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For a generic lattice Hamiltonian of the electron states in Weyl materials, we calculate analyti-
cally the chiral (or, equivalently, valley) charge and current densities in the first order in background
electromagnetic and strain-induced pseudoelectromagnetic fields. We find that the chiral response
induced by the pseudoelectromagnetic fields is not topologically protected. Although our calcula-
tions reproduce qualitatively the anomalous chiral Hall effect, the actual result for the conductivity
depends on the definition of the chirality as well as on the parameters of the lattice model. In addi-
tion, while for the well-separated Fermi surfaces surrounding the individual Weyl nodes the current
induced by the magnetic field coincides almost exactly with the current of the chiral separation
effect, there are clear deviations when the Fermi surfaces undergo the Lifshitz transition. Moreover,
we found that all chiral response coefficients vanish at large chemical potential.

I. INTRODUCTION

The study of Weyl semimetals [1–9], where quasiparticles are described by the relativistic-like Weyl equations in
the vicinity of Weyl nodes, has attracted a lot of attention in recent years. Note that while the Standard Model of
elementary particles has particles (neutrinos) of only one chirality, this is impossible in lattice models. Indeed, as
was proved by Nielsen and Ninomiya [10], particle species in the lattice models must always come in pairs of opposite
chirality. This theorem is directly relevant for the low-energy spectrum of Weyl materials characterized by the Weyl
nodes separated in the momentum space b and/or energy b0 [1–9]. This separation makes these materials qualitatively
different from the Dirac materials, in which Weyl nodes of opposite chiralities overlap [11–20].
Because of a nontrivial Berry curvature [21] associated with monopole-like sources of the topological charge at

the Weyl nodes, Weyl materials have interesting transport properties [22–33]. Among other things, they include the
anomalous quantum Hall effect [22–27] and the chiral magnetic effect [32, 33] (introduced first in the high energy
physics context in Ref. [34]), which are associated with the electric currents in background electromagnetic fields.
The corresponding currents are proportional to the momentum b and energy b0 separations between the Weyl nodes,
respectively. Note that the chiral magnetic effect is absent in the equilibrium state of Weyl materials in a magnetic
field as required by the standard notions of the solid state physics [32].
The chiral kinetic theory [35–37] is an efficient approach to study the electromagnetic response of Weyl matter,

including the effects due to the chiral anomaly [38] in background electromagnetic fields. However, the conventional
formulation [35–37] of the chiral kinetic theory has a serious limitation. It does not depend on the momentum b or
energy b0 separation between the Weyl nodes and, therefore, cannot capture all topological currents. In fact, it misses
the Bardeen-Zumino-Chern-Simons (BZCS) current [39, 40], which is critical for the accurate description of both the
chiral magnetic effect [32, 33] and the anomalous Hall effect [22–27]. In addition, the importance of the BZCS current
is clearly manifested in collective excitations in Weyl matter [41, 42]. Note that the corresponding term [43] was first
introduced in relativistic quantum field theory in order to define the consistent anomaly. In our recent paper [44],
we demonstrated that the BZCS current appears automatically in lattice models of Weyl materials and is connected
with the winding number of the mapping of a two dimensional section of the Brillouin zone onto the unit sphere.
In Refs. [39, 40] it was argued that, in addition to the BZCS terms in the electric charge and current densities,

their chiral or axial counterparts should be also accounted for. In the four-vector notation, the corresponding chiral
BZCS current is given by jν5,BZCS

= −e2ǫνραβA5
ρF

5
αβ/(12π

2
~
2c), where A5

ρ = bρ + Ã5
ρ. Here bρ = (b0,−b) and Ã5

ρ is

an axial gauge field. In Weyl materials, the latter can be induced, in general, by strains [45–51]. This was explicitly
shown using the tight-binding lattice models in Refs. [47, 48]. Static strains, in particular, could produce background
pseudomagnetic fields, B5 = ∇ ×A5. Pseudoelectric fields E5, on the other hand, could be induced by dynamical
deformations. Unlike the ordinary electromagnetic fields, the pseudoelectromagnetic ones couple to opposite chirality
quasiparticles with different sign.
In this paper, we study how the topology affects the chiral (or, equivalently, valley) charge and current densities in

Weyl materials. The first studies of the valley currents were done in Ref. [45] by using the chiral kinetic theory. By
noting that an applied magnetic field can produce a valley current, it was suggested there that the Weyl semimetals
might be good candidates for valleytronics. Notably, the majority of the previous attempts to utilize the valley
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degree of freedom were primarily focusing on 2D systems such as graphene [52–54] and the monolayer molybdenum
disulphide (MoS2) [55, 56]. In these systems, the valley Hall effect is realized by the edge state carriers moving in
opposite directions in different valleys when an in-plane electric field is applied.
To the best of our knowledge, there are no explicit calculations of the chiral current and valley polarization (chiral

charge) densities in lattice models of Weyl matter. The only lattice studies we are aware of are related to the
investigation of the chiral separation effect in a relativistic Dirac plasma [57–59]. However, it is still unknown whether
the chiral analog of the BZCS term can be derived in the lattice models and whether it enjoys the same topological
robustness as its counterpart in the electric current. These questions provide the main motivation and will be
systematically addressed in this paper.
This paper is organized as follows. We introduce in Sec. II a generic lattice model of Weyl matter and outline the

formalism that will be used to study the chiral response. In Secs. III and IV, we calculate the chiral charge and current
densities in the linear order in background magnetic and electric fields, respectively. The response to strain-induced
pseudoelectromagnetic fields in Weyl materials is studied in Sec. V. We summarize and discuss our results in Sec. VI.
Technical details of derivations are presented in several appendices at the end of the paper. Throughout the paper,
we use the units with ~ = c = 1.

II. MODEL

We consider a generic lattice model of Weyl materials defined by the following Hamiltonian [22, 32]:

Hlatt = d0 + d · σ, (1)

where σ = (σx, σy, σz) are the Pauli matrices and functions d0 and d are periodic functions of the (quasi)momentum
k = (kx, ky, kz). Their explicit form is given by

d0 = g0 + g1 cos (azkz) + g2 [cos (axkx) + cos (ayky)] , (2)

d1 = Λ sin (axkx), (3)

d2 = Λ sin (ayky), (4)

d3 = t0 + t1 cos (azkz) + t2 [cos (axkx) + cos (ayky)] , (5)

where ax, ay, and az denote the lattice spacings and parameters g0, g1, g2, Λ, t0, t1, and t2 are material dependent.
Their values are given in Appendix A. In order to simplify our analytical calculations, we will assume that the lattice
is cubic, i.e., ax = ay = az = a. The model describes two Weyl nodes separated in momentum space by ∆kz = 2bz
[see Eq. (A10)] and is symmetric with respect to the replacement kz → −kz. As in Ref. [44], here we will consider
a simplified version of model (1) with the vanishing value of d0, which preserves all topological properties of the
original model, but gets rid of the asymmetry between the valence and conduction bands (i.e., effectively enforces the
particle-hole symmetry). Note that Hamiltonian (1) can be used to investigate response in the Weyl materials, as
well as in truly relativistic Weyl matter. In the latter case, the value of Λ ∝ 1/a can be interpreted as an ultraviolet
cut-off that should be taken to infinity at the end of calculations.
Before discussing the chiral charge and current densities in the lattice model of Weyl materials induced by back-

ground electromagnetic and pseudoelectromagnetic fields, it is necessary to emphasize from the very beginning that
the concept of chirality is well-defined only for quasiparticles in the vicinity of the Weyl nodes, while its generalization
to the whole Brillouin zone is problematic. This was known for a long time in the context of the lattice models of
relativistic field theories, which were introduced by Wilson [60] as the only practical means of performing the first-
principles calculations in gauge theories such as QCD (see, e.g., Refs. [61, 62]). According to the no-go theorem of
Nielsen and Ninomiya [63], however, it is impossible to formulate a Hermitian, local, chirally symmetric theory on the
lattice without fermion species doubling. This leads to the problems for numerical lattice simulations of the chiral
gauge theories (such as the electroweak gauge theory, where the corresponding fermion representations are chiral).
Nevertheless, by making use of the Ginsparg-Kaplan equation [64] for the lattice Dirac operator, it is possible to define
a modified chiral symmetry which leaves the lattice action for massless fermions invariant. This equation quantifies
to what extent the chiral symmetry could be implemented on the lattice in relativistic quantum field theories. The
corresponding formulation is standard and used in the lattice simulations of the Standard Model fields.
In our study, we will consider two definitions of chirality. The first one is given by

χ1(k) ≡ sgn (vxvyvz) , (6)

where vi ≡ ∂ki
di is the quasiparticle velocity. This is the standard definition of chirality for systems with a linear

dispersion law, i.e., H ∼
∑3

i=1 vikiσi, albeit generalized to the entire Brillouin zone. The second definition is specific



3

for the lattice model under consideration and is connected with the reflection symmetry kz → −kz of Hamiltonian
(1), i.e.,

χ2(k) ≡ − sgn (kz) . (7)

The corresponding reflection symmetry can be identified with the existence of two valleys in model (1) and could be
also viewed as a valley symmetry. Therefore, the definition of chirality in Eq. (7) makes sense even for the states far
away from the Weyl nodes. Note, however, that it is limited only to Weyl materials with the broken time-reversal
symmetry.
For the quasiparticle states with momenta in the vicinity of the Weyl nodes, both definitions of chirality in Eqs. (6)

and (7) are completely equivalent. This will be also evident from the similarity of the matter contributions in the
chiral response at small values of the chemical potential. In general, however, the two definitions differ for the states
far from the Weyl nodes. Henceforth, in the rest of this paper, we use both definitions and compare the predictions
that follow.

III. CHIRAL CHARGE AND CURRENT DENSITIES IN A BACKGROUND MAGNETIC FIELD

In this section we derive the explicit expressions for the chiral (or valley) charge and current densities to the linear
order in a background magnetic field. We assume that the field points in the +z direction and is described by the
vector potential in the Landau gauge A = (0, xB, 0). The general expressions for the chiral charge and current
densities in the model at hand are presented in Appendix B. Note that in the present paper we limit ourselves to the
case of zero temperature T → 0.
Let us start from the chiral charge density ρ5. For the definition of the corresponding quantity in terms of the Green’s

function as well as some technical details of the derivation, see Appendix B. In order to separate the topological, i.e.,
independent of the chemical potential, and nontopological parts of ρ5, let us first consider the case of the vanishing
chemical potential µ = 0, i.e.,

ρ50 = −
e2

(2π)3

∫

d3kχ(k) (B ·Ω) , (8)

where χ(k) is a momentum dependent chirality function which is given either by Eq. (6) or Eq. (7) and we used the
following definition of the Berry curvature [65]:

Ωi =

3
∑

l,m=1

ǫilm
4

(

d̂ ·
[

(∂kl
d̂)× (∂km

d̂)
])

, (9)

with d̂ ≡ d/|d|. The Berry curvature can be also viewed as the Jacobian of the mapping of a two dimensional section
of the Brillouin zone onto the unit sphere. When integrated over the area of the cross-section (i.e., the kx-ky plane),
it counts the winding number of the mapping or the Chern number [66]

C(kz) =
1

2π

∫

dkx dky Ωz . (10)

This Chern number C(kz) depends on kz and vanishes for |kz| ≥ bz.
It is instructive to compare the result in Eq. (8) with the electric charge density obtained in Ref. [44]. The latter

is given by a similar expression, but has no chirality multiplier χ(k) in the integrand. Because of the additional
factor χ(k), the chiral charge density does not have the same topological robustness as the electric charge density.
Nevertheless, it may be convenient to define a chiral analog of the Chern number,

Cχ(kz) =
1

4π

∫

dkx dky χ(k)
(

d̂ ·
[

(∂kx
d̂)× (∂ky

d̂)
])

. (11)

In the case of the chirality defined by Eq. (7), i.e., χ(k) ≡ χ2(k), there is a simple relation between the two Chern
numbers: Cχ2

(kz) = − sgn (kz) C(kz). However, there is no simple relation between the Chern number and its chiral
analog when the other definition of chirality (6), i.e., χ(k) ≡ χ1(k), is used. This is due to the fact that χ1(k) depends
on all components of the momentum k. The numerical comparison of the two chiral analogs of the Chern number,
Cχ1

and Cχ2
, is presented in the left panel of Fig. 1. As expected, Cχ2

takes only integer values and is nonzero for
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FIG. 1. Left: The chiral analog of the Chern number Cχ(kz) as a function of kz/bz. The results are shown for the two
definitions of the chirality: χ(k) = χ1(k) (red solid line) and χ(k) = χ2(k) (dashed blue line). Right: The chiral current
density J5

z measured in units of J5

z,CSE, see Eq. (15), as a function of µ/ǫ0. The results in both panels are plotted for the
numerical values of parameters defined in Appendix A.

|kz | < bz. In view of the reflection symmetry kz → −kz of model (1), Cχ2
can be considered as a symmetry protected

topological invariant. In contrast, Cχ1
is generically noninteger and depends on the details of the model.

At nonzero chemical potential µ, the complete expression for the chiral charge density valid to the linear order in
magnetic field B reads

ρ5 = ρ50 + ρ5µ, (12)

where the additional “matter” part of the density is given by

ρ5µ = e2
∫

d3k

(2π)3
χ(k) (B ·Ω) [θ (|µ| − |d|) + |d| δ (|µ| − |d|)] . (13)

For a specific set of model parameters, it is straightforward to calculate the corresponding contribution to the charge
density using numerical methods. After the integration over k, we find that the total chiral charge density vanishes for
both definitions of χ(k). Note that the absence of the “vacuum” part ρ50 can be easily established from the asymmetry
of the chiral Chern number, i.e., Cχ(kz) = −Cχ(−kz). Therefore, no chiral charge is induced by a magnetic field.
Similarly, by making use of the results in Appendix B, we derive the following chiral current density:

J5
n = −e2B

∫

d3k

(2π)3
χ(k) sgn (µ)

(

(∂kn
d) ·

[

(∂kx
d)× (∂ky

d)
])

δ
(

µ2 − |d|2
)

. (14)

After integrating over the Brillouin zone, we find that only the longitudinal component (with respect to B) of the
chiral current density is nonzero. Its dependence on the chemical potential is shown in the right panel of Fig. 1. Note
that the horizontal axis shows the dimensionless ratio µ/ǫ0, where ǫ0 = limk→0 |d| is the height of the “dome” between
the Weyl nodes in the energy spectrum. For sufficiently small values of the chemical potential, i.e., |µ| < ǫ0, when
two separate chiral sheets of the Fermi surface are formed, the chiral current density coincides with the well-known
expression in linearized effective models

J5
CSE

= −
e2Bµ

2π2
. (15)

This is nothing else but the conventional chiral separation effect [67, 68]. The dependence of the chiral current
density changes, however, when |µ| > ǫ0. As is easy to check, the corresponding qualitative change in the behavior is
connected with a Lifshitz transition at |µ| = ǫ0. Indeed, for chemical potentials larger than ǫ0, the concept of chirality
becomes ambiguous and, as a consequence, the chiral current gets reduced compared to the value given by Eq. (15).
It is interesting to note that the results are almost the same for both definitions of the chirality. This is explained by
the fact that, due to the presence of the δ-function, current (14) for small values of µ is determined by the states in
the vicinity of Weyl nodes where χ1(k) ≃ χ2(k).
Let us briefly discuss the physical meaning of the chiral or valley current (14). In contrast to the electric current,

the chiral one is not directly observable. However, an interplay between the electric and chiral currents produces
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a new type of collective excitations known as a chiral magnetic wave [69]. In essence, the corresponding wave is a
self-sustained mode in which the chiral current induces a fluctuation of the chiral chemical potential that drives the
electric current via the chiral magnetic effect. The electric current, in turn, produces a fluctuation of the chemical
potential that closes the cycle. The induced chiral current (14) also affects the properties of chiral plasmons in a
qualitative way [41, 42]. Therefore, the detection of collective modes could provide an indirect observation of the
chiral current.

IV. RESPONSE TO A BACKGROUND ELECTRIC FIELD

In this section we study the chiral response to a background electric field. By using the Kubo’s linear response
theory, one can write the chiral charge and current densities in the form ρ5 = σ5

0mEm and J5
n = σ5

nmEm, respectively,
where the generalized direct current (DC) chiral conductivity tensor σ5

νm,tot is given by the following relation:

σ5
νm,tot = lim

Ω→0

i

Ω
T

∞
∑

l=−∞

∫

d3k

(2π)3

∫ ∫

dωdω′
tr [χ(k) jν(k)A(ω;k)jm(k)A(ω′;k)]

(iωl + µ− ω) (iωl − Ω− i0 + µ− ω′)
. (16)

In the last expression, ωl = (2l + 1)πT (with l ∈ Z) are the fermionic Matsubara frequencies, A(ω;k) is the spectral
density defined in Eq. (A12), and jν = (e, e∇kHlatt).
Performing the summation over the Matsubara frequencies and setting T = 0, we derive the following result for the

generalized chiral conductivity tensor:

σ5
0m = e2π

∫

d3k

(2π)3
χ(k)

δ2Γ(µ− |d|)− δ2Γ(µ+ |d|)

|d|
(d · ∂km

d) , (17)

σ̃5
nm = −e2

∫

d3k

(2π)3
χ(k)

(d · [(∂kn
d)× (∂km

d)])

2|d|3
[1− θ(|µ| − |d|)] , (18)

σ5
nm = 2e2π

∫

d3k

(2π)3
χ(k)

4|d|2

∑

s,s′=±

δΓ(µ− s|d|)δΓ(µ− s′|d|)

{

|d|2 [(∂kn
d) · (∂km

d)]

+ 2ss′ [(∂kn
d) · d] [(∂km

d) · d]− ss′ [(∂kn
d) · (∂km

d)] |d|2

}

, (19)

where we separated the nondissipative σ̃5
nm and dissipative σ5

nm contributions to the generalized chiral conductivity
tensor. Such a separation is unambiguously done by studying the dependence on the phenomenologically introduced
transport quasiparticle width Γ(µ). Indeed, the nondissipative (dissipative) part of the conductivity tensor is finite
(divergent) in the limit Γ(µ) → 0. In a realistic model of a Weyl material, a nonzero quasiparticle width Γ(µ) may
result, for example, from a short-range disorder. [For the key details of the derivation as well as for the definition
of δΓ(x), see Appendix B 2.] For definiteness, we assume that the quasiparticle width in the model at hand is
Γ(µ) = Γ0(1 + µ2/ǫ20), which includes a constant part Γ0 as well as a part determined by the density of states ∼ µ2

[70].
After integrating over the Brillouin zone, we find that σ5

03 is the only nontrivial component of the generalized chiral
conductivity tensor. This component describes the chiral charge density induced by the electric field. At T = 0, the
numerical dependence of σ5

03 on the chemical potential is shown in Fig. 2 for several choices of the disorder strength
Γ0. Since the results are almost the same for both definitions of chirality χ1(k) and χ2(k), we present the results only
for χ(k) = χ2(k). As is evident from the dependence of the numerical results on the disorder strength, the chiral
charge density is not topologically protected.

V. RESPONSE TO STRAIN-INDUCED PSEUDOELECTROMAGNETIC FIELDS

For completeness, in this section, we will also study the chiral response to pseudoelectromagnetic fields. This
response is directly relevant for Weyl materials where pseudomagnetic B5 and pseudoelectric E5 fields could be
induced by mechanical strains [45–51]. From the viewpoint of lattice simulations in high energy physics, this might
be also of interest in connection with the chiral analog of the BZCS term. As we mentioned in the Introduction, this
provides one of the main motivations for the present study.
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FIG. 2. The dependence of the generalized chiral conductivity σ5

03 on µ/ǫ0. The red solid, blue dashed, and green dotted lines
correspond to Γ0 = 0.1 ǫ0, Γ0 = 0.15 ǫ0, and Γ0 = 0.2 ǫ0, respectively. The results are plotted for the model parameters given
in Appendix A.

By making use of the results in Ref. [50], we will account for the effect of strains by including the following additional
terms in the lattice Hamiltonian (1):

δhstrain = Λ (u13σx + u23σy) sin (akz)− t1u33σz cos (akz) ≡ A5 · j
5, (20)

where uij = (∂iuj + ∂jui) /2 is the strain tensor and u is the displacement vector. In components, the axial gauge
potential and the operator of the strain-induced axial current density are given by

A5 =
1

ea
[u13 sin (abz), u23 sin (abz), u33 cot (abz)] (21)

and

j5 = ea

(

Λ sin (akz)

sin (abz)
σx,

Λ sin (akz)

sin (abz)
σy ,−

t1 cos (akz)

cot (abz)
σz

)

, (22)

respectively.
For example, a local pseudomagnetic field could be induced by a torsion with the displacement vector given by

u = θz[r× ẑ]/L, where θ is the torsion angle and L is the length of the crystal. Then, the associated strain-induced
pseudomagnetic field reads B5 ≡ ∇×A5 = −θ/(Lea) sin (abz)ẑ. On the other hand, a dynamical displacement with
u ∼ t gives rise to a uniform pseudoelectric field E5 = −∂tA5. Below, we briefly address both these possibilities.

A. Response to a pseudomagnetic field

In the full analogy to the case of an ordinary magnetic field, see Eqs. (B5) and (B6), the chiral charge and current
densities in the background pseudomagnetic field are given by

ρ5 =
eB5

4

∫

dωd3k

(2π)4
χ(k) tr

[

− (∂ky
G(0))j5xG

(0) +G(0)j5x(∂ky
G(0)) + (∂kx

G(0))j5yG
(0) −G(0)j5y(∂kx

G(0))

]

, (23)

J5
n =

B5

4

∫

dωd3k

(2π)4
χ(k) tr

[

− jn(∂ky
G(0))j5xG

(0) + jnG
(0)j5x(∂ky

G(0))− δn,y(∂ky
jy)G

(0)j5xG
(0) − 2irnδn,yjyG

(0)j5xG
(0)

+ jn(∂kx
G(0))j5yG

(0) − jnG
(0)j5y(∂kx

G(0)) + δn,x(∂kx
jx)G

(0)j5yG
(0) + 2irnδn,xjxG

(0)j5yG
(0)

]

, (24)

where the Green’s function G(0) is defined in Eq. (A11). After the integration over ω, the above equations lead to the
following “vacuum” and “matter” parts of the chiral charge density, respectively:

ρ50 =
e2B5aΛ

4 sin (abz)

∫

d3k

(2π)3
sin (akz)

|d|3
χ(k)

{

[

(∂ky
d)× d

]

x
− [(∂kx

d)× d]y

}

, (25)

ρ5µ = −
e2B5aΛ

4 sin (abz)

∫

d3k

(2π)3
sin (akz)

|d|3
χ(k)

{

[

(∂ky
d)× d

]

x
− [(∂kx

d)× d]y

}

[θ (|µ| − |d|) + |d|δ (|µ| − |d|)] , (26)
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as well as the following spatial components of the chiral current density:

J5
n = −

e2B5aΛ

2 sin (abz)

∫

d3k

(2π)3
sin (akz) sgn (µ) δ

(

µ2 − |d|2
)

χ(k)
{

[

(∂kn
d)× (∂ky

d)
]

x
− [(∂kn

d)× (∂kx
d)]y

}

. (27)

We found that after the integration over the Brillouin zone the chiral current density vanishes, i.e., J5 = 0.

Since the vacuum part of the chiral charge density (25) is the most interesting from the topological viewpoint, we
will analyse below only this contribution by setting µ = 0. Integrating over the Brillouin zone in Eq. (25), we find
numerically that the chiral charge density ρ50 is nonzero. This result together with J5 = 0 qualitatively agrees with
the expected response. Indeed, as we mentioned in the Introduction, the chiral counterpart of the BZCS term could
be established in the relativistic field theory by using the arguments of the consistent anomaly [39, 40] and equals
jν5,BZCS

= −e2ǫνραβA5
ρF

5
αβ/(12π

2). In a background pseudomagnetic field, the latter gives a nonzero contribution to
the chiral charge density

ρ5
BZCS

= −
e2B5bz
6π2

. (28)

An analysis of the expression in Eq. (25) reveals, however, that the actual chiral charge density in the lattice model
at hand differs from the expected BZCS result in Eq. (28). While the inability to reproduce the BZCS may seem
surprising, this might have been expected for the chirality implemented on the lattice. Moreover, since the chirality
is not well defined away from the Weyl nodes in the lattice model, one may even expect that the deviations from
the default BZCS result jν5,BZCS

depends on the actual definition of chirality. We also find that another source of the
deviations is related to the nature of the pseudoelectromagnetic fields, which are not coupled minimally in the whole
Brillouin zone.

The numerical results for the relative difference of the chiral charge densities ∆ρ5/ρ5
BZCS

= (ρ5
BZCS

− ρ50)/ρ
5
BZCS

are
plotted in Fig. 3 as a function of ǫ0. As is clear from the results presented, the deviations from the BZCS chiral charge
density are substantial and model dependent. Also, neither definition of the chirality reproduces Eq. (28) exactly. We
conclude, therefore, that the chiral BZCS term jν5,BZCS

, unlike its electric counterpart, is not topologically protected
in the lattice models of Weyl materials.

χ=χ1

χ=χ2

50 100 150

0

2

4

6

8

10

12

ϵ0[meV]

5

BZCS

5

FIG. 3. The dependence of the relative difference of the chiral charge density ∆ρ5/ρ5BZCS = (ρ5BZCS − ρ50)/ρ
5

BZCS on ǫ0 for the
two definitions of chirality: χ(k) = χ1(k) (red solid line) and χ(k) = χ2(k) (dashed blue line). The results are plotted for the
model parameters given in Appendix A and the vanishing chemical potential µ = 0.

Finally, it is instructive to discuss the physical meaning of the chiral charge density ρ5 induced by the pseudomagnetic
field. The vacuum and matter contributions given in Eqs. (25) and (26), respectively, break parity and, therefore,
effectively create an optically active medium. The value of ρ5 is the quantitative measure of the optical activity and,
thus, can be observed via polarized optical probes similar to those used in studies of transition metal dichalcogenides
[55, 56].
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B. Response to a pseudoelectric field

Similarly to the study of the response to a background electric field in Sec. IV, we derive the following formal
expression for the generalized chiral DC conductivity tensor:

σ5,5
νm,tot = lim

Ω→0

i

Ω
T

∞
∑

l=−∞

∫

d3k

(2π)3

∫ ∫

dωdω′
χ(k) tr

[

jν(k)A(ω;k)j
5
m(k)A(ω′;k)

]

(iωl + µ− ω) (iωl − Ω− i0 + µ− ω′)
(29)

which defines the response of the chiral charge and current densities to a pseudoelectric field E5. After performing
the summation over the Matsubara frequencies and setting T = 0 afterwards, we derive the following result for the
generalized chiral conductivity tensor:

σ5,5
0m = −e2π

∫

d3k

(2π)3
χ(k)

δ2Γ(µ− |d|)− δ2Γ(µ+ |d|)

|d|
dmj̃5m, (30)

σ̃5,5
nm = e

∫

d3k

(2π)3
χ(k) j̃5m [d× (∂kn

d)]m
2|d|3

[1− θ(|µ| − |d|)] , (31)

σ5,5
nm = −2e2π

∫

d3k

(2π)3
χ(k)

4|d|2

∑

s,s′=±

δΓ(µ− s|d|)δΓ(µ− s′|d|)

{

|d|2 (∂kn
dm) j̃5m

+ 2ss′ ((∂kn
d) · d) j̃5mdm − ss′(∂kn

dm)j̃5m|d|2

}

, (32)

where j̃5n =
∑3

m=1 tr
(

σnj
5
m

)

/2 and we also separated the nondissipative σ̃5,5
nm and dissipative σ5,5

nm parts of the tensor.
Our direct numerical calculations show that, unlike the response to electric field E, there are nontrivial diagonal
components of the generalized chiral conductivity tensor, σ5,5

11 = σ5,5
22 , and σ5,5

33 , as well as the off-diagonal components

σ̃5,5
12 = −σ̃5,5

21 , which describe the chiral analog of the anomalous Hall effect. The corresponding numerical results for

the diagonal components are presented in Fig. 4. The dissipative parts σ5,5
11 and σ5,5

33 are almost insensitive to the
definition of chirality, therefore, we present the results only for χ(k) = χ2(k). Further, it is important to note that

while the dependence of σ5,5
11 on µ is monotonous and demonstrates only a slight change at |µ| = ǫ0, this is not the

case for σ5,5
33 . The latter shows an upturn at |µ| ≈ ǫ0, which is clearly pronounced at small values of Γ0. We can

explain this fact by noting that the chirality χ(k) becomes ill-defined in the vicinity of the Lifshitz transition, when
the two chiral Fermi sheets or, equivalently, valleys overlap. Finally, both conductivities show the steep increase at
small values of µ.

Γ0 0.1×ϵ0

Γ0 0.15×ϵ0

Γ0 0.2×ϵ0

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

μ/ϵ0

2× σ (μ)

e
2

Γ0=0.1×ϵ0

Γ0=0.15×ϵ0

Γ0=0.2×ϵ0

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

μ/ϵ0

102× σ33 (μ)

e
2

FIG. 4. The dependence of the diagonal components of the generalized chiral conductivity tensor on the chemical potential: σ5,5

11

(left panel), and σ5,5

33
(right panel). The red solid, blue dashed, and green dotted lines correspond to Γ0 = 0.1 ǫ0, Γ0 = 0.15 ǫ0,

and Γ0 = 0.2 ǫ0, respectively. The results are plotted for the model parameters given in Appendix A.

The nondissipative part in Eq. (31) looks like a quantity of the topological origin and is comparable to the expression
of the chiral anomalous Hall effect suggested in Refs. [39, 40] in the framework of the consistent anomaly, i.e.,

σ5,AHE = −
e2bz
6π2

. (33)
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However, a closer examination reveals that even the off-diagonal component σ̃5,5
12 in Eq. (31), describing the anomalous

chiral Hall effect, is model dependent and, thus, is not fixed unambiguously by topology alone. Independent of the
details, though, it is interesting to note that the anomalous chiral Hall effect vanishes in the limit of large chemical
potential, as is evident from Eq. (31) where θ(|µ| − |d|) → 1. Of course, this result is not surprising in a lattice model
with a finite width of the energy band. Moreover, we also found that all chiral response coefficients vanish in the
limit of large µ. (This may not always appear evident from the numerical results in this study because we concentrate
primarily on the energy region near the Weyl nodes.)

The absence of topological robustness in the anomalous part σ̃5,5
12 is clear from Fig. 5, where we present the

dependence of σ̃5,5
12 /σ5,AHE on the chemical potential. The two definitions of chirality give the results that are almost

a factor of 3 different from each other, although otherwise have a qualitatively similar dependence on µ. Interestingly,
while there is only a small quantitative discrepancy between the σ̃5,5

12 at χ(k) = χ1(k) and σ5,AHE for a given set
of parameters, neither of the definitions [as well as the linearized model result (33) of Refs. [39, 40]] quantitatively
agrees with the result in Ref. [71]. In addition to the problem with the definition of chirality far from the Weyl
nodes, we attribute this difference also to the fact that strains in Weyl materials can be described in terms of
pseudoelectromagnetic fields only near the Weyl nodes. Note that the “material” part of the response, e.g., electric
current in strain-induced pseudomagnetic field studied in Ref. [44], agrees with its linearized value at small µ because
it is determined only by the states in the vicinity of the nodes.

χ=χ1

χ=χ2

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

/ϵ0

σ


(μ)

σ5,AHE

FIG. 5. The dependence of the off-diagonal component of the generalized chiral conductivity tensor σ̃5,5

12
on the chemical

potential, normalized by σ5,AHE = −e2bz/(6π
2). The results are plotted for the model parameters given in Appendix A.

VI. SUMMARY AND DISCUSSIONS

In this paper we investigated the response of the chiral (valley) charge and current densities to background electro-
magnetic and pseudoelectromagnetic fields in a lattice model of Weyl materials. By comparing the results with those
for the electric charge and current densities obtained in the same lattice model [44], our main finding is that the chiral
counterpart of the BZCS current is not topologically robust. In essence, the key to understanding the distinction
between the results for these two sets of observables lies in the profound difference between the definitions of the
exactly conserved electric charge and a less unambiguous concept of chirality on the lattice. In a common sense, the
latter is well defined only in a close vicinity of the Weyl nodes.
These conclusions are supported by the direct calculations of the chiral charge density induced by a pseudomagnetic

field as well as the anomalous chiral Hall effect in a pseudoelectric field. By studying the response to strain-induced
pseudoelectromagnetic fields, we found that the “vacuum” contributions to chiral charge and current densities (i.e.,
the contributions independent of the chemical potential and disorder) deviate considerably from those given by the
BZCS expression obtained in relativistic field theory by using the arguments of the consistent anomaly [39, 40]. Our
calculations show that the chiral charge induced by the pseudomagnetic field and the corresponding conductivity of
the anomalous chiral Hall effect in a background pseudoelectric field depend on the definition of chirality and the
parameters of the model. This is in drastic contrast to the truly topological BZCS terms of the electric charge and
current densities studied in Refs. [22–27, 32, 33, 44]. We conclude, therefore, that the chiral analogs of the BZCS
terms in Weyl materials have a very different nontopological status. We believe that the absence of the topological
protection of the chiral counterpart of the BZCS current is related also to the fact that strains can be interpreted as
pseudoelectromagnetic fields only in the vicinity of Weyl nodes. However, this does not diminish by any means the
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potential practical value of the chiral (or valley) transport in Weyl materials. Indeed, even a nontopological anomalous
chiral Hall effect could find useful applications that rely on the chirality (or valley) degrees of freedom.
We analysed also the chiral separation effect in the lattice model. As anticipated, it is reproduced nearly exactly

at small values of the chemical potential µ. At large values of µ, on the other hand, we found that the chiral current
density deviates considerably from its counterpart in the linearized model. This is easy to understand by noting that
the system undergoes a Lifshitz transition when the chemical potential is equal to ǫ0. As a result, in the regime with
|µ| > ǫ0, the Fermi surfaces for the opposite chirality Weyl quasiparticles are not even separated from each other.
Therefore, it is quite natural that the chiral current diminishes considerably for |µ| > ǫ0. As expected, we found
that in general the chiral responses vanish at large values of chemical potential |µ| ≫ ǫ0 because the Brillouin zone
becomes completely filled and quasiparticles are no longer described by the Weyl equation. We would like to note also
that the results for the chiral response in electromagnetic fields can be applied for the simulation of truly relativistic
Weyl plasma with a lattice regularization.
Finally, we would like to discuss how the chiral response in Weyl materials could be experimentally probed. Unlike

the electric current, the chiral one is not directly experimentally observable. Nevertheless, an interplay between the
electric and chiral currents produces new types of collective excitations (e.g., the chiral magnetic waves and chiral
plasmons) which can reveal indirectly the chiral response. On the other hand, a response in the form of a nonzero
chiral charge density ρ5 effectively creates an optically active medium. Thus, it can be investigated via polarized
optical probes.
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Appendix A: Model details

In this appendix we give the details of the lattice model used in the main text of the paper. The functions d0 and
d have the following dependence on the components of the momentum:

d0 = g0 + g1 cos (azkz) + g2 [cos (axkx) + cos (ayky)] , (A1)

d1 = Λ sin (axkx), (A2)

d2 = Λ sin (ayky), (A3)

d3 = t0 + t1 cos (azkz) + t2 [cos (axkx) + cos (ayky)] , (A4)

where ax, ay, and az denote the lattice spacings. As in Ref. [44], we choose the model parameters by using the
parametrization for Na3Bi [12],

t0 = M0 − t1 − 2t2, t1,2 = −
2M1,2

a2
, (A5)

g0 = C0 − g1 − 2g2, g1,2 = −
2C1,2

a2
, (A6)

Λ =
A

a
, (A7)

where

C0 = −0.06382 eV, C1 = 8.7536 eV Å
2
, C2 = −8.4008 eV Å

2
,

M0 = 0.08686 eV, M1 = −10.6424 eV Å
2
, M2 = −10.3610 eV Å

2
,

A = 2.4598 eV Å.

(A8)

Also, for simplicity, we assumed that the lattice is cubic, i.e., ax = ay = az = a ≈ 7.5 Å.
The dispersion relations of (quasi)particles described by Hamiltonian (1) are given by

ǫk = d0 ± |d|. (A9)
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By making use of Eqs. (A1)–(A4), it is straightforward to show that the lattice model has two Weyl nodes if |t0+2t2| ≤
|t1|. The corresponding chiral shift parameter bz is given by the following expression:

bz =
1

a
arccos

(

−t0 − 2t2
t1

)

. (A10)

The energy spectrum of the model is shown in Fig. 6 for several values of parameters t1. As is clear, the value of t1
affects the momentum space separation between the Weyl nodes and the value of the Fermi velocity. Note that the
energy in Fig. 6 is shown in units of ǫ0 = limk→0 |d|. This characteristic value of energy represents the height of the
“dome” between the Weyl nodes.

1×t1
2×t1
3×t1

- -
-2

-1

1

2

a /π

ϵk

ϵ

FIG. 6. The energy spectrum (A9) at d0 = 0 for several different values of t1 at kx = ky = 0.

By starting from the model Hamiltonian (1), at the zeroth order in external electromagnetic fields, it is straight-
forward to derive the Green’s function (Feynman propagator) in reciprocal space

G(0)(ω;k) =
i [ω + µ+ (d · σ)]

[ω + µ+ i0 sgn (ω)]2 − |d|2
, (A11)

where µ is the chemical potential. The corresponding spectral function is given by

A(ω;k) ≡
i

2π

[

G(0)(ω + i0;k)−G(0)(ω − i0;k)
]

µ=0
= i

∑

s=±

|d|+ s(d · σ)

2|d|
δ (ω − s|d|) , (A12)

where, in order to model phenomenologically a nonzero transport quasiparticle width Γ, we replaced the δ-function
in the last representation with the Lorentzian distribution

δΓ(ω − s|d|) ≡
1

π

Γ(ω)

(ω − s|d|)2 + Γ2(ω)
. (A13)

We will assume that the transport quasiparticle width includes a constant, as well as a frequency-dependent part
proportional to ω2 [70], i.e., Γ(ω) = Γ0(1 + ω2/ǫ20).

Appendix B: Chiral charge and current densities in background magnetic and electric fields

In this appendix we outline briefly the derivation of the chiral charge and current densities in background magnetic
and electric fields. It might be instructive to start by recalling the expressions for the electric charge and current
densities [44]

ρ = −e lim
r′→r

tr [G(r, r′)] , (B1)

J = − lim
r′→r

tr [j(−i∇r)G(r, r′)] , (B2)



12

where G(r, r′) is the (quasi)particles Green’s function, r = (t, r), r′ = (t′, r′), and the electric current density operator
in the momentum space is given by

j(k) = −e∇kHlatt. (B3)

The chiral analogs of the quantities in Eqs. (B1) and (B2) are similar, but contain an additional insertion of the
chirality operator χ(k) under the trace. In order to calculate the chiral charge and current densities in the first order
in the background electromagnetic field, we need to determine the corresponding first-order correction to the Green’s
function G(1)(r, r′), i.e.,

G(1)(r, r′) = −i

∫

dr′′G(0)(r − r′′) (A(r′′) · j(−i∇r′′))G
(0)(r′′ − r′). (B4)

By using the same approach as in Appendix C of Ref. [44], we then derive the chiral charge and current densities in
the following form:

ρ5 =
eB

2

∫

dωd3k

(2π)4
χ(k) tr

{

[

∂kx
G(0)(ω,k)

]

jy(k)G
(0)(ω,k)−G(0)(ω,k)jy(k)

[

∂kx
G(0)(ω,k)

]

}

, (B5)

J5
n =

B

2

∫

dωd3k

(2π)4
χ(k) tr

{

jn(k)
[

∂kx
G(0)(ω,k)

]

jy(k)G
(0)(ω,k)− jn(k)G

(0)(ω,k)jy(k)
[

∂kx
G(0)(ω,k)

]

+ δn,x [∂kx
jx(k)]G

(0)(ω,k)jy(k)G
(0)(ω,k) + 2irnδn,xG

(0)(ω,k)jy(k)G
(0)(ω,k)

}

. (B6)

In the derivation, we used the linear-order correction to the Green’s function in Eq. (B4), as well as the definitions
for the chiral charge and current densities analogous to those in Eqs. (B1) and (B2), but with the additional insertion
of the chirality operator χ(k) defined by either Eq. (6) or Eq. (7).
By taking into account that the definitions in Eqs. (B5) and (B6) differ from the corresponding expressions for the

electric charge and current densities in Ref. [44] only by the insertion of the chirality operator χ(k), the final results
for the chiral or valley polarization and current densities can be written down without repeating the intermediate
steps of derivation.

1. Background magnetic field

Similarly to the results in Appendix E 1 in Ref. [44], the final expression for the chiral charge density in a background
magnetic field is given by

ρ5 = eB

∫

dωdk

(2π)4
χ(k)

3
∑

i1,i2,i3=1

2iǫi1i2i3 (∂kx
di1 )

(

∂ky
di2

)

di3

[(ω + µ− ǫ0 + i0 sgn (ω))2 − d2]2
. (B7)

After the integration over ω, the result contains two parts given in Eqs. (8) and (13) in the main text.
The final expression for the chiral current density is given by

J5
n = −e2B

∫

dk

(2π)3
χ(k) sgn (µ)

3
∑

i1,i2,i3=1

ǫi1i2i3(∂kn
di1 )(∂kx

di2)(∂ky
di3)δ

(

µ2 − |d|2
)

, (B8)

where the integration over ω was already performed. Note that we also dropped several (imaginary) terms that
vanished after the integration over the Brillouin zone.

2. Background electric field

By making use of the results in Appendix E of Ref. [44], we can also write down the expression for the chiral
version of the generalized conductivity tensor. The corresponding result simply has the additional chirality insertion.
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In particular,

σ0m = e2π

∫

d3k

(2π)3

∫

dω
1

4T cosh2
(

ω−µ
2T

)

χ(k)

2|d|

∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω − s′|d|)(s + s′) (d · (∂km
d))

T→0
= e2π

∫

d3k

(2π)3
χ(k)

δ2Γ(µ− |d|)− δ2Γ(µ+ |d|)

|d|
(d · (∂km

d)) . (B9)

For spatial components of the tensor, the result can be written in the form of two contributions

σ5
nm = σ5,(1)

nm + σ5,(2)
nm , (B10)

where

σ5,(1)
nm = −e2 lim

Ω→0

1

Ω

∫

d3k

(2π)3

∫ ∫

dωdω′
nF (ω)− nF (ω

′)

ω − ω′ − Ω

1

4|d|2

∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω
′ − s′|d|)

× 2χ(k)
3

∑

i1,i2,i3=1

ǫi1i2i3(∂kn
di1)di2 (∂km

di3), (B11)

and

σ5,(2)
nm = e2π

∫

dk

(2π)3

∫

dω
χ(k)

2T cosh2
(

ω−µ
2T

)

1

4|d|

∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω
′ − s′|d|)

[

ss′|d|2 ((∂kn
d) · (∂km

d))

+

3
∑

i1,i2,i3,i4=1

(δi1i2δi3i4 − δi1i3δi2i4 + δi1i4δi2i3) (∂kn
di1)di2 (∂km

di3)di4

]

. (B12)

The first term in the chiral conductivity tensor σ
5,(1)
nm can be written in much simpler form in the clean limit Γ → 0

σ5,(1)
nm = e2

∫

dk

(2π)3
χ(k)

2|d|3
[nF (−|d|)− nF (|d|)]

3
∑

i1,i2,i3=1

ǫi1i2i3(∂kn
di1)di2(∂km

di3 ), (B13)

where the integration over ω was performed. Note that nF (ω) = 1/
[

e(ω−µ)/T + 1
]

is the Fermi-Dirac distribution.
As is easy to check, in the zero temperature limit, this reduces to the result in Eq. (18) in the main text. The result

in Eq. (19) comes from σ
5,(2)
nm in the limit T → 0 after the integration over ω is performed.
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