. The
resistivity ρ at room temperature, has been reported to
range from 10−4 to 102 Ωm,6–8 indicating different de-
grees of sample polycrystallinity and purity. More con-
troversial is perhaps the resistivity behavior below TN .
Some studies report metallic behavior, as ρ increases
with temperature,9–11 while others report semiconduct-
ing/insulating behavior with the resistivity increasing for
decreasing temperature.6,12 This disagreement in the be-
havior of ρ(T < TN ) has been attributed to the presence
of both dopants and likely nitrogen vacancies that make
it difficult to measure the intrinsic transport properties
of the CrN thin films.13

In an attempt to elucidate the presence of a band gap,
Gall et al.6 measured optical and transport properties of
single crystal CrN films, and estimated an optical gap
of ≈ 0.7eV . Also ultraviolet photoelectron spectroscopy

(UPS) data suggest that the density of states vanishes at
the Fermi energy. On the other hand a previous study
by Herle et al.12 reported a smaller band gap of 90 meV ,
obtained from resistivity data of powder samples. Re-
cent experimental work has also verified that films grown
by molecular beam epitaxy (MBE) exhibit a transition
from the paramagnetic to the orthorhombic AFM phase
at TN ' 278K, although signs of a cubic phase were also
found.14

On the theoretical side, Filipetti et al.15 have stud-
ied possible magnetic and structural configurations of
CrN, concluding that a double antiferromagnetic dis-
torted structure is the lowest energy and most probable
configuration, in comparison not only with paramagnetic
and ferromagnetic phases but with other antiferromag-
netic arrangements. According to their calculations (in
the absence of U), the double antiferromagnetic phase
along the [110] plane (AFM2

[110], see Fig.1) exhibits an

enhancement in the number of states near the Fermi en-
ergy, but it does not cause the opening of a gap. The for-
mation of this two-layer arrangement is seen as the result
of the small energy gain provided by a lattice distortion
of about 2%. In a subsequent study, the structural tran-
sition was understood as the consequence of stress dis-
parity among the Cr atoms that face a plane with same
magnetic orientation and those that face the opposite.16

This ‘magnetic stress’ is seen to drive changes in the spin
ordering, and provides a link to the underlying lattice
structure.16

All these studies suggest that structural and magnetic
order are closely linked in CrN and that strains may re-
sult in significant changes in magnetic structure. Indeed,
Botana et al.17 carried out a complete computational
study of four different configurations, with AFM order-
ing changing every one or two layers, as well as with and
without a 2% distortion. Using a wide variety of func-
tionals, they also conclude that AFM2

[110] is the most
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FIG. 1: Lattice representation of different AFM models.
a) and b) Top view of the AFM1

[010] and AFM2
[110]

respectively. c) and d) 3D view of unit cells for cubic
AFM1

[010] and orthorhombic AFM2
[110], respectively.

Green/red arrows indicate magnetic moment direction
on Cr sites and black arrows indicate different lattice
directions.

stable configuration, they also reported the gaps from 0.3
to 0.91 eV for LDA+U with U ranging from 3 to 5 eV,
respectively. Also, perform calculations using several hy-
brid potentials reporting gaps from 0.2 to 2.13 eV. Inter-
estingly, Zhou et al.18 use an LDA+U approach to show
that the energetic difference between the orthorhombic
AFM2

[110] and the cubic AFM1
[010] decreases as the value

of U − J increases–both models are shown in Fig. 1. As
the reported energy difference between both structures is
small, it is conceivable that both phases may appear in
a given sample, as perhaps seen recently.14

Recent experimental studies comparing the hardness of
the material, after growing it on several substrates, con-
clude that CrN hardness is independent of the growth
orientation and of grain boundary effects.19 Moreover,
theoretical studies of strained free-standing CrN films
explored the stability of mono and bilayers.20 Their re-
sults suggest that a biaxial strain of −6% would cause
a phase transition to a ferromagnetic phase at low tem-
peratures for a (100) plane of the material. Although
CrN films have been grown on a variety of substrates,
the most commonly used is MgO; the CrN lattice mis-
match with this substrate could be ' 1.7%, as estimated
from the reported lattice constants.19 As film growth is
often conducted at elevated temperatures, cooling down
may induce additional strains due to different thermal
expansion coefficients of film and substrate. This sug-
gests that a strain range of ±2% could be realistically

achieved in the growth conditions of CrN films. Higher
strains may require externally applied stress, as achieved
by film deposition on flexible substrates.21

As lattice distortion and magnetic behavior are clearly
interconnected in this material, we have undertaken a
study of electronic properties of CrN under strain. These
could be explored by epitaxial growth of thin films on dif-
ferent substrates and explored by both bulk and surface
probes. Utilizing an LSDA+U approach, we calculate
elastic constants and deformation potentials for different
expected antiferromagnetic phases of the material, and
explore the changes in band structure the strains pro-
duce. We obtain the effective masses and anisotropy for
both electron and hole bands near the optical gap, and
find that a 1% strain can boost the carrier mass and mo-
bility by a factor of 2 in some directions, while remaining
unchanged in others. Moreover, we find that strains in a
range of 2% may have other important effects, including
the closing of the fundamental (indirect) energy gap for
a compressive strain ' −1.3% in all the AFM models
tested. Apart from providing specific testable predic-
tions for deformation potentials in this material, these
results may contribute to explaining how some experi-
mental setups have shown metallic behavior for T < TN
and suggest additional experiments to probe the electri-
cal properties of the material.

II. COMPUTATIONAL APPROACH

We performed density functional calculations in the lo-
cal spin density approximation (LSDA), implemented in
the Quantum Espresso package.22 We used an LSDA+U
approach on the 3d partially localized Cr orbitals of the
system,23 in a rotationally invariant formulation.24 The
kinetic energy cutoff for the wavefunctions was set to 30
Ry and the Brillouin zone was sampled with 8 × 8 × 8
k-point meshes. An important aspect in using LSDA+U
is the validation of estimates of the ad hoc constants U
and J in the implementation; we take advantage of pre-
vious work on this material. Herwadkar et al.25 consid-
ered both an excited-atom model in which the screening
charge is restricted to a sphere where d electrons can
be added or removed, and the Cococcione and Gironcoli
algorithm26 to estimate reasonable values for the U and
J parameters. They conclude that a reasonable value of
U is in the range 3 to 5 eV, and that J = 0.94 eV. Similar
values of U−J are used by Zhou et al.18 With this input,
we performed electronic structure calculations on the low
energy models in Fig. 1 and consider distortion effects.
We use J = 0.94 eV and U = 3 eV for the AFM2

[110]

model, but U = 5 eV for AFM1
[010], to make both mod-

els have a comparable band gap. We notice that other
U values shift the final energy gap but cause no ma-
jor difference in the electronic spectrum for each model;
similarly the deformation potentials and effective masses
presented here are essentially unaffected over the range
of anticipated U − J values.27 As in previous computa-
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tional studies,15,17,18 the orthorhombic AFM2
[110] antifer-

romagnetic model was found to have the lowest energy,
followed by the cubic AFM2

[110] at 8.0 meV per chemical

unit. The cubic AFM1
[010] was found to be at 15 meV

from the minimum when the same set of U and J pa-
rameters are used. Finally, the orthorhombic AFM1

[010]

was found at 30 meV.

FIG. 2: Low energy AFM band structures for models of
CrN. Top: Orthorhombic AFM2

[110], and Bottom:

Cubic AFM1
[010].

Figure 2 shows band structures for both main models.
The symmetry points shown for the cubic AFM1

[010] are

Γ = (0, 0, 0), M = ( 1
2 ,

1
2 , 0)2π/ac, X = ( 1

2 , 0, 0)2π/ac and

R = ( 1
2 ,

1
2 ,

1
2 )2π/ac, where ac = 4.14Å is the cubic lattice

constant. For the orthorhombic AFM2
[110], the symmetry

points correspond to M = (π/a, 0, 0), X = (0, π/b, 0),
W = (π/a, 3π/2b, 0), W ′ = (π/a, 3π/2b, π/c) and L =
(0, π/b, π/ac), with a = 2ac sin(α/2) and b = ac cos(α/2),
where α = 88◦. In the AFM2

[110] structure the valence

band maximum at k′ is away from the symmetry point
(see Fig. 2), surpassing the W point by ' 10 meV, as
mentioned in the literature.17 An interesting difference
among the models are the orbitals responsible for the
energy gap; the AFM1

[010] shows a hybridization gap be-

tween dz2 in the conduction band at the Γ point, and pz
in the valence at M . In contrast, in the AFM2

[110] struc-

ture the conduction band has dz2 character at Γ, while
dx2−y2 dominates in the valence band at W .

As we will see below, the nature of the orbitals involved

in the indirect gap is reflected in the behavior of the
band gap variation with various strains, as well as the
symmetries and strain changes produced on the different
effective masses.

III. RESULTS

We calculate the effects of strain in the band structure
of different AFM model structures, as described before,
and for different uniaxial directions of strain: [110], [11̄0],
[010], and [100], as well as for biaxial strains. For each
strain amplitude, the unit cell is stretched along the given
direction and then allowed to relax in the remaining di-
rections. Strains are naturally found to shift bands and
change their curvature. As such, we have carried out an
analysis of these effects considering the two lowest en-
ergy models for the AFM low temperature phase, the
orthorhombic AFM2

[110] and the cubic AFM1
[010]. No-

tice, however, that recent RHEED analyses of epitaxial
films suggest the possibility of a cubic AFM2

[110] phase,14

which is also found to have relatively low configuration
energy, as discussed above. This has motivated us to also
analyze the behavior of such cubic AFM2

[110] phase, as

well as the corresponding orthorhombic AFM1
[010] phase,

for completeness. If these phases are in fact present in
films, it would be interesting to explore their behavior un-
der possible strain fields, which may contribute to their
identification.

A. Elastic Constants

We have calculated the elastic constants C11, C12 and
C44. The first two are obtained from the bulk B and
shear modulus Cs, using the expressions B = (C11 +
2C12)/3 and Cs = (C11 − C12)/2.28 The bulk modu-
lus is obtained by applying hydrostatic pressure and fit-
ting the energy and lattice constant relation to the Mur-
naghan equation of state.29 The shear modulus Cs and
C44 are obtained by applying volume-conserving tetrag-
onal and trigonal strains respectively, as done previously
in other nitrides.28 For the cubic AFM1

[010] model, we

obtain C11 = 677 GPa, C12 = 87.7 GPa, C44 = 155
GPa and B = 289 GPa, in general agreement with pre-
vious calculations30–32 and experiments.33,34 A full dis-
cussion of the role of DFT functionals on different CrN
elastic constants and structures is presented by Zhou et
al.18 We notice that these large elastic constants show
some proportionality with the antiferromagnetic phase of
a chromium crystal,35 where C11 = 428 GPa, C12 = 51
GPa and C44 = 96 GPa. There is a factor of 4 between
C44 and C11 and a factor of about 8 between C12 and
C11. In contrast, other non-magnetic nitrides28 such as
GaN (C11 = 293 GPa, C12 = 159 GPa and C44 = 155
GPa) and AlN (C11 = 304 GPa, 160 GPa and C44 = 193
GPa) are softer and have values of C44 and C12 close to
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FIG. 3: Indirect energy gap dependence with strain for
different strain axes and AFM models of CrN. Top
panel: AFM2

[110]. Bottom panel: AFM1
[010]. A negative

value of the gap represents band overlap.

each other, and only a factor of 2 smaller than C11.

B. Energy Gaps and Deformation Potentials

Figure 3 shows the change in the indirect gaps with
strain (EΓ−M or EΓ−W ) for all models. In orthorhom-
bic AFM2

[110], compressive strains along the AFM axis

([110]) reduce only slightly the EΓ−W gap with a defor-

mation potential D[110] =
dEgap

dε = 3.65 eV, and such
near linear dependence continues for tensile strain. This
is similar, although slightly larger for strains along [11̄0],
with D[11̄0] = 5.52 eV, and nearly additive for biaxial

([110]+[11̄0]) strain, with Dbiax = 9.17 eV. Along the
cubic axes [010] and [100], there is an opposite linear
tendency with D[010] ' D[100] ' −1.80 eV, decreasing
slightly for tensile strains. We find that similar tenden-
cies remain true in the cubic AFM2

[110], where for the

[110], [11̄0] and biaxial strain, we find D[110] = 4.98
eV, D[11̄0] = 3.05 eV and Dbiax = 7.85 eV. How-
ever, for the [010] strain we find that both compressive
and tensile strains decrease the band gap at a rate of

FIG. 4: Deformation potentials for all AFM models
considered, for both direct and indirect gaps, as
indicated.

' ±0.055eV/1% = 5.5 eV, with nearly quadratic depen-
dence.

The indirect gap EΓ−M for cubic AFM1
[010] behaves

quite differently to the gap in AFM2
[110]. For this case,

the gap remains nearly unchanged for the [010], [110]
and [11̄0] directions (last two equivalent in this cubic
model). On the other hand, for strains along [100] and
biaxial ([010]+[100]), the gaps change at a similar rate
of D[010] = 3.54 eV and Dbiax = 3.67 eV, decreasing
slightly for tensile strains. For the distorted orthorhom-
bic AFM1

[010], the deformation potentials are nearly the

same as for the cubic model, as seen in the bottom panel
of Fig. 3.

It is interesting that the values for deformation poten-
tials are substantially larger than in materials sharing
similar crystalline structure, such as ScN, where the Ds
are in the range of 1.36 − 2.06 eV.36 The values here
are comparable to those of Si for strain along the [110]
direction.37 We also notice that in all of these materi-
als the energy gap increases with tensile strain and de-
creases with compression, except for the orthorhombic
model AFM2

[110] for strains along [010]. In materials

like GaN and AlN, the deformation potentials for hy-
drostatic strain are in fact negative, −8.31 eV and −9.88
eV, respectively,38 with large (and negative) uniaxial de-
formation potentials.39

A summary of deformation potentials for both direct
and indirect band gaps in all the four AFM models is
shown in Fig. 4. Notice the deformation potentials de-
crease slightly for the distorted structures, but maintain
similar tendencies, with the exception of [010] in the
AFM2

[110].

An interesting consequence of the relatively large de-
formation potentials seen in Fig. 3 and 4, is that compres-
sive strains reduce strongly the fundamental (indirect)
gap in the band structure. In fact, for the orthorhom-
bic AFM2

[110] phase, our calculations show that the gap

closes for a biaxial strain≈ −1.3%, while a uniaxial strain
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would require ≈ −2.2%. Similarly, the cubic AFM1
[010]

structure would be gapless for both biaxial and [100] uni-
axial strains ≈ −1.4%. As this level of strains (. 2%) is
likely achievable by appropriate choice of epitaxial sub-
strate and/or by differential expansion coefficients, it
may be interesting to monitor the strain field in films
while monitoring their transport and/or optical proper-
ties. The reduction of the gap in conjunction with the
AFM ordering may give rise to interesting piezomagnetic
behavior in this material, and even be applied in a strain-
gated field effect transistor, as in other semiconductors.40

We should note that a larger value of the initial gap (as
obtained with a larger U , for example), would also re-
quire larger compressive strains to close. We anticipate,
however, that in all cases the required strain would be
. 2%.

C. Effective masses

Strains are also expected to change the curvature of
bands. To estimate the effective masses and their strain
dependence, band surfaces of valence and conduction
bands were calculated using a mesh 300 k-points around
the high symmetry points, and then fitted to the effective
mass tensor,

m−1 =
1

~2


∂2E
∂k2x

∂2E
∂kx∂ky

∂2E
∂kx∂kz

∂2E
∂ky∂kx

∂2E
∂k2y

∂2E
∂ky∂kz

∂2E
∂kz∂kx

∂2E
∂kz∂ky

∂2E
∂k2z

 . (1)

The fitted tensor accurately describes dispersion up to
at least 0.4 eV away from each band edge. The resulting
asymmetric tensor is diagonalized to obtain the masses
along the principal axes. All AFM models exhibit their
principal axes not fully aligned with the cubic directions,
and are rather better aligned with directions to the near-
est neighbor atoms in the unit cell, as shown for a few
examples in Fig. 5. Specifically, in the cubic AFM1

[010]

model, the conduction band (Fig. 5a and b) shows two de-
generate masses of 0.24me with principal vectors directed
towards the nearest neighbor Cr atoms in a different layer
and therefore with different spin in the AFM configura-
tion (me is the bare electron mass). Those masses are
smaller than the remaining one (in red) with 0.34me,
with principal axis pointing towards the nearest N atom.
Interestingly, the masses are rather insensitive to tensile
strains, while changing drastically under [110] compres-
sion. Likewise, the valence band (Fig. 5c and d) has
two equal masses of −5.9me with principal axes pointing
from an N atom to the Cr atoms in the next plane par-
allel to [010]. The smaller mass ' −2.8me shows weaker
strain dependence, although all hole masses increase with
strain.

In contrast, in the orthorhombic AFM2
[110], the con-

duction band (Fig. 5e and f) has two degenerate small
masses of 0.05me, with principal axes in the directions

of the Cr atoms in the next plane parallel to [110], and
therefore with the same spin. The remaining mass of
0.55me has an axis pointing to the Cr atom in the sec-
ond nearest plane parallel to [110] which correspond to
a different spin. The lower symmetry of this structure is
also reflected in the rather different and generally larger
masses in the valence band, Fig. 5g and h.

One can intuitively interpret the principal mass direc-
tions as connected to the interaction between the orbitals
present near the corresponding energy for each case. For
instance, in the AFM1

[010], the axes are clearly influenced

by the position of the density lobes of the pz and dz2 or-
bitals (shown as green rods in Fig. 5).

Although, Fig. 5 shows only a subset of all possible
results, we can describe the general behavior of masses
with strain. As mentioned, the impact of the up to ±2%
distortions on the various masses is different. The mass
changes with strain have different dependence in conduc-
tion and valence bands. The valence bands show typi-
cally more pronounced changes for tensile strain in the
AFM2

[110] structure. In this structure, strain along [110]

produces small changes in all the masses, changing less
than 8% with a 2% strain. On the other hand, strains
along [11̄0] changes masses up to 60% in the valence band
and up to 35% in the conduction band (not shown). It is
also interesting to notice the general symmetry breaking
between mass pairs in the conduction band, as strains
set in. Lastly, the biaxial strain produces the largest
changes, with valence band masses decreasing in most
cases by up to 60% at 2% strain. In the conduction band,
masses change by about 40% for similar strains.

The AFM1
[010] structure shows overall smaller changes

in comparison, particularly for [010] strains. One finds a
change of about 25% in the valence band and less than
5% in the conduction band masses. [100] strains pro-
duce a symmetry breaking in the conduction band for
m2 and m3, with changes of about 14%. Similar results
are present for the [110] strain (Fig. 5a) with changes
of up to 47% in the valence band and degeneracy of m2

and m3 broken for compressive strain, with changes of up
to 80%. Finally, biaxial strains show smaller changes in
comparison, with 22% changes in the valence band and
15% in the conduction band masses.

We have also studied the distorted counterparts of the
models. Particularly, the conduction band of the or-
thorhombic AFM1

[010] model for the [010] strain shows

increases of 100% in m1 and m2, with no change for m3,
as seen in Fig. 5i. There is, in contrast, nearly no change
in the valence band masses, as seen in Fig. 5k. The de-
generacy of m1 and m2 is preserved for all strains in this
model, unlike in the cubic AFM1

[010]. The biaxial strain

shows almost identical changes in the effective masses to
the cubic case, while [110] strains produce similar per-
centual changes but with a more quadratic relation (not
shown). Strains along [100] show opposite tendency, with
m1 and m2 increasing only under tensile strain by ≈ 50%,
with no change for m3 in this strain range. In the cubic
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FIG. 5: a) Electron and c) Hole effective masses for the
cubic AFM1

[010] model with [110] strains. b) and d)

Show corresponding principal axes for masses, as
indicated by color coding in a) and c). Green rods
through atoms indicate dz2 (for Cr) or pz (for N)
orbitals for reference. e) and g) Effective masses for the
orthorhombic AFM2

[110] model for [010] strains. f) and

h) Principal axes for masses in e) and g). i) and k)
Effective masses for the orthorhombic AFM1

[010] model

with [010] strains. j) and l) Effective mass for the cubic
AFM2

[110] model with [010] strains.

AFM2
[110] model, [010] strains result in almost identical

changes in the conduction band to that of the orthorhom-
bic AFM2

[110] model (Fig. 5j), with significantly smaller

change in the valence band masses (. 2%), as seen in Fig.
5l. Both strains [110] and [11̄0] produce smaller changes
(≈ 10%) in all effective masses, while biaxial strain splits
the degeneracy between m2 and m1, doubling m2 but
increasing m1 only about 40% in the conduction band
for tensile strains; compressive strains result in nearly no
change (not shown). In the valence band, strain produces
a nearly linear change of m2 and m3 of . 20%, and no
significant change in m1.

It is clear that all changes of effective mass with strain
are rather anisotropic, as we have seen. This would likely
result in corresponding transport coefficients that inherit
such asymmetries. Monitoring of transport properties
with changing strain in doped samples (naturally or pur-
posely) would provide interesting insights into the behav-
ior of this material.

IV. CONCLUSIONS

We have studied the effects that moderate strains of
±2% have in band gaps, deformation potentials and ef-
fective masses of different low temperature phases of
CrN, orthorhombic AFM2

[110] and cubic AFM1
[010], as

well as their corresponding low-energy distortions. Our
results show that compressive biaxial and uniaxial strains
≤ 2% are able to close the gap in these AFM struc-
tures. This suggests that realistic strain could cause sig-
nificant changes in the electronic structure and optical
response, and could contribute to explaining some of the
puzzling behavior seen under different experimental con-
ditions and film growth characteristics. Moreover, these
results suggest experiments to closely monitor transport
and/or optical response of CrN films as applied strains
are varied. The transport properties in doped systems
will also reflect changes in the effective masses estimated
by our calculations. As masses show large anisotropy,
different directions of strain would also produce different
reactions on the charge carrier mobility. The significant
changes in charge carrier mobility that a strain of ±2%
causes could be a factor that needs to be considered in
the appearance of the resistivity kink seen to occur in
several studies.9,10,41 It would be interesting to probe to
what extent this could be part of a strain relief mecha-
nism in different sample conditions and morphology. An-
other aspect to consider is that although the elastic con-
stants hardly differ among the AFM2

[110] and AFM1
[010]

structures, the deformation potentials as well as the ef-
fective mass changes are not at all similar. This behavior
could be the result of the magnetic stress described by
Fillipetti et al.16 and appearing due to the different stress
experienced by the various parallel magnetic layers of the
material, present in AFM2

[110] but absent in AFM1
[010].
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