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We report on fixed phase diffusion Monte Carlo calculations that show that, even for a large
amount of Landau level mixing, the energies of the Pfaffian and anti-Pfaffian phases remain very
nearly the same, as also do the excitation gaps at 1/3 and 2/3. These results, combined with previous
theoretical and experimental investigations, indicate that particle hole (PH) symmetry for composite
fermion states is much more robust than a priori expected, emerging even in models that explicitly
break PH symmetry. We provide insight into this fact by showing that the low energy physics
of a generic repulsive 3-body interaction is captured, to a large extent and over a range of filling
factors, by a mean field approximation that maps it into a PH symmetric 2-body interaction. This
explains why Landau level mixing, which effectively generates such a generic 3-body interaction, is
inefficient in breaking PH symmetry. As a byproduct, our results provide a systematic construction
of a 2-body interaction which produces, to a good approximation, the Pfaffian wave function as its
ground state.

PACS numbers: 73.43.Cd, 71.10.Pm

I. BACKGROUND AND MOTIVATION

It has been appreciated since the early 1980s that Lan-
dau level (LL) mixing leads to corrections in various
observable quantities in fractional quantum Hall effect
(FQHE), such as the transport gaps1,2. The effect of
LL mixing is two-fold: it alters the 2-body interaction
and also induces multi-particle interaction. While both
lead to corrections, the latter also breaks the symmetry
under particle-hole (PH) transformation, which is an ex-
act symmetry for electrons confined to a single LL and
interacting by a 2-body interaction, providing an exact
relation between the wave functions and spectra at filling
factors ν and 1− ν.

The issue of PH symmetry has received much atten-
tion in recent years, in the contexts of both the com-
petition of the Moore-Read Pfaffian3 (Pf) and the anti-
Pfaffian4,5 (APf) states for the ν = 5/2 FQHE6–12, and
the composite-fermion (CF) Fermi sea at ν = 1/213–18.
A surprising message revealed by these studies is that
the PH symmetry for CF liquids is much more robust
than one might a priori anticipate, emerging even for
Hamiltonians that explicitly break PH symmetry. Let us
list some examples. (i) The most dominant PH symme-
try breaking term induced by LL mixing is the 3-body
interaction6. Ref.19 found, surprisingly, that even a pure
3-body interaction produces, for a broad range of param-
eters, the standard Jain CF states at ν = n/(2n±1)20,21,
which satisfy PH symmetry to a very good approxima-
tion; this demonstrates an emergent PH symmetry in
the ground state for a model Hamiltonian that explic-
itly breaks PH symmetry. (ii) An emergent PH sym-
metry was found also for spinful bosons in the lowest
LL (LLL) interacting via the hard core interaction22;
a priori, a bosonic system is not expected to obey PH
symmetry at all. (iii) Wang et al.18 have demonstrated
that the Halperin-Lee-Read theory of composite fermions
produces results that are consistent with PH symmetry,

even though the theory, strictly speaking, breaks the PH
symmetry because it is not confined to the LLL. (iv)
It has proven surprisingly difficult to ascertain, theo-
retically, whether the Pf or the APf is selected by LL
mixing7–12. Some theoretical calculations favor the Pf
while others the APf, and a recent article12 argues that
the 3-body pseudopotential in them = 9 angular momen-
tum channel is the decisive factor, indicating the extreme
subtlety of the issue. (v) In addition, experiments also
fail to find clear evidence for breaking of PH symmetry.
In the experiments that measure the Fermi wave vector
of composite fermions through commensurability oscilla-
tions, no deviation from the “minority density rule”23 is
seen even for hole type samples where LL mixing can be
significant24.

Our goal in this work is two-fold. First, we search
for signs of breaking of the PH symmetry due to LL
mixing through a generalization of the diffusion Monte
Carlo method26,27 called the fixed phase diffusion Monte
Carlo25, which enables treatment of LL mixing in a non-
perturbative fashion.28,29 We find that while the energy
expectation value of both the Pf and the APf wave func-
tions change substantially by LL mixing, their difference
remains insignificant up to large LL mixing. Further-
more, we find that the transport gaps for the fully spin
polarized states at ν = 1/3 and ν = 2/3 remain very
nearly equal (in Coulomb units) even for large LL mixing.
These results provide further support to the robustness
of PH symmetry for CF liquids.

Our second goal is to seek insight into the surprising
robustness of PH symmetry for the CF states. Because
breaking of the PH symmetry can be modeled primar-
ily as a 3-body interaction within the Hilbert space of a
given LL, it is natural to consider a 3-body interaction to
address the issue. We consider the validity of a mean field
(MF) approximation that maps a 3-body interaction into
a PH symmetric 2-body interaction. By explicit evalu-
ation of the spectra for small systems, we find that the
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latter captures the physics of the 3-body interaction to a
surprising degree, thus indicating that the 3-body inter-
action only weakly breaks PH symmetry. Furthermore,
the MF approximation improves as the 3-body interac-
tion is made longer in range. This result gives insight
into why LL mixing is very inefficient in breaking PH
symmetry, because we expect LL mixing generically to
produce a long-range 3-body interaction. As a byprod-
uct, the MF mapping from 3-body to 2-body interaction
also allows us to determine 2-body interaction for which
the Pfaffian state is an accurate ground state.

II. FIXED PHASE DIFFUSION MONTE CARLO
STUDY

Fixed-phase diffusion Monte Carlo (DMC) method in-
troduced in Ref [25] has proved successful in treating LL
mixing non-perturbatively28,29. This DMC method26,27

is based on the idea that the Schrödinger equation in
imaginary time τ = it is equivalent to a diffusion equa-
tion, with the wave function representing the density of
particles, and the long time limit of the evolution projects
into the ground wave function. This produces, in prin-
ciple, the exact ground state wave function provided it
is everywhere real and non-negative. For electrons in
a magnetic field, the wave function is necessarily com-
plex, but Ortiz, Ceperley and Martin25 developed a fixed
phase DMC in which one expresses the wave function as
|Φ(R)|eiφ(R) (R represents the particle coordinates col-
lectively), assumes the phase to be fixed, which can be
incorporated into the Hamiltonian, and then determines
the lowest energy state within the chosen phase sector.
This method was generalized for spherical geometry by
Melik-Alaverdian et al.28,30.

The accuracy of the fixed phase DMC method de-
pends on the choice of phase φ(R). Güçlü and Umrigar31

showed, by comparison with exact diagonalization, that
LL mixing does not significantly alter the phase of LLL
eigenstates. In our calculation, we therefore use the LLL
projected wave functions for composite fermions as the
initial trial wave functions to fix the phase in the DMC
procedure. The validity of this approach has also been
demonstrated by its ability to accurately capture the
physics of spin polarization phase transitions in FQHE29.

To evaluate the correction due to LL mixing at ν = 5/2
using DMC, we take as our initial trial wave functions the
Pf and the APf states. We obtain the Slater determinant
decomposition of a 1/2 Pfaffian state through the Jack
polynomial method 32–35, which is an efficient way to
determine the exact Slater expansion of certain FQHE
model wave functions. The APf is obtained straightfor-
wardly by PH conjugation. We construct the Pf and APf
wave functions in the up-spin sector at ν = 3/2 by com-
bining a fully filled LLL and forming the Pf/APf state
in the second LL. Further multiplication by the ν = 1
state with down spin produces the Pf/APf trial states at
ν = 5/2. We consider below both the fully spin polarized

state at ν = 3/2 and the partially spin polarized state at
ν = 5/2.

To characterize the LL mixing, we use the parame-
ter κ = ~ωc/(e2/εl), namely the ratio of the cyclotron
energy to the Coulomb energy. Fig. 1 (a) shows the en-
ergies for Pfaffian and anti-Pfaffian states at ν = 5/2 in
an ideal 2D system (with width w = 0). The energies
of the Pf and the APf states show a significant decrease
due to LL mixing, dropping by more than 30% as κ in-
creases from 0 to 5. Fig. 1 (b) shows the energies for
fully polarized (FP) states at ν = 3/2 for both w = 0
and for quantum wells with nonzero width. For a quan-
tum well (QW), we have used an effective 2D interaction
based on the realistic charge distribution in the perpen-
dicular direction (using the same method as in Ref. 29;
see references therein for further details). The energies at
finite width increase with increasing κ, which may seem
counter-intuitive but is an effect of finite width which
depends on the density; the effective interaction softens
with increasing density, and κ is reversely related to areal
density ρ as κ ≈ 1.28

√
ν/(ρ/1011cm−2). In all cases, the

Pfaffian and anti-Pfaffian states behave indistinguishably
with LL mixing within our numerical uncertainty. As an
interesting aside, we note that the inclusion of the spin-
down LL substantially increases the correction due to LL
mixing, as can be seen by comparing the w = 0 energies
in the two panels of Fig. 1.

As another test of PH symmetry breaking, we consider
the excitation gaps of FQH states at filling factors ν and
1−ν; these should be equal in units of e2/εl when LL mix-
ing is absent. The excitation gap measured in transport
experiments (as the activation energy deduced from the
Arrhenius behavior of the longitudinal resistance) corre-
sponds to the energy required to create a far-separated
CF-particle-CF-quasihole pair. We directly use the wave
function of the CF-exciton at large wave vector limit as
trial wave function to perform DMC calculation. Fig. 2
shows that the gaps for ν = 1/3 and 2/3 are reduced by
up to 25% due to LL mixing as κ is changed from 0 to 5.
However, the two gaps remain indistinguishable within
numerical uncertainty, indicating that the PH symmetry
is preserved, to a good approximation, with LL mixing.

III. MF APPROXIMATION FOR THE 3-BODY
INTERACTION

As mentioned above, when the Hamiltonian is pro-
jected into a given LL, the effect of LL mixing manifests
through correction to the 2-body interaction and appear-
ance of 3- and higher body interaction terms. The lat-
ter are responsible for breaking the PH symmetry. We
now ask how efficient the 3-body interaction is in break-
ing the PH symmetry. In particular, we will consider a
MF approximation for a 3-body interaction wherein it
is mapped into a 2-body interaction. If this approxima-
tion is accurate, we can conclude that the generic 3-body
interaction preserves PH symmetry to a good approxima-
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FIG. 1. (a) The DMC energies for Pfaffian and anti-Pfaffian
states at ν = 5/2 as a function of κ for ideal 2D system
(w = 0), obtained from extrapolation from systems with up
to 32 and 30 particles, respectively. (b) The energies for spin
polarized (SP) states at ν = 3/2 for w = 0 and quantum wells
of width w = 30nm and 50nm (obtained from extrapolation of
energies of up to 20 and 18 particles). All energies shown are
obtained by extrapolating finite-system results to thermody-
namic limit with the error bars indicating the extrapolation
errors.
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FIG. 2. The energy gaps of 1/3 and 2/3 states as a function
of κ for different filling factors for w = 0 (solid symbols) and
heterojunction (HJ - empty symbols). These are thermody-
namic extrapolations from gaps of systems with up to 32 and
20 particles. Solid and dashed lines are a guide to the eye.

tion. We shall assume a fully spin polarized state below.
In order to study the bulk physics of the many electron

systems, we will use the spherical geometry, wherein the
electrons move on the surface of a sphere exposed to 2Q
magnetic flux quanta (where a flux quantum is φ0 =
hc/e). Here a general 3-body interaction can be written
as

V(3) =
1

3!3!

∑
{qi;ki}

V
(3)
q1,q2,q3;k1,k2,k3

c†q3c
†
q2c
†
q1ck1ck2ck3 (1)

where the indices qi, ki correspond to the Lz quantum
numbers of the electrons each of which has a total orbital
angular momentum Q, equal to half the number of flux
quanta passing through the surface of the sphere. For a
rotationally symmetric system, the matrix elements Vqi;ki
can be expanded in terms of the projectors P

(3)
l into the

angular momentum l subspace of three electrons.

V(3) =

2Q∑
l=3

V
(3)
l P

(3)
3Q−l (2)

where the 3-body Haldane pseudopotential36,37 V
(3)
l is

the energy of three electrons in the state with total an-
gular momentum 3Q − l. (There can be several inde-
pendent states with the same l, lz quantum numbers for
l > 5, but we will not consider those in the present arti-
cle.) In what follows, we will consider the 3-body model

with V
(3)
3 ≡ A, V

(3)
5 ≡ B, and V

(3)
l ≡ 0 for l > 5. (Note

that there are no states with l = 0, 1, 2 and 4.)
We propose to approximate this 3-body interaction by

a simpler 2-body Hamiltonian in which we replace one
factor c†q1ck1 with its ground state expectation values.
Since we are primarily interested in exploring homoge-
neous, rotationally symmetric ground states, these ex-
pectation values take the form

〈
c†q1ck1

〉
= ν δq1,k1 . This

approximation is similar to the usual mean field approx-
imation wherein an operator with a finite expectation

value (c†jcj here) is replaced by its mean value thereby re-
ducing a two body interaction to a one body term. When
applied to the 3-body interaction studied here, the mean
field approximation results in a 2-body interaction of the
form:

V(2) =
1

2!2!

∑
q1,q2;k1,k2

Vq1,q2;k1;k2c
†
q1c
†
q2ck1ck2 (3)

where the matrix elements are given by the partial trace
of the 3-body interaction Hamiltonian

Vq1,q2;k1;k2 = ν

Q∑
l=−Q

〈q1, q2, l| V(3) |k1, k2, l〉 . (4)

It can be checked numerically that this results in a rota-
tionally symmetric Hamiltonian whose 2-body pseudopo-
tentials Vl can be obtained by diagonalizing V(2) for a two
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FIG. 3. (left): Pseudopotentials of the MF approximation to
the 3-body interaction for the case where only the first two
3-body pseudopotentials (A,B) are non-zero. (right): Ra-
tio (V1 − V3)/(V3 − V5) as a function of B/A. The dotted
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trapolating Vl as a function of 1/Q, and they coincide with
the pseudopotentials in the flat geometry.

particle system to get:

V(2) =

2Q−1∑
l=2

VlP
(2)
2Q−l (5)

Figure 3 (left panels) show the 2-body MF pseudopo-
tentials for A = 1 and B ≥ 0. Only the pseudopoten-
tials in the l = 1, 3 and 5 channels are non-zero and
Vl=5 increases from 0 with increase in B. (The 2-body
pseudopotentials for even l are not relevant for fully spin
polarized states.)

Note that the pseudopotentials of the MF Hamiltonian
depend on Q. As the radius of the sphere scales with Q,
in the limit of Q → ∞, the interactions described on
a sphere approach that of a flat geometry. As shown
in the Appendix A, in the disk geometry, we find V1 =
3.375Aν + 2.53125Bν, V3 = 1.125Aν + 0.5625Bν, and
V5 = 1.40625Bν, which give precisely the 2Q→∞ limits
of the MF pseudopotentials on the sphere. The mean
field approximation to the three body interaction in the
disc geometry at A = 1, B = 0 gives V1/V3 = 3, V5 = 0.
This interaction is identical to the one that was obtained
by particle-hole symmetrizing the A = 1, B = 0 three
body interaction in Ref [42]. In what follows, we will
consider the finite 2Q pseudopotentials of the spherical
geometry.

One may ask when the 3-body interaction most resem-
bles the 2-body Coulomb interaction. For this purpose,
it is convenient to define the ratio (V1 − V3)/(V3 − V5);
this ratio is an appropriate characterization of the short

range behavior of a given 2-body interaction because the
eigenstates are invariant under a change of scale as well as
an addition of a constant to all Vl. For the ideal Coulomb
interaction in the LLL, this ratio is 2.67. This ratio for
the MF interaction is shown in the right panel of Fig. 3.
We see that the MF approximation on the 3-body in-
teraction given by (A,B) = (1, 0.18) best represents the
Coulomb interaction. Because one expects the standard
CF physics for 2-body interactions that are Coulomb like
or more repulsive, we expect that, provided that the MF
approximation is valid, the CF physics should occur for
a pure 3-body interaction for B/A ' 0.18.

IV. TESTING THE MF THEORY

We now compare the eigenspectra and eigenstates of
the MF Hamiltonian and the 3-body interaction at sev-
eral specific flux values. For our 3-body interaction
model, the Pfaffian state at ν = 1/2 is the exact zero
energy ground state for B = 038 and the gaffnian state
at ν = 2/5 is the exact ground state when both A and
B are non-zero39. The spectrum of these interactions for
ν < 1/2 and ν < 2/5, respectively, contains a very large
number of zero-energy eigenstates. Therefore, we will
consider only ν > 2/5, because for filling factor ν ≤ 2/5,
it would be necessary to switch on further 3-body pseu-
dopotentials to model a generic 3-body interaction.

We first consider the 3-body interaction (A,B) =
(1, 0). The 3-body spectrum in Fig. 4a contains the Pfaf-
fian as the exact zero energy state and a collective mode
of neutral excitations40? . The corresponding 2-body
MF interaction reproduces a remarkably similar spec-
trum, with (i) a ground state with a high overlap with
the Pfaffian; (ii) a neutral mode with the same count-
ing and dispersion; and (iii) gaps accurate up to a factor
of 1.5. Removal of a single flux from this system pro-
duces two quasiparticles of the Pfaffian (Fig. 4(c)); the
MF approximation again nicely reproduces the structure,
and its eigenstates have high overlaps with those of the
(A.B) = (1, 0) model. For 2Q = 2N − 3 with an odd N ,
the 3-body interaction spectrum contains a topological
exciton40? (also called a neutral fermion), which is also
closely reproduced by the MF interaction (Fig. 4d). Fi-
nally, the state 2Q = 2N−2 has two quasiholes that form
a band of exact zero energy states, as seen in Fig. 4(c).
As noted above, the 3-body interaction with B = 0 is
non-generic here in that it produces zero energy states,
but still the MF Hamiltonian produces a low energy band
with states at the same quantum numbers.

Fig. 5 shows a similar comparison for (A,B) = (1, 0.4).
The low energy spectra are qualitatively different from
those in Fig. 4, and are similar to the spectrum of the
LLL Coulomb interaction. The counting of the low en-
ergy spectrum matches exactly with the prediction of the
composite fermion theory (see Ref19).

We stress that the MF theory produces not only ac-
curate eigenstates but also the energy scales quite well
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FIG. 4. Comparison of the spectra of the 3-body interaction
(A,B) = (1, 0) for the ν = 1/2 Pfaffian state and its exci-
tations (blue dashes) with those of the corresponding 2-body
mean-field interaction (orange dots). The numbers next to
the low energy states show the overlap between the lowest
energy states of the two interactions at the each angular mo-
menta. Panel (a), (b) and (c) show the spectra for 2Q = 25,
26 and 24 for N = 14 particles, while (d) for 2Q = 27 for
N = 15. The spectra have been shifted vertically to align the
ground states, and the MF energies have been divided by a
factor of 1.5.

without any rescaling. We find this to be the case for
B > 0 and for filling fraction away from (and greater
than) ν = 2/5, as seen in the comparisons below.

The MF Hamiltonian works well at flux values corre-
sponding to other filling fractions in the range ν > 2/5.
For example, Fig. 6 (d) shows that it successfully repro-
duces, even for B = 0, the 3-body spectra at a flux where
the ground state ν = 3/5 state occurs in the LLL. The
panel (b) of Fig-6 shows the evolution of the 3-body and
the MF spectra as a function of B for the flux correspond-
ing to the Pfaffian state. The energy scales are captured
well by the MF spectra except for small B. Similarly
panel (c) shows the evolution of the spectra for the flux
at which we find a topological exciton of the Pfaffian.
At large B, the spectrum corresponds to that of three
quasiholes of the 3/5 state.

As noted above, we do not expect the MF approxima-
tion to be valid for ν < 2/5, where the (A,B) model pro-
duces zero-energy non-Abelian quasiholes of the Gaffnian
2/5 state, the physics of which can obviously not be cap-
tured by a 2-body interaction. The case of ν = 2/5
is interesting (Fig-6(top)). Here the 3-body interaction
produces a spectrum, at finite B, that is similar to the
spectrum at the PH conjugate filling ν = 3/5 (panels (a)
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FIG. 5. Comparison similar to that in Fig. 4 at the same
particle numbers and flux values, but for interaction param-
eters B = 0.4. The MF interaction continues to be a good
approximation to the 3-body interaction. The spectrum here
resembles that of the LLL Coulomb interaction at the corre-
sponding particle numbers and fluxes. The low energy states
here can be identified with particle hole conjugate of com-
posite fermion states with (a) two quasiparticles of 2/5, (b)
two quasiholes of 3/7, (c) single quasihole of 2/5 and (d) three
quasiparticles of 2/5. The spectra have been shifted vertically
to align the ground states, but without any rescaling of the
energies.

and (d) of Fig-6), but with a much smaller gap. The MF
approximation, being PH symmetric, produces exactly
the same spectrum as at 3/5, but with the energy scale
reduced by a factor of 2/3 due to the factor of ν in the
pseudopotential. The energies of the neutral excitations
in the 2-body MF spectra are nonetheless much larger
than those in the 3-body spectra. We believe this is a
consequence of the fact that the 2-body interaction does
not contain the physics of zero energy quasiholes of the
3-body interaction.

V. DISCUSSION

Success of the MF theory gives insight into why the
3-body interaction produces the standard CF physics at
nonzero B. For a range of parameters, the 3-body inter-
action corresponds to a MF interaction that has a suffi-
ciently strong short range repulsion. As known from pre-
vious studies, 2-body interactions with sufficiently strong
short-range repulsion produce composite fermions carry-
ing two vortices. This explains why the 3-body inter-
action produces, except for very small B, the standard
CF-Fermi sea like spectrum at ν = 1/2 (Fig. 5), and the
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is increased. Blue dashes show the spectra for the 3-body
interaction while the orange dots show the spectra for the
2-body mean field interaction. Energies have been shifted
vertically to set the ground states at zero energy. Energy has
been rescaled by a B dependent factor for alignment in the
case of 2/5 but not in the others. The three body spectrum
at ν = 2/5, B = 0 (a) contains a large number of zero energy
states as a result of which the spectrum appears like a single
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standard lowest-LL state at ν = 3/5 (Fig. 6) and other
filling factors19.

These considerations clarify why the 3-body interac-

tion produces eigenstates that are very close to being
PH symmetric. The main point is that the not all of a
given 3-body interaction breaks PH symmetry. It is only
the difference between the 3-body and the corresponding
2-body MF interaction that breaks PH symmetry. The
fact that the 2-body MF interaction produces eigenstates
and eigenenergies that are very close to eigenstates and
eigenenergies of the 3-body interaction indicates that the
difference is small.

Furthermore, we find that the MF interaction repre-
sents a better approximation when the 3-body interac-
tion is long ranged, for example, when B is nonzero. LL
mixing is expected generically to produce a 3-body inter-

action for which V
(3)
l are all nonzero and decay mono-

tonically with l. We expect that such an interaction is
well represented by the 2-body MF interaction, and thus
only weakly breaks PH symmetry. This explains why our
fixed phase DMC calculations are not able discriminate
between the Pf and the APf states, or why experiments
do not see a clear signature of breaking of PH symmetry
even when the LL mixing parameter κ is very large.
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Appendix A: MF approximation in the disk
geometry

The generalized rotationally symmetric 3-body inter-
action in the disk geometry is such that there is a finite
energy cost Vl for any three particles to be in a relative
angular momentum state l (for fermions l = 3, 5 . . . ).
Thus the Hamiltonian has the form

V(3) =

∞∑
l=0

V
(3)
l P

(3)
l (A1)

The P
(3)
l is a projector on to the relative angular mo-

mentum l subspace of three particles and V
(3)
l are the

pseudopotentials.
The relative angular momentum subspaces are highly

degenerate, with different degenerate states further la-
belled by the center of mass angular momentum of three
particles T = 0, 1, . . .∞. For l > 5 there are multiple
states with same (l, T ) which calls for an additional la-
bel. This will not concern us in this work as we shall
consider only those interactions for which V

(3)
l = 0 for



7

l > 5. Thus for our purposes

V(3) = A

∞∑
T=0

|l = 3, T 〉 〈l = 3, T |+

B

∞∑
T=0

|l = 5, T 〉 〈l = 5, T | (A2)

where the pseudopotentials A = V
(3)
3 and B = V

(3)
5 pa-

rameterize the interactions.
In terms of the single particle angular momentum

states, the interaction can be written as follows:

V(3) =
∑
p,q

|p〉V (3)
p,q 〈q| (A3)

where

V (3)
p,q =

∞∑
T=0

Aψ̄l=3,T
p ψl=3,T

q +Bψ̄l=5,T
p ψl=5,T

q (A4)

where |p〉 = |p1, p2, p3〉 is the Slater determinant state
of three fermions angular momenta p1, p2 and p3, (p1 <
p2 < p3). ψl,Tp represents the coefficients in the expansion

|l, T 〉 =
∑
p

ψl,Tp |p〉 (A5)

Normalized states ψl,Tp can be obtained using exact di-
agonalization of a 2-body interaction with rotation and
translation symmetry such as the Coulomb interaction in
the space of three particles with total angular momentum
l + T .

The interaction in the many particle system is given
by

V(3) =

∞∑
pi,qi=0

c†p3c
†
p2c
†
p1

V
(3)
p,q

3!3!
cq1cq2cq3 (A6)

where V
(3)
p,q is taken to be antisymmetric within the pi

and qi indices. The MF approximation involves substi-

tuting c†i cj → νδij for one pair of operators in the above

expression. This gives

V(2) =
∑
pi,qi

c†p2c
†
p1

V
(2)
p1,p2;q1,q2

2!2!
cq1cq2 (A7)

where V (2) is given by the partial trace over one pair of
indices

V (2)
p1,p2;q1,q2 = ν

∞∑
p3,q3=0

δp3q3V
(3)
p,q (A8)

The pseudopotentials V
(2)
l of the MF Hamiltonian Eq

(A7) can now be calculated by diagonalizing a system of
two fermions in this interaction.

The MF approximation that maps V(3) to V(2) is lin-

ear. As a result the MF pseudopotentials V
(2)
l (A,B)

corresponding to the interaction V (3)(A,B) are simply

the linear combination AV
(2)
l (1, 0) + BV

(2)
l (0, 1) where

V
(2)
l (1, 0) and V

(2)
l (0, 1) are given in the accompanying

table.

A = 1, B = 0 A = 0, B = 1

V 1 3.375ν 2.53125ν

V 3 1.125ν 0.5625ν

V 5 0 1.40625ν

Disc geometry can be pictured as Q → ∞ limit of
the spherical geometry wherein the relative and center of
mass angular momentum quantum numbers correspond
to the L2 and Lz quantum numbers in the spherical ge-
ometry. We indeed find that the MF pseudopotentials
obtained in the large Q limit (by extrapolation of the
pseudopotentials calculated at finite Q) on the sphere
match the ones for the disk geometry.
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