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Analytical slave-spin mean-field approach to orbital selective Mott insulators

Yashar Komijani1,∗, and Gabriel Kotliar1,
1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, 08854, USA

We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band
Hubbard models in presence of Hund’s coupling interaction. By analytical analysis of Hamiltonian,
we show that the locking of the two orbitals vs. orbital-selective Mott transition can be formulated
within a Landau-Ginzburg framework. By applying the slave-spin mean-field to impurity problem,
we are able to make a correspondence between impurity and lattice. We also consider the stability of
the orbital selective Mott phase to the hybridization between the orbitals and study the limitations
of the slave-spin method for treating inter-orbital tunnellings in the case of multi-orbital Bethe
lattices with particle-hole symmetry.

I. INTRODUCTION

Iron-based superconductors are the subject of in-
tensive study in the pursuit of high-temperature
superconductivity1–7 . These systems are interacting via
Coulomb repulsion and Hund’s rule coupling and they
require the consideration of multiple bands with crystal
field and inter-orbital tunnelling8,9. Early DMFT stud-
ies, pointed out the importance of the corrlations10 and
Hund’s rule coupling11, and reported a noticeable ten-
dency towards orbital differentiation, with the dxy orbital
more localized than the rest12. They also demonstrated
orbital-spin separation13–15. Note that the orbital differ-
entiations has been recently observed in experiments16.

Another perspective on the electron correlations in
these materials is that the combination of Hubbard in-
teraction and Hunds coupling place them in proximity
to a Mott insulator17 and, correspondingly, the role of
the orbital physics is provided by the orbital selective
Mott picture18,19. Ref.18 demonstrated an orbital selec-
tive Mott phase in the multi-orbital Hubbard models for
such materials, in the presence of the inter-orbital kinetic
tunneling. In such a phase, the wavefunction renormal-
ization for some of the orbitals vanishes. Such a phase
has been observed in angle-resolved photo-emission spec-
troscopy (ARPES) experiments20,21. Although desirable,
these effects have not been understood analytically in the
past, partly due to the fact that an analytical study is
difficult for realistic models. However, there are sim-
pler models, capable of capturing part of the relevant
physics, which are amenable to such analytical under-
standing, and this is what we study in this paper.

The mean-field approaches to study these problems
rely on various parton constructions or slave-particle
techniques. The latter include slave-bosons22,23, Kotliar-
Ruckenstein four-boson method24 and its rotationally in-
variant version25, slave-rotor26, Z2 slave-spin27–30 and its
U(1) version18,31, slave spin-1 method32 and the Z2 mod-
2 slave-spin method33,34. For a comparison of some of
these methods see Appendix A. While these methods are
all equivalent in the sense that they are exact represen-
tation of the partition function if the degrees of freedom
are taken into account exactly, different approximation
schemes required for analytical tractability, lead to dif-

ferent final results and therefore they have to be tested
against an unbiased method like the dynamical mean-
field theory (DMFT)36–44 in large dimensions or density
function renormalization group (DMRG)45 in one dimen-
sion.

We use the Z2 slave-spin27–30 in the following to study
the orbital selectivity with and without Hund’s coupling.
We briefly go through the method for the sake of com-
pleteness and setting the notations. By studying the free
energy analytically we show that close to the Mott tran-
sition the Hamiltonian can be described by a two-level
syystem and develop a Landau-Ginzburg theory for the
orbital selectivity. A Landau-like picture has been useful
in understanding the Mott transition in infinite dimen-
sions. Using a Landau-Ginzburg approach, we show how
the interaction in the slave-spin sector tend to lock the
two bands together in absence of Hund’s coupling and
that the Hund’s coupling promotes orbital selectivity. We
also apply the method to an impurity problem (finite-
U Anderson impurity) and its use as an impurity show
that the slave-spin mean-field result can be understood
as the DMFT solution with an slave-spin impurity solver.
This puts the method in perspective by showing that the
mean-field result is a subset of DMFT. Additionally, we
study the effect on the orbital selective Mott phase pro-
duced by inter-orbital kinetic tunnelling and point out to
some of the limitations of the slave-spin for treating such
inter-orbital tunnelling in particle-hole symmetric Bethe
lattices. Finally, we study study the instability of the
orbital selective Mott phase by including hybridization
between the two orbitals.

A. Z2 Slave-spin method

We consider the Hamiltonian H = H0 +Hint, where

H0 =
∑
〈ij〉αβ

tαβij d
†
iαdjβ (1)

We must demand tαβij = [tβαji ]∗ for this Hamiltonian
to be Hermitian. Unless mentioned explicitly, α is a
super-index that contains both spin and orbital degrees
of freedom. We replace the d-fermions with the parton
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construction27

d†iα = ẑiαf
†
iα, ẑiα = τxiα. (2)

τµiα, µ = x, y, z are SU(2) Pauli matrices acting on an
slave-spin subspace per site/spin/flavour, that is intro-
duced to capture the occupancy of the levels. Slave-spin
states |⇑iα〉 and |⇓iα〉 correspond to occupied/unoccupied
states of orbital/spin α at site i, respectively. Away from
half-filling,28 has shown that τxiα has to be replaced with
τ+iα/2 + cατ

−
iα/2 where c is a gauge degree of freedom

and is determined to give the correct non-interacting re-
sult. Here, for simplicity we assume p− h (particle-hole)
symmetry and thus maintain the form of Eq. (2). Note
that this parton construction has a Z2 gauge degree of
freedom τx,y → −τx,y and f → −f , thus the name Z2

slave-spin. The representation (2) increases the size of
the Hilbert space. Therefore, the constraint

2f†iαfiα = τziα + 1, (3)

is imposed to remove the redundancy and restrict the
evolution to the physical subspace. Using Eqs. (2,3) it
can be shown that the standard anti-commutation rela-
tions of d-electron are preserved.

Plugging Eq. (2) in H0, and imposing the constraint
(on average) via a Lagrange multiplier, we have

H0 =
∑
〈ij〉αβ

tαβij f
†
iαfjβ ẑ

†
iαẑjβ − λiα[f†iαfiα − (τziα + 1)/2]

On a mean-field level, the transverse Ising model of slave-
spins can be decoupled from fermions. The decoupling is
harmless in large dimensions 46 as the leading operator in-
troduced by integrating over the fermions becomes irrel-
evant at the critical point of the transverse Ising model.
Therefore, writing H0 ≈ Hf +H0S , we have

H0S =
∑
〈ij〉αβ

J αβij
[
ẑ†iαẑjβ −Q

αβ
ij

]
+
∑
α

λiατ
z
iα/2,

Hf =
∑
〈ij〉αβ

t̃αβij f
†
iαfjβ − λiα(f†iαfiα − 1/2) (4)

where t̃αβij = tαβij Q
αβ
ij with Qαβij = 〈ẑ†iαẑjβ〉 the renormal-

ized tunnelling and J αβij = tαβij 〈f
†
iαfjβ〉 an Ising coupling

between slave-spins. The advantage of the parton con-
struction (2) is that the interaction Hint{τ} can be often
written only in terms of the slave-spin variables, so that
H = Hf +HS and HS = H0S +Hint.

Particle-hole symmetry - p−h symmetry on the orig-
inal Hamiltonian is defined as (n is a site index)

dnα → (−1)nd†nα, d†nα → (−1)ndnα (5)

On a bipartite lattice, the nearest neighbor tunnelling
term preserves p−h symmetry, even in presence of inter-
orbital tunnelling. So, if the system is at half-filling the
Hamitonian is invariant under p− h symmetry. We have

to decide what p − h symmetry does to our slave-spin
fields. We choose

fnα → (−1)nf†nα, τxnα → τxnα, τznα → −τznα (6)

So, we see that if the original Hamiltonian had p − h
symmetry, we necessarily have λiα = 0.

Single-site approximation - The Hamiltonian HS is a
multi-flavour transverse Ising model which is non-trivial
in general. Following27–34 we do a further single-site
mean-field for the Ising model, exact in the limit of large
dimensions:

ẑ†iαẑjβ ≈ 〈ẑ
†
iα〉ẑ

†
jβ + ẑ†iα 〈ẑjβ〉 − 〈ẑ

†
iα〉 〈ẑjβ〉 , (7)

The last term together with the second term of Eq. (8)

contributes a −2
∑
〈ij〉αβ J

αβ
ij Qαβij . We define ziα = 〈ẑiα〉

and Ziα = |ziα|2 as the wavefunction renormalization of
orbital α at site i. The slave-spin Hamiltonian becomes

(using the symmetry of J αβij )

H0S =
∑
iα

(h∗iαẑiα + h.c.), hiα =
∑
jβ

J αβij zjβ (8)

In translationally invariant cases hiα and ziα become in-

dependent of the site index and J αβij depends on the dis-
tance between sites i and j. Therefore, we can simply
write hα =

∑
β Jαβzβ where

Jαβ ≡
∑
(i−j)

J αβ(i−j) =
∑
j

tαβij

〈
f†iαfjβ

〉
.

In absence of inter-orbital tunnelling, J is a diagonal ma-
trix, corresponding to individual orbitals, where for each

orbital Jα =
∫Dα
−Dα dερα(ε)f(ε)ε is the average kinetic en-

ergy and depends only on bare parameters, unaffected
by the renormalization factor z. For semicircular band
(Bethe lattice), J = −0.2122D, while for a 1D tight-
binding model J1D = −0.318D with D = 2t. Since the
operator ẑα = τxα is Hermitian, we can write the slave-
spin Hamiltonian (for each site) as47

HS =
∑
α

aατ
x
α +Hint (9)

where aα = 2
∑
β Jαβzβ (at half-filling). The only non-

trivial part of computation is the diagonalization of HS .
This is a 4M dimensional matrix where M is the number
of orbitals. The free energy (per site) is

F = − 1

β

∑
nk

Tr log[−G−1f (k, iωn)]− 2
∑
n

Jαβz∗αzβ

− 1

β
log
{

Tr
[
e−βHS

]}
. (10)

Here β = 1/T is the inverse temperature and the second
part comes from two constants introduced in Eqs. (4) and

(7). At zero temperature, the first term is just Jαβz∗αzβ
and the last term is ES which depends on z via a. Hence,

F = −
∑
αβ

Jαβz∗αzβ + ES({a}). (11)
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II. ONE-BAND MODEL

In the one-band case the interaction is Hint =
U
∑
i ñi↑ñi↓ where ñiσ ≡ niσ − 1/2. Representing the

latter with τziσ/2 and using translational symmetry we
obtain Hint → (U/4)τz↑ τ

z
↓ . Since we are in the para-

magnetic phase (a↑ = a↓), only sum of the two spins

2~T = ~τ↑+~τ↓ enter (the singlet decouples) and the Hamil-

tonain can be written as HS = 2aT x + U
2 (T z)2 − U/4,

creating a connection to the spin-1 representation of32.
Furthermore, we can form even and odd linear combina-
tions of the empty and filled states and at the half-filling,
only the even linear super-positions enters the the Hamil-
tonian. Thus, choosing atomic states of HS as

|ψ±0〉 =
|⇑〉 ± |⇓〉√

2
, |ψ±1〉 =

|⇑⇓〉 ± |O〉√
2

(12)

with E±0 = −U/4 and E±1 = U/4, the Hamiltonian
can be written as HS = 2aτx + (U/4)τz where ~τ are
Pauli matrices acting between |ψ+0〉 and |ψ+1〉, i.e. it
reduces to the Z2 mod-2 slave-spin method33,34. In writ-
ing the states in Eq. (12) we have used a short-hand
notation (also used in the next section) |⇑↑⇓↓〉 → |⇑〉
and |⇓↑⇑↓〉 → |⇓〉, |⇑↑⇑↓〉 → |⇑⇓〉 and so on. The in-
set of Fig. (1b) shows a diagrammatic representation of
the slave-spin Hamiltonian and two states decouple. The
ground state of HS is that of a two-level system

ES = −U
4

√
1 + (4α/U)2 (13)

with the level-repulsion α = 2a and the zero-temperature
(free) energy is given by [factor of 2s due to spin]

F = 2s |J | z2 + ES(z) (14)

The free energy is plotted in Fig. (1a) and it shows a
second-order phase transition as U is varied. Close to
the the transition α → 0, we can approximate ES ≈
−2α2/U + 8α4/U3. Writing the first term of the free en-
ergy as +α2/8 |J |, we can read off the critical interaction
UC = 16 |J |. Minimization of the free energy gives the
Gutzwiller projecion fomrula of Brinkman and Rice48

Z =

{
1− u2 u < 1
0 u > 1

(15)

with u = U/UC and is plotted in Fig. (1b). At finite
temperature this procedure gives a first order transition
terminating at a critical point 34.

Spectral function - The Green’s functions of the d-
fermions Gd(τ) ≡

〈
−Tdσ(τ)d†σ(0)

〉
factorizes

Gd,σ(τ) ≈
〈
−Tfσ(τ)f†σ(0)

〉
〈Tττxσ (τ)τxσ (0)〉 (16)

to the product of f -electron Green’s function and the
slave-spin susceptibility and thus the spectral function is
obtained from a convolution with the slave-spin function

FIG. 1: (color online) (a) Free energy (at T = 0) as a
function of z showing a second-order phase transition as
U/UC is varied. (b) Wavefunction renormalization

Z = |z|2 as a function of U has the Brinkman-Rice
form. Inset: Diagrammatic representation of the
slave-spin Hamiltonian. Each dot denotes on atomic
state. Two states decouple and HS is equivalent to that
of Z2 mod-2 slave-spin.

Ad(ω) = Af (ω) ∗ AS(ω), in which Af is a semicircular
density of states with the width Z and within single-site
approximation AS is

AS(ω) = Zδ(ω) +
1− Z

2
[δ(ω+ 2ES) + δ(ω−2ES)] (17)

The spectral density has the correct sum-rule (in con-
trast to the usual slave-bosons22,23) since the commu-
tation relations of the slave-spins are preserved. How-
ever, the single-site approximation does not capture in-
coherent processes, and this reflects in sharp Hubbard
peaks in the Mott phase (Z = 0) where Af = δ(ω).
Also, the spatial independence of the self-energy im-
plies that the inverse effective-mass of “spinons” m/m̃ =
Z[1 + (m/kF )∂kΣ] is zero in the Mott phase. This is
again an artifact of the single-site approximation. Both
of these problems are remedied, e.g. by doing a cluster
mean-field calculation28,33 or including quantum fluctu-
ations around the mean-field value within a spin-wave
approximation to the slave-spins 33.

The fact that (beyond single-site approximation)
spinons disperse in spite of 〈τx〉 → 0 and they carry
a U(1) charge as seen by Eq. (2), implies that vanishing
of 〈τx〉 does not generally correspond to the Mott phase
in finite dimensions. However, in large dimensions, this
is correct34 and that is what we refer to in the following.

III. TWO-BAND MODEL

In absence of inter-orbital tunnellings, the free-energy
is

F = a21/2 |J1|+ a22/2 |J2|+ ES(a1, a2) (18)
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where ES is the ground state of the slave-spin Hamilto-
nian. For two bands we have the interaction

Hint = U(ñ1↑ñ1↓ + ñ2↑ñ2↓)

+ U ′(ñ1↑ñ2↓ + ñ1↓ñ2↑)

+ (U ′ − J)(ñ1↑ñ2↑ + ñ1↓ñ2↓) +HXP (19)

where ñα ≡ nfα − 1/2 = τzα/2. The spin-flip and pair-
tunnelling terms are

HXP = −JX [d†1↑d1↓d
†
2↓d2↑ + d†1↓d1↑d

†
2↑d2↓]

+JP [d†1↑d
†
1↓d2↓d2↑ + d†2↑d

†
2↓d1↓d1↑]. (20)

This term mixes the Hilbert space of f -electron with that
of slave-spins. Following27–29 we include this term ap-
proximately by d†ασ → τ+ασ and dασ → τ−ασ substitution so
that it acts only in the slave-spin sector. The justification
is that such a term captures the physics of spin-flip and
pair-hopping. Using the spherical symmetry U ′ = U − J
this can be written as

Hint =
U

2
(ñ1↑ + ñ1↓ + ñ2↑ + ñ2↓)

2 − U

2
+HXP

−J [ñ1↑ñ2↓ + ñ1↓ñ2↑ + 2ñ1↑ñ2↑ + 2ñ1↓ñ2↓] (21)

For JX = J and JP = 0 it has a rotational symmetry49.
Alternatively, U ′ = U − 2J and JX = JP = J has
rotational symmetry. The choice does not affect the
discussion qualitatively. We keep the former values in
the following.

Atomic orbitals - We start by diagonalizing the atomic
Hamiltonian in absence of the hybridizations. Close to
half-filling the doubly-occupied states have the lowest en-
ergy and are given by

|ψ±0〉 =
|⇑1⇑2〉 ± |⇓1⇓2〉√

2
, E±0 = −U − J/2,

|ψ±1〉 =
|⇑1⇓2〉 ± |⇓1⇑2〉√

2
, E±1 = −U + J/2∓ JX ,

|ψ±2〉 =
|⇑⇓1, O2〉 ± |O1 ⇑⇓2〉√

2
, E±2 = −U + 3J/2∓ JP ,

These 3 doublets become the 6-fold degenerate ground
state when J → 0. The 1, 3-particle states are then next

|ψ±3〉 = |⇑⇓1〉
|⇑2〉 ± |⇓2〉√

2
, E±3 = λ1,

|ψ±4〉 = |O〉1
|⇑2〉 ± |⇓2〉√

2
, E±4 = −λ1

|ψ±5〉 =
|⇑1〉 ± |⇓1〉√

2
|⇑⇓2〉 , E±5 = λ2,

|ψ±6〉 =
|⇑1〉 ± |⇓1〉√

2
|O〉2 , E±5 = −λ2,

and finally, there are two (empty and quadruple occu-
pancy) states at the top of the ladder

|ψ7〉 = |⇑⇓〉1 |⇑⇓〉2 , E7 = λ1 + λ2 + 3U − 3J/2,

|ψ8〉 = |O〉1 |O〉2 , E8 = −λ1 − λ2 + 3U − 3J/2.

No Hund’s rule coupling - The hybridization causes
transition among atomic states. In the case of no Hund’s
coupling we can block diagonalize HS into several sectors
and diagrammatically represent it as shown in Fig. (2).
Therefore, the calculation can be reduced from 16×16 to
5×5. The larger the level-repulsion, the lower the ground
state energy in each sector. The fact that the slave-spins
decouple into several sectors brings about the possibility
of possible ground-state crossings between various sectors
as the parameters a1 and a2 are varied. Here, however,
it can be shown that the sector C has the lowest ground
state energy for arbitrary parameters.

FIG. 2: Diagrammatic representation of the slave-spin
Hamiltonian HS in the two-band model with J = 0 and
λ1 = λ2 = 0. Each dot represents an atomic state with a
certain energy, denoted on the left, whereas the connecting
lines represent off-diagonal elements of the Hamiltonian
matrix, all assumed to be real. We have used the short-hand

notation
√

2ψ
S/D
a,b ≡ ψa ±ψb. Also note that ai = 2Jizi. The

Hamiltonian factorizes into several sectors.

Numerical minimization of the free-energy leads to
Fig. (3) which reproduces the results of27. For t2/t1 >
0.2 the metal-insulator transition happens at the same
critical U for the two bands and we refer to it as the
locking phase, whereas for t2/t1 < 0.2 the critical U for
the bands are different U2 < U1 and we refer to it as
orbital selective Mott (OSM) phase.

In order to have the result analytically tractable we do
one further simplification and that is to project out the
zero and quartic occupancies per site, by dropping the
high energy site at the apex of sector C. We expect such
an approximation to be valid close to the Mott transition
of the wider band, but invalid at low U . As a result
the sector C decouples into two smaller sectors C±, each
equivalent to a two-level system with the level-repulsions

α± =

√
a21(3/2 +

√
2) + a22(3/2−

√
2)

±
√
a21(3/2−

√
2) + a22(3/2 +

√
2). (22)
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FIG. 3: (color online Wavefunction renormalizations Z1

(blue) and Z2 (green) as a function of U/UC1 in absence of
Hund’s rule coupling J = 0. The states at the bottom row
correspond to doubly occupied sites. The middle-row states
have occupancy of 1 or 3 and the states at the top row
correspond to zero or four-electron fillings. (a) Moderate
bandwidth anisotropy t2/t1 = 0.5 shows locking. (b) Large
bandwidth anisotropy t2/t1 = 0.15 can unlock the bands and
cause OSM transition (OSMT). We also reproduce the kink
in the wider-bandwidth (blue) band as the narrow band
transitions to the Mott phase27, marked with an arrow. In
the OSM phase, the wavefunction renormalization of the
wider band follows the Brinkman-Rice formula (solid line).

The ground state energy of the slave-spin sector is deter-
mined with α+ inserted in the ES expression (13) (after
an inert −U/4 energy shift). Note that this ground state
has the Z2 symmetry a1 ↔ a2 of the Hamiltonian HS .
ES(α+) as a function of (a21 − a22)/(a21 + a22), is mini-
mized for a1 = a2. Discarding empty and filled states
corresponds to truncating part of the Hilbert space and
thus leads to reduced wavefunction renormalization at
U ∼ 0. In Fig. (4) we have compared our analytical so-
lution to that of the exact result. When a2 = 0, Eq. (22)
gives α → 2a1 as in the single-band case and there-
fore, same critical interaction UC1 = 16 |J1| is obtained.

But for symmetric bands a1 = a2, it gives α = 2
√

3a.
Following similar analysis as before, the free energy is
a2/ |J |− 2α2/U and we obtain UC = 24 |J | = 1.5UC1 in
agreement with27,29.

Locking vs. OSM phase - We formulate the locking vs.
OSM question as the following. Under what condition,
a1 > 0 but a2 = 0 can be a minima of the Free energy. As
mentioned before, setting a2 = 0, α in Eq. (22) reduces to
the one-band α→ 2a1. Therefore, the Mott transition for
the wide band happens at the same critical U as before.
To have a non-zero a1 solution, we must have U < Uc1.
The point a2 = 0 always satisfies dF/da2 = 0. To ensure
that it is the energy minima we need to check that the
second derivative is positive

d2F

da22

∣∣∣
a2=0

=
1

|J2|
− 5

|J1|
> 0, (23)

which gives the condition |J2/J1| < 0.2.
We can better understand the transition by using an

order parameter. The trouble with the expression of α
is that it cannot be Taylor expanded when a1 and a2
are both small. However, we may assume a2 = ra1,

FIG. 4: (color online) A comparison of numerical
minimization of the free energy vs. the analytical two-level
system. Discarding the empty and full occupancy states
leads to underestimation of Z as U → 0 but close to the
Mott transition the approximation is accurate.

with r playing the role of an order parameter which
replaces a2, and write down α(a1, a2) = a1α(r) where
α(r) = α+(a1 → 1, a2 → r). A finite r close to the
transition implies locking, whereas r = 0 or r = ∞ im-
plies OSM phase. Close to the transition of both bands
α ≈ 0 justifying an expansion of Eq. (13) in the form
ES ≈ −2α2/U + 8α4/U3 and Eq. (18) becomes

F (a1, r) =
a21W

2 |J1|
+O(a4), Wx(r, u) = 1 + xr2 − α2(r)

4u

Here, x≡ |J1/J2|, and u≡U/UC1. The metal-insulator
transition for a1 happens when the mass coefficient W
changes sign. For negative W , a21 > 0 and we still have to
minimize the free energy with respect to r. At small r, we
can expand α(r) ≈ 2 + 5r2. To zeroth order in r, the W -
sign-change happens at u = 1. Another transition from
r = 0 to r > 0 happens when the corresponding mass
term (x − 5/u)r2 changes sign, giving the same critical
bandwidth ratio xc = 5 as we had before. So we have two
equations W (r, u) = 0 and ∂rW (r, u) = 0. The function
W is plotted in the figure and the transition from locking
r > 0 to OSM phase r = 0 is shown.

Large Hund’s coupling - In presence of Hund’s cou-
pling the slave-spin Hamiltonian is modified to the dia-
gram shown in Fig. (6).

The ground state still belongs to the sector C. In the
limit of large J/U → 1/4, we may ignore all the gray lines
on the block C and find that the ground state is that of
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FIG. 5: The coefficient W (r, u) is shown for various u as
function of r = a2/a1. Equations W = 0 and ∂rW = 0 are
satisfied at the minimum of the red curve, which is (a) at a
finite r = 1 in the Locking phase, |J1| = |J2|. (b) and zero
r = 0 in the OSM phase, |J1| ≥ 5 |J2|.

FIG. 6: Diagrammatic representation of the slave-spin
Hamiltonian HS in the two-band model at half-filling with
in presence of Hund’s rule coupling J . Various degeneracies
are lifted by J-interaction. In the limit of large Hund’s
coupling J/U → 1/4 we may only keep sector C and neglect
all the gray lines.

a two-level system, Eq. (13) with the level-repulsion

α = 2
√
a21 + a22 (24)

It is remarkable that the (orbital) rotational invariance
of the model (even though absent in HS) is recovered in
this ground state. When the two bands have the same
bandwidth, this formula predicts UC = UC1. Since ES
no longer depends on a21 − a22, there is no more compe-
tition between the two terms and an slight bandwidth
asymmetry leads to OSM phase. This can be formulated
again, following previous section, in terms of stability of
a a1 6= 0 but a2 = 0 solution. We can check that

d2F

da22

∣∣∣
a2=0

=
1

|J2|
− 1

|J1|
> 0, (25)

which gives |J2| < |J1| as the sufficient condition for
OSMT, i.e., any difference in bandwidth drives the sys-

tem to the OSM phasse. Alternatively, by expanding the
level-repulsion in this case α(r) ≈ 2 + r2 and plugging
it into W (r, u), we find that the critical bandwidth ratio
xc = |J1/J2| is equal to one.

IV. TUNNELLING BETWEEN THE ORBITALS

A very interesting question is about the fate of or-
bital selective Mott phase upon turning on an inter-
orbital tunnelling. The band in Mott insulating phase
has one electron per site forming localized magnetic mo-
ment. There is a large entropy associated with this phase
and it is natural to expect that it would be unstable to-
ward possible ordering. A possible mechanism that can
compete with magnetic ordering, is the Kondo screen-
ing of the insulating band by the itinerant band, leading
to conduction in the former and opening a hybridization
gap in the latter band (effectively a new locking effect
coming from Kondo screening). Within single-site ap-
proximation, however, the form of the renormalized cou-

pling t̃αβij = z∗iαt
αβ
ij zjβ implies that once an orbital goes

to the Mott phase, it automatically shuts down its cou-
pling to all the other orbitals. We speculate that this
effect might be responsible for the orbital selective Mott
transition solution found in18. However, it is still a valid
question whether or not the critical interactions UC for a
Mott transition are modified by inter-orbital tunnelling,
which we explore in the following.

Before treating inter-orbital tunnelling, we discuss
how the slave-spin method can be applied to the impurity
problem, and its relation to the lattice.

Impurity vs. Lattice and the DMFT loop

We can also apply the slave-spin method to an im-
purity problem. In particular, we can use the slave-spin
(as well as any other slave-particle) method as an im-
purity solver for the DMFT. We show in the following
that the slave-spin mean-field result corresponds to such
a DMFT solution with the corresponding slave-spin im-
purity solver. This puts the method on firm ground and
allows comparison between various methods.

First, consider a generic p − h symmetric impurity
model described by the Hamiltonian H = H0 + Hint

where

H0 = −
∑
kαβ

tαβk (d†αckβ + h.c.) +
∑
kβ

εβkc
†
kβckβ . (26)

Again α, β are superindices that include both orbital
and spin. We have assumed that the bath is diagonal

and discarded any local ‘crystal field’ d†1d2 for simplic-
ity. In the simple case of single-orbital impurity Hint =
Uñd↑ñd↓. Via a substitution of Eq. (2), the hybridiza-

tion term becomes H0 = −
∑
kαβ t

αβ
k (f†ατ

x
αckβ + h.c.).

This problem can be written in a similar way as be-
fore H ≈ Hf + HS where HS is exactly what we had
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in single-band lattice case. However, since the f†ατ
x
αckβ

interaction happens only on the impurity site, we do not
need the second single-site approximation here, and ob-

tain aα = −2
∑αβ
kβ t

αβ
k 〈f

†
kαckβ〉. In order to have a gen-

eral formalism that applies to both impurity and lattice,
as well as scenarios with inter-orbital tunnelling for which
Jαβ renormalizes and is difficult to compute, we regard a
and z as independent variables and write the free energy
of Eq. (10) as47

F ({z, a}) = Ff ({z}) + FS({a})−
∑
α

aαzα. (27)

The saddle-point of F with respect to a and z gives the
correct mean-field equations. Ff is the free energy of

the f -electron given by Ff = −T
∑
n Tr log[−G−1f (iωn)]

where G−1f (iωn) = iωn1 − z†�(iωn)z with �(iωn) =∑
k t
†
kGc(k, iωn)tk, the hybridization function. The

slave-spin part is given by FS = Tr[e−βHS ] where for
a single-orbital Anderson impurity, HS = 2aτx +Uτz/4,
as we had in the single-band case before.

The mean-field equations w.r.t z and a are, respec-
tively

aα =
1

zα

∫
dω

π
f(ω)ωIm

[
Gααf (ω + iη)

]
, (28)

zα =
dFS
daα

. (29)

The first equation provides a relation between a and
z that generalizes aα = 2

∑
β Jαβzβ (see appendix D).

Having expressions for ES(a) we can eliminate a in fa-
vor of z, or vice versa, which is equivalent to a Legendre
transformation. In the appendix C, we apply these equa-
tions to the (single-orbital) finite-U Anderson impurity
problem and show the ‘transition’ to the Kondo phase as
the temperature is lowered.

In a lattice, the free energy has the same
form as Eq. (27) with the difference that Ff =

−T
∑
k,n Tr log[−G−1f (k, iωn)] where the Green’s func-

tion is Gf (k, iωn) = [iωn1 − z†Ekz]−1. It can be shown
that exactly same mean-field equations are obtained ifGf
in Eq. (28) is replaced with Gααf (iωn)→

∑
kG

αα
f (k, iωn).

Therefore, we conclude that the two problems (lattice
and impurity) are equivalent provided that the hybridiza-
tion function in the impurity problem is chosen such that
the impurity Green’s function and the local Green’s func-
tion of the lattice are equal, i.e.

[iωn1− z†�(iωn)z]−1 =
∑
k

[iωn1− z†Ekz]
−1. (30)

which is the DMFT consistency equation. Therefore,
slave-spin mean-field is equivalent to a DMFT solution
using the slave-spin method as the impurity solver. Also,
note that a lattice problem in the OSM phase, corre-
sponds to an impurity problem in which the hybridization
of one of the orbitals to the bath has been turned off50.

Note that a similar discussion can be applied to other
slave-boson/spin techniques. For example, KR slave-
boson has been previously applied to Andersion impu-
rity problem by K. Schonhammer 51 resulting in similar
mean-field equations as we derived here. Following the
same route, KR slave-boson mean-field solution of the
lattice can be shown to be equivalent to the result of a
DMFT loop with the KR slave-bosons as the impurity
solver. The relation between KR slave-bosons and the
slave-spins are discussed in Appendix A. See also Ap-
pendix B for a discussion of Eq. (30) at low-energies.

A. Inter-orbital tunnelling

Slave spins have been used to study Iron-based
superconductors18 where the inter-orbital tunnelling are
important. We study this tunnelling effect in the specific
case with p − h symmetry and without orbital-splitting
(which allows for analytic calculations). The cases that
go beyond such conditions, as arising in the models for
the iron-based superconductors18, remain to be explored
and are left for future work.

A troublesome feature of the slave-spins is that
they break the rotational symmetry among the orbitals.
Within the p−h symmetric Bethe lattices that we study
here, this rotational variation leads to ambiguities in
presence of inter-orbital tunnellings, as we point out here.

Let us consider a 1D chain with two orbitals H0 =

−
∑
nσ(D†nσTDn+1,σ + h.c.), with D =

(
d1 d2

)T
, no

Hund’s coupling in Hint, and a dispersion

Ek = −2T cos k, T =

(
t11 t12
t12 t22

)
(31)

We have chosen t12 = t21 and all the elements real (and
positive)to preserve the p− h symmetry. Strictly speak-
ing, in 1D the mean-field factorization that led to Eq. (4)
and the consequent single-site approximation are both
unjustified. The choice of dimensionality, here, is only
for the ease of discussion and not essential to the con-
clusions. As long as the dispersion matrix can be diago-
nalized with a momentum-independent unitary transfor-
mation (as well as any Bethe lattice, see the appendix
D), the following discussion applies. Diagonalizing the
tunnelling matrix gives E±k = −2t± cos k with

t± =
t11 + t22

2
±
√( t11 + t22

2

)2
− detT (32)

Including renormalization just changes tαβ → t̃αβ . We
can simply use the diagonalized form of the tunnelling
matrix to calculate F0 at T = 0. Assuming detT > 0,

Ff =
∑
γ=±

∫
dk

2π
E±k f(Eγk )

→ −(t̃+ + t̃−)

∫ π/2

−π/2

dk

π
cos(k) = −2(t̃11 + t̃22)/π
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Note that t12 does not enter the free energy. Inserting
this expression into Eq. (27) and setting dF/dzi = 0, we
can remove ai in favor of zi. This seems to imply that
there is a finite threshold (topological stability) for inter-
orbital tunnelling: as long as detT > 0, introducing t12
does not change anything in the problem and it simply
drops out and OSM phase is stable against inter-orbtital
tunnelling. For large t12 eventually detT < 0. So, we get
t+ > 0 and t− < 0 and the second band is inverted and
F0 becomes

Ff → −2(t̃+ − t̃−)/π = − 4

π

√( t̃11 − t̃22
2

)2
+
∣∣t̃12∣∣2.

(33)
Hence, t12 has non-trivial effects on renormalization.

On the other hand, we could have used the rotational
invariance of Hint and done a rotation in d1 − d2 ba-
sis to band-diagonalize H0 with the bandwidths T →
diag{t+, t−}, before using slave-spins to treat the inter-
actions. It is clear then that t12 always has non-trivial
effects by modifying t±. For example we could start in
the locking phase where t−/t+ > 0.2, and by increasing
t12 slightly get to the OSMT phase t−/t+ < 0.2, without
changing the sign of detT. This paradox exist for any
p − h symmetric lattice with diagonalizable tunnelling
matrix. The root of the problem is that our expression
in Eq. (9) is not invariant under rotations between vari-
ous orbitals. Therefore, the critical value where the OSM
phase persists, is basis-dependent. This ambiguity calls
for the use of unbiased techniques to understand the role
of inter-orbital tunnelling on OSMT. It might be that
the model we studied analytically here is a singular limit
which can be avoided by breaking p − h symmetry and
inclusion of crystal field in more realistic settings18. This
remains to be explored in a future work.

As discussed in25, the way to achieve rotational-
invariance is to liberate the f -electrons that describe
quasi-particles from the physical d-electrons. This is
achieved by a dα →

∑
β ẑαβfβ representation which leads

to a wavefunction-renormalization matrix zαβ = 〈ẑαβ〉
with off-diagonal elements. So far, we have not been
able to generalize the slave-spin to a rotationally invari-
ant form and we leave it as a future project.

V. ON-SITE INTER-ORBITAL
HYBRIDIZATION

Even though models for the Iron-based supercon-
ductors have finite crystal level splitting and no on-
site hybridization, it is interesting to introduce a hy-
bridization between the two orbitals within the current
formalism27. This is interesting, because the on-site hy-
bridization, does not suffer from the singe-site approx-
imation 〈ẑiαẑiβ〉 6= 〈ẑiα〉 〈ẑiβ〉, as opposed to the inter-
orbital tunnelling and 〈ẑiαẑiβ〉 appears as an independent
order parameter, which leads to the emergence of Kondo
screening as we show in this section.

We can include a term
∑
n,σ(v12d

†
n,1σdn,2σ + h.c.) to

the Hamiltonian. In order to preserve the p−h symmetry,
v12 has to be purely imaginary. The modifications to the
mean-field Hamiltonians are

∆Hf =
∑
n,σ

(ṽ12f
†
n,1σfn,2σ + h.c.)− 2sA12Z12 (34)

∆HS =
∑
σ

A12τ
x
1στ

x
2σ (35)

where ṽ12 = v12Z12 with Z12 = 〈τx1στx2σ〉 and A12 =

v12
∑
n〈f
†
n,1σf2σ〉 + h.c.. Z12 and A12 are are related

to each other via the Hamiltonian above and they are
independent of σ in the paramagnetic regime. Alter-
natively, we can regard them as independent and im-
pose the mean-field equation Z12 = ∂FS/∂A12 to elim-
inate A12 by a Legendre transformation. Assuming a
small A12 we can compute the change in slave-spin en-
ergy using second-order perturbation theory. The re-
sult is of the form ∆ES = γ(A12)2 where γ is (in
absence of Hund’s coupling) a positive constant which
contains all the matrix elements and the inverse gaps
γ =

∑
jσσ′ 〈ψ0|τx1στx2σ|ψj〉 (Ej − E0)−1 〈ψj |τx1σ′τx2σ′ |ψ0〉

where Ej and |ψj〉 are the eigenvalue/states of the HS

solved in the previous section. Eliminating A12 in favor
of Z12 we find that the free energy of the system is

F (z1, z2, Z12) = −2s
β

∑
kn

Tr log

(
ε̃k1 − iωn iZ ′12
−iZ ′12 ε̃k2 − iωn

)
+E′S(z1, z2) +

(Z ′12)2

γ′
(36)

Here E′S is the value of ES(a1, a2) −
∑
i aizi in absence

of hybridization v12 in which a1 and a2 are eliminated in
favor of z1 and z2. Also, we have redefined |v12|Z12 →
Z ′12 and γ |v12|2 → γ′.

Eq. (36) is nothing but the free energy of a Kondo
lattice at half-filling52 with renormalized dispersions ε̃k1
and ε̃k2. In a Kondo lattice, this form of the free energy
appears using Z ′12 as the Hubbard-Stratonovitch field

that decouples the Kondo coupling γ′~S2 · d†1~σd1. Here

S2 = d†2~σd2 is the spin of the Mott-localized band and
γ′ plays the role of the Kondo coupling. As a result of
this coupling, a new energy scale TK ∼ D exp[−1/γ′] ap-
pears, with D ∼ min(2t̃11, UC1), below which the Kondo
screening takes place which in the p− h symmetric case
gaps out both bands but away from p−h symmetry mo-
bilizes the Mott localized band. Either way, we conclude
that orbital selective Mott insulating phase is unstable
against hybridization between the two orbitals in agree-
ment with27. However, even though a true selective Mot-
tness is unstable, orbital differentiation, reflected as large
difference in effective mass can exist16.

VI. CONCLUSION

In conclusion, we have used slave-spin mean-field
method to study two-band Hubbard systems in pres-
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ence of Hund’s rule coupling. We have developed a
Landau-Ginzburg theory of the locking vs. OSMT.
We discussed the relation between slave-spins and
the KR boson methods (Appendix). We have also
applied the method to impurity problems and shown a
correspondence between the latter and the single-site
approximation of the lattice using the DMFT loop. Fi-
nally, we have discussed the limitations of the slave-spin
method for multi-orbital models with both particle-hole
symmetry and inter-orbital tunnelling and shown that
the orbital selective Mott phase is unstable against
on-site hybridization between the two orbitals. As
possible future extensions of this work, it is certainly
interesting to study the nature of the Mott transition at
finite temperature and seek explicit solutions of Eq. (36).

We appreciate valuable discussions with P. Coleman,
T. Ayral, M. Metlitski, L. de’Medici, K. Haule and
C.-H. Yee, and in particular, a detailed reading of the
manuscript and constructive comments by Q. Si. The
authors acknowledge financial support from NSF-ONR.

After completion of this manuscript, we became aware
of another work53 which contains a Landau-Ginzburg
theory of OSMT in presence of the inter-orbital tun-
nelling. The conclusions of the two work agrees wherever
there is an overlap.

VII. APPENDIX

A. A. Various slave-particle methods

For a one band model, KR introduces four bosons and

uses the representation ẑ†σ = P+[p†σe + d†p−σ]P−, where

p†σ, e† and d† are (hardcore) bosonic creation operators
for σ-spinon, holon and doublon, respectively and P± are
projectors that depend on the occupations of the bosons
and are introduced to normalize the probability ampli-
tudes over the restricted set of physical states. On the
other hand, a SU(2) spin-variable ~τα can be represented
by two Schwinger bosons aα and bα satisfying the con-
straint a†αaα + b†αbα = 1 (hardcore-ness), via

τzα = b†αbα − a†αaα, τxα = a†αbα + b†αaα (37)

On an operator level, the two methods have the same
Hilbert space as depicted in Table (I) for the case of one
orbital. Average polarization of the spin along various di-
rection in the Bloch sphere corresponds to condensation
of a and b bosons.

A trouble with the slave-spin representation is that
the f -quasi-particles carry the charge of the d-electron
and thus the disordered phase of the slave-spins (in which
the f -electrons still disperse beyond single-site approxi-
mation) is not a proper description of the Mott phase.
As a remedy, it has been suggested31 to replace τx in
Eq. (2) with τ+ and fixing the problem of non-unity of

a†↑a↑ b
†
↑b↑ a

†
↓a↓ b

†
↓b↓

1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

e†e p†↑p↑ p
†
↓p↓ d

†d

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

TABLE I: Comparison of the Schwinger boson
representation of the slave-spin (left) and
Kotliar-Ruckenstein slave-bosons (right).

Z in the non-interacting case by applying fine-tuned pro-
jectors ẑ† = P+τ+P−. We note that this looks quite
similar to KR.

For M spinful orbitals, KR requires introducing 4M

bosons (only one of them occupied at a time) whereas
only 2M slave-spins are required (each with the Hilbert
space of 2). Thus the size of the two Hilbert spaces are
the same 22M = 4M .

B. B. General low-energy considerations

Generally, for a lattice with the Green’s function

Gd(k, ω) = [ω1− Ek − �d(k, ω)]−1, (38)

at low-energies we can expand the self-energy

�d,lat(k, ω) = �(0, 0) + ~k · ∂~k�(0, 0) + ω∂ω�(0, 0) + · · · .

Within single-site approximation, the second term is
zero. Denoting the third term as ∂ω�d ≈ 1 − Z−1 and
assuming Z = zz† we can write

Gd(k, ω) ≈ z[ω1− z†Ekz]
−1z†, (39)

which simply means Gf (ω) = [ω1− Ẽk]−1.
Comparing to Eq. (16), this means that the correla-

tion functions of the slave-particles are just decoupled

〈ẑiα(τ)ẑ†jβ〉 → z∗αzβ within single-site approximation,
also discarding any time dynamics at low-energies. For
the tunnelling matrix, we simply have t̃ = z†tz. In the
following we discuss such low-energy approximations on
the DMFT loop. The Green’s function of an impurity
and a local site on a lattice are, respectively

iωn1− �d,imp(iωn) = G−1d,imp(iωn), (40)

Gd,loc(iωn) =
∑
k

[iωn − Ek − �d,lat(k, iωn)]−1. (41)

Separating the interaction part of the self-energy
�d,imp(iωn) = �(iωn) + �d,I(iωn), the DMFT approxi-
mation identifies �d,I(iωn) = �d,lat(k, iωn). Again ex-
panding �d,I(ω) ≈ (1− Z−1)ω we have

Gd,imp(iωn) = z[iωn1− �̃(iωn)]−1z†, (42)
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with �̃(iωn) = z†�(iωn)z in agreement with

Gf,imp(iωn) = [iωn1 − �̃(iωn)]−1. Using the same
approximation for Gd,loc leads to

G−1d,loc(iωn)→ z
∑
k

[iωn − Ẽk]−1z (43)

the DMFT self-consistency loop is Gf,loc(iωn) =
Gf,imp(iωn) or∑

k

[iωn − Ẽk]−1 = [iωn1− �̃(iωn)]−1. (44)

Within the slave-spin approach there are no interactions

�f,imp = z†�(iωn)z, �f,I = 0, �f,lat = 0 (45)

and Eq. (44) is satisfied as it does for any non-interacting
problem. Note that this is Eq. (30).

Rotation - Using the vector D for the d-electrons, in
presence of inter-orbital tunnelling we may sometimes
be able to eliminate such inter-orbital tunnelling by a
rotation to D = UD±. Since D = zF , we assume the
same rotation in the F -space F = UF± (otherwise they
would contain inter-orbital tunnelling) and the two z-s
are related by z = U†z±U. Assuming that U is a SO(2)
matrix, and z± is diagonal, we find

z =
z+ + z−

2
1− z+ − z−

2

(
− cos 2α sin 2α

sin 2α cos 2α

)
(46)

which has off-diagonal elements. Note that if one of the
z± elements vanishes, e.g. z− = 0, we can factorize z

z = z+

(
cosα

− sinα

)(
cosα − sinα

)
. (47)

Then, it can be seen that Z = zz† → z+z has the same
form. This basically means one linear combination of f
electrons is decoupled (localized) and the itinerant spinon
band carries characters of both d1 and d2 bands. This
basis-dependence of the orbital Mott selectivity is again
an artefact due to lack of rotational invariance.

C. C. Finite-U Anderson model

Here, we apply slave-spins to the finite-U Anderson
impurity model. The slave-spin part of the Hamilto-
nian is as we had in the one band case. We can use
Eq. (27) to eliminate a in favour of z. In the wide
band limit for the conduction band, we have Gf (iωn) =
[iωn− i∆Ksign(ωn)]−1 where ∆K = πρt2z2, and the free
energy is

F (z) = −2s

∫ D

−D

dω

π
f(ω)Im [log (i∆K − ω)] + E′S(z). (48)

E′S is obtained by eliminating a from ES(a)− 2saz part
of the free energy in Eqs. (13) and (27) and is equal to

E′S = −U4
√

1− z2. Here, we have done a simplification to
replace FS with its zero temperature value (ground state
energy) while maintaining the temperature dependence
of the Ff . We expect this approximation to be valid in
the large-U limit especially close to the transition. The
mean-field equation w.r.t z is

z

∫ D

−D
dωf(ω)Re

[
1

ω − i∆K

]
+

U

4ρt2
z√

1− z2
= 0 (49)

Close to the transition, the second term is effectively like
a z/ρJ with J(z) ≡ (4t2/U)

√
1− z2. At zero tempera-

ture the left-side simplifies

z log
∆K

D
+

z

ρJ
√

1− z2
= z log

∆K

TK(z)
= 0, (50)

where TK(z) = De−1/ρJ(z). So to have non-zero z we
must have ∆K = TK which determines z. Also, we can
go to non-zero temperature. We just replace the log-term
in above expression with its finite-temperature expression
from Eq. (49)

zRe
[
ψ̃(i∆K)− ψ̃(D)

]
+

z

ρJ(z)
= 0 (51)

This is solved numerically and the result shown in
Fig. (7). It shows a Kondo phase z > 0 for T < T 0

K .

FIG. 7: (color online) The order parameter z for the
Anderson model calculated from numerical evaluation of
Eq. (51). T 0

K = De−1/ρJ , where J = 4t2/U . Note that this is
off with a factor of 4, an artifact of slave-spin method. We
have used D = 100U whereas t/U is varied.

D. D. Stability of OSMT against interorbital
tunnelling in a Bethe lattice

Using equations of motion, the coefficient Jαβ defined
after Eq. (4) can be related to the correlation function of
the electrons at the same site, The result is

J αβ = tαβ
∑
η

[t̃−1]βη
∫
dω

2π
f(ω)ωAηαii (ω) (52)
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where Aηαii (ω) is the ηα orbital-element of the local
spectral function matrix. This together with aα =
2
∑
β J αβzβ leads to Eq. (27). In a Bethe lattice we

can use recursive methods 54 to compute Aαβii . When
the tunnelling matrix is hermitian and there is no chem-
ical potential or crystal field, the procedure is especially
simple. We diagonalize the renormalized tunnelling ma-
trix t̃ = U t̃DU−1. Then the retarded and the spectral
functions are

GR(ω) = t̃−1U�(ω)U−1, A(ω) = UAD(ω)U−1 (53)

where diagonal matirix � contains λ-elements that sat-
isfy λi + λ−1i = ω/t̃iD with the retarded boundary condi-
tion. AD is diagonal matrix of semicircular density states
whose width are given by the eigenvalues of t̃. By plug-
ging this into Eq. (53) and (52) and using∫

dω

2π
f(ω)ωADii (ω) = −0.2122× 2

∣∣∣t̃D∣∣∣
we see that if the eigenvalues of the matrix t̃ all have
the same sign, then U(|̃tD| = t̃D)U−1 = t̃. This is the

generalization of the protection of OSM phase against
inter-orbital tunnelling, discussed in the 1D case in the
paper. For the case of two bands,

det t̃ > 0 ⇒ J βα = −0.2122× 2tβαδβα,

det t̃ < 0 ⇒ J βα = −0.2122× 2tβαRαβ (54)

i.e. for det t̃ > 0, the J -matrix does not have any off-
diagonal elements and the diagonal elements are propor-
tional to the bare diagonal hoppings (as before), but if

det t̃ < 0, there is a matrix R = U 〈τz〉U−1 inside the
J -matrix which does depend on renormalization.

Again in this problem, one could have done the ro-
tation in dα-sector before using the slave-spins, in which
case, inter-orbital tunnelling would have an effect and
could cause OSM transition. Therefore, the stability
found above is basis-dependent. This ambiguity is absent
when p−h symmetry is broken and the tunnelling matrix
cannot be diagonalized independent of the momentum18.
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