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There is increasing recognition that the multiorbital nature of the 3d electrons is important to the proper de-
scription of the electronic states in the normal state of the iron-based superconductors. Earlier studies of the
pertinent multiorbital Hubbard models identified an orbital-selective Mott phase, which anchors the orbital-
selective behavior seen in the overall phase diagram. An important characteristics of the models is that the
orbitals are kinetically coupled – i.e. hybridized – to each other, which makes the orbital-selective Mott phase
especially nontrivial. A U(1) slave-spin method was used to analyze the model with nonzero orbital-level
splittings. Here we develop a Landau free-energy functional to shed further light on this issue. We put the
microscopic analysis from the U(1) slave-spin approach in this perspective, and show that the intersite spin
correlations are crucial to the renormalization of the bare hybridization amplitude towards zero and the con-
comitant realization of the orbital-selective Mott transition. Based on this insight, we discuss additional ways
to study the orbital-selective Mott physics from a dynamical competition between the interorbital hybridization
and collective spin correlations. Our results demonstrate the robustness of the orbital-selective Mott phase in
the multiorbital models appropriate for the iron-based superconductors.

I. INTRODUCTION

In many strongly correlated systems, superconductivity is
closely connected to a strongly-correlated bad-metal normal
state and a nearby antiferromagnetic order. As such, there
has been considerable effort devoted to the understanding
of the electron correlation effects and the associated mag-
netism. In the case of the iron-based superconductors (FeSCs)
1–6, recent developments have further highlighted the impor-
tance of electron correlations. For instance, angle-resolved
photoemission spectroscopy (ARPES) has found an orbital-
selective Mott phase (OSMP) in the iron chalcogenides 7–10.
The OSMP phase arises in multiorbital Hubbard models of
the FeSCs, which contain both Hubbard interactions and
Hund’s coupling11,12. Evidence for the OSMP has also
come from a variety of other measurements13–16. A comple-
mentary approach to the electron correlations of the FeSCs
describes the localization-delocalization phenomena in the
form of an orbital differentiation and a coherence-incoherence
crossover17,18, though OSMP is not explicitly invoked. In ad-
dition, recent experiments have identified a Mott insulating
system in the copper-doped iron pnictides19, which accompa-
nies the earlier observations of Mott insulating states in the
iron chalcogenides20–22. These observations considerably ex-
pand on the bad-metal behavior known, since early on in the
field, through other properties of the iron pnictides23–25. For
example, the room-temperature electrical resistivity is large
(reaching the Mott-Ioffe-Regel limit, as defined by the nor-
malized mean free path kF ` being of order unity), in contrast
to good metals such as Cr (for which kF ` at room temperature
is much larger than 1). Moreover, the Drude optical weight is
much reduced23.

The parent systems of FeSCs have the iron valence +2, with
n = 6 electrons occupying the 3d orbitals. Correspondingly,
multiple 3d-electron orbitals are important24–30. In order to
address the bad-metal physics, an important question is how
the itinerancy of the electronic states is reduced with increas-

ing Coulomb interactions. The appropriate multiorbital Hub-
bard models include the intra- and interorbital Hubbard inter-
actions (U and U ′) and the Hund’s coupling (JH).

The OSMP phase appears in the paramagnetic solution to
the multiorbital Hubbard models11. In this phase, the non-
degenerate 3d xy orbital loses its coherent spectral weight at
the Fermi energy, while this weight remains nonzero for the
other orbitals (including the degenerate 3d xz/yz orbitals).
These features have been clearly identified in the ARPES
measurements7–10.

From a theoretical perspective, it is important to stress that,
the orbitals are kinetically coupled – i.e. hybridized – to each
other in these models. In particular, the bare kinetic hybridiza-
tion between the 3d xy orbital and the other 3d orbitals is
nonzero. In the OSMP phase, this hybridization is renormal-
ized to zero and the 3d xy orbital is no longer mixed with the
other orbitals in the low-energy electronic excitations.

More generally, orbital selectivity has been discussed in the
correlation effects; see, for example, Refs. 17, 31–35. It can
be defined in terms of the mass enhancement (m∗/mb, the ra-
tio of the effective mass observed experimentally to that of
the non-interacting band dispersion) being different for the
electronic states with predominantly different orbital contents.
In practice, m∗/mb for electronic states with predominantly
3d xy orbital character is much larger (reaching 10 − 20
in the iron selenides) than that for the electronic states with
predominantly 3d xz/yz (typically 3 − 4) and other orbital
characters4,10.

Strictly speaking, the orbital selectivity is in itself not pre-
cisely defined, because the hybridization mixes the different
orbitals in the electronic band states. However, it becomes
sharply defined as a precursor to the OSMP11. In other words,
the OSMP anchors the notion of orbital selectivity in general.
Note that the picture of the orbitally-differentiated coherence-
incoherence crossover has also yielded the 3d xy orbital to
be localized at sufficiently high temperatures, while itinerant
at zero temperature 36,37. Hence the generalization of the no-
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tion of OSMP is relevant in this case as well. These highlight
the conceptual importance of the OSMP in characterizing the
orbital selectivity in general.

A. Orbital vs. band basis

OSMP for the multiorbital Hubbard model has been dis-
cussed in several contexts. Most of these studies start from
multiple inequivalent bands, and define the Hubbard and
Hund’s interactions in the band states 38–43. By definition, the
band basis diagonalizes the noninteracting part of the Hamil-
tonian. In other words, kinetically, they are decoupled from
each other. In the presence of interactions, the weight of the
coherent electrons near the Fermi surface will be renormalized
below 1 in a band-dependent way. An OSMP corresponds to
the regime where the renormalized coherent spectral weights
for some of the bands vanish while those for the others remain
nonzero.

For the FeSCs, multiorbital Hubbard models are defined in
the orbital basis 12,24–35. The definition of the non-degenerate
orbitals is unambiguous. For the degenerate 3d xz/yz or-
bitals, there can be alternative definitions, but the degener-
acy ensures that the different definitions are equivalent to each
other.

In the orbital basis, the kinetic part of the Hamiltonian is
not diagonal. Therefore, in the Hamiltonian, the orbitals are
kinetically coupled – i.e. hybridized – to each other. In the
OSMP solution of Ref. 11, the destruction of the quasiparti-
cle spectral weight, Zxy , is accompanied by the suppression
of the renormalized interorbital kinetic hybridization between
the 3d xy orbital and the other ones.

The purpose of this paper is to clarify how the above hap-
pens. We do so by formulating a Landau free-energy func-
tional, which also demonstrates the robustness of the OSMP.
Viewed from this perspective, we show the crucial role that
the intersite spin correlations play in generating the OSMP
(cf. Fig. 1) within the the microscopic U(1) slave-spin ap-
proach11,32.

The remainder of the paper is organized as follows. In
Sec. II, we define the model and summarize the U(1) slave-
spin approach. Sec. III is devoted to the formulation of
the Landau free-energy functional in terms of the orbital-
dependent quasiparticle weight and how the OSMP appears as
a distinct phase permitted by the Landau functional. We then
address, in Sec. IV, the OSMP as derived by the microscopic
U(1) slave-spin approach from the perspective of the Landau
free-energy functional. Landau analysis has been useful in
clarifying the Mott transition in the dynamical mean-field the-
ory (DMFT) context44. Sec. V discusses the implications of
the insight gained in the present work for further studies on
the OSMP, and Sec. VI summarizes the paper. Finally, in
Appendices A through C, we present further details on the
saddle-point equations of the U(1) slave-spin approach.

II. MULTIORBITAL HUBBARD MODEL AND THE U(1)
SLAVE-SPIN APPROACH

We now define the model and, to facilitate the analysis in
the next section, summarize the microscopic approach32 based
on a U(1) slave-spin representation.

A. Multiorbital Hubbard model

The multiorbital Hubbard model for the FeSCs takes the
following form,

H = H0 +Hint. (1)

H0 contains the tight-binding parameters among the multiple
orbitals,

H0 =
1

2

∑
ijαβσ

tαβij d
†
iασdjβσ +

∑
iασ

(∆α − µ)d†iασdiασ, (2)

where d†iασ creates an electron in orbital α (= 1, ..., 5) with
spin σ at site i, ∆α refers to the energy level associated with
the crystal field splitting (which is diagonal in the orbital ba-
sis), and µ is the chemical potential. In general, tαβij 6= 0 for
α 6= β, corresponding to a nonzero kinetic hybridization be-
tween the different orbitals. For latter references, we note that
the onsite energy for the 3d xy orbital is different from any of
the other four 3d orbitals: for any orbital β 6= xy, the level
splitting ∆xy,β ≡ ∆xy−∆β 6= 0. The onsite interactionHint

reads

Hint =
U

2

∑
i,α,σ

niασniασ̄

+
∑

i,α<β,σ

{U ′niασniβσ̄ + (U ′ − JH)niασniβσ

−JH(d†iασdiασ̄d
†
iβσ̄diβσ + d†iασd

†
iασ̄diβσdiβσ̄)

}
.(3)

where niασ = d†iασdiασ . Here, U , U ′, and JH respectively
denote the intraorbital repulsion, the interorbital repulsion,
and the Hund’s rule exchange coupling. In the following, we
will take U ′ = U − 2JH.45

B. U(1) slave-spin theory

The metal-insulator transition in the model has been studied
by using a U(1) slave-spin theory, which was introduced in
Ref. 32. Here we summarize the approach to set the stage for
our consideration of the OSMP in the next two sections. For
further details, we refer to Ref. 32 as well as Appendices A
and B. In addition, we refer to Appendix C for a comparison
with the Z2 slave-spin theory of Ref. 46 (see also Refs. 47 and
48).

In the U(1) slave-spin formulation, the XY component of a
quantum S = 1/2 spin operator (S+

iασ) is used to represent the
charge degree of freedom of the electron at each site i, for each
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orbital α and each spin flavor σ. Correspondingly, a fermionic
“spinon” operator (f†iασ) is used to carry the spin degree of
freedom. The electron creation operator is then represented as
follows,

d†iασ = S+
iασf

†
iασ. (4)

This is implemented by a constraint,

Sziασ = f†iασfiασ −
1

2
, (5)

which restricts the Hilbert space to the physical one.
This representation contains a U(1) gauge redundancy cor-

responding to f†iασ → f†iασe
−iθiασ and S+

iασ → S+
iασe

iθiασ .
Therefore, the slave spins carry the U(1) charge, similarly as
in the slave-rotor approach 49.

To ensure that the saddle point captures the correct quasi-
particle spectral weight in the non-interacting limit (being
equal to 1), we define a dressed operator in the Schwinger
boson representation of the slave spins (in a way similar to the
standard slave-boson theory50):

ẑ†iασ = P+
iασa

†
iασbiασP

−
iασ, (6)

where P±iασ = 1/
√

1/2 + δ ± (a†iασaiασ − b
†
iασbiασ)/2, and

δ is an infinitesimal positive number to regulate P±iασ .
Here aiασ and biασ are Schwinger bosons representing the

slave-spin operators: S+
iασ = a†iασbiασ , S−iασ = b†iασaiασ ,

and Sziασ = (a†iασaiασ − b
†
iασbiασ)/2. They satisfy an addi-

tional constraint,

a†iασaiασ + b†iασbiασ = 1. (7)

In other words, they are hard-core bosons. In this representa-
tion, the constraint in Eq. (5) becomes

a†iασaiασ − b
†
iασbiασ = 2f†iασfiασ − 1. (8)

At the same time, Eq. (4) becomes

d†iασ = ẑ†iασf
†
iασ. (9)

The Hamiltonian, Eq. (1), can then be effectively rewritten
as

H =
1

2

∑
ijαβσ

tαβij ẑ
†
iασ ẑjβσf

†
iασfjβσ +

∑
iασ

(∆α − µ)f†iασfiασ

−λiασ[f†iασfiασ −
1

2
(n̂aiασ − n̂biασ)] +HS

int. (10)

Here, λiασ is a Lagrange multiplier to enforce the constraint
in Eq. (8). In addition, HS

int is the interaction Hamiltonian,
Eq. (3), rewritten in the slave-spin representation Hint →
Hint(S),32 and subsequently with the slave-spin operators
substituted by the Schwinger bosons. The quasiparticle spec-
tral weight

Ziασ = |ziασ|2 ≡ |〈ẑiασ〉|2. (11)

A metallic phase corresponds to Ziασ > 0, and a Mott insu-
lator corresponds to Ziασ = 0 in all orbitals with a gapless
spinon spectrum.

After decomposing the boson and spinon operators and
treating the constraint on average, we obtain two saddle-point
Hamiltonians for the spinons and the Schwinger bosons, re-
spectively:

Hmf
f =

∑
kαβ

[
εαβk 〈z̃

†
α〉〈z̃β〉+ δαβ(∆α − λα + µ̃α − µ)

]
f†kαfkβ ,

(12)

Hmf
S =

∑
αβ

[
Qfαβ

(
〈z̃†α〉z̃β + 〈z̃β〉z̃†α

)
+ δαβ

λα
2

(n̂aα − n̂bα)

]
+HS

int, (13)

where δαβ is Kronecker’s delta function, εαβk =
1
N

∑
ijσ t

αβ
ij e

ik(ri−rj), and

Qfαβ =
∑
kσ

εαβk 〈f
†
kασfkβσ〉/2, (14)

z̃†α = 〈P+
α 〉a†αbα〈P−α 〉. (15)

In addition, µ̃α is an effective onsite potential defined as

µ̃α = 2ε̄αηα (16)

where

ε̄α =
∑
β

(
Qfαβ〈z̃

†
α〉〈z̃β〉+ c.c.

)
(17)

and

ηα = (2nfα − 1)/[4nfα(1− nfα)], (18)

with nfα = 1
N

∑
k〈f
†
kαfkα〉.

Eqs. (12) and (13) represent the main formulation of the
U(1) slave-spin approach at the saddle-point level. Note that
the slave-spin part is single-site in nature. By contrast, the
pseudofermion part must contain intersite couplings, which
will play an important role in the analysis (see next section).
We study the metal-to-insulator transitions in the paramag-
netic phase preserving the translational symmetry. These al-
low us to drop the spin and/or site indices of the Schwinger
bosons (slave spins) and the Lagrange multiplier λα in the
above saddle-point equations. We refer to Appendices A and
B for a detailed derivation of these saddle-point Hamiltoni-
ans. The parameters zα and λα are solved self-consistently.
The parameter µ̃α introduced above is crucially important
to ensuring that the noninteracting limit is properly captured
(with Zα = |〈z̃α〉|2 = |zα|2 = 1 and correct electron dis-
persion) regardless of whether the system is at or away from
half filling (see Appendix C for more details). By contrast,
in the Z2 slave-spin formulation, the parameter µ̃α is absent
in the saddle-point equations, and the proper non-interacting
limit cannot be easily recovered for the generic case of mul-
tiple non-degenerate orbitals away from half filling; see Ap-
pendix C for further discussions on this point as well.
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III. LANDAU FREE-ENERGY FUNCTIONAL AND THE
ORIGIN OF THE ORBITAL-SELECTIVE MOTT

TRANSITION

In a multiorbital system, an OSMP may exist besides the
metallic and the Mott insulating phases. In an OSMP, some of
the orbitals are Mott localized and the others are still metallic;
the quasiparticle spectral weight Z vanishes for the former or-
bitals and remains nonzero for the latter ones. In this section,
we clarify how an OSMP can arise in the slave-spin approach
and develop a Landau theory to describe the orbital-selective
Mott transition (OSMT).

We start from the two saddle-point Hamiltonians, Eqs. (12)
and (13). Consider first Eq. (12), where the kinetic hybridiza-
tion between two different orbitals α 6= β is Wαβ

k f†kαfkβ ,
with Wαβ

k = εαβk 〈z̃†α〉〈z̃β〉 ∝ 〈z̃†α〉〈z̃β〉. Recall that 〈f†kαfkβ〉
is determined by an averaging of f†kαfkβ with respect toHmf

f ,
and it is nonzero in response to an effective “field” Wαβ

k ap-
plied to the kinetic hybridization operator f†kαfkβ inHmf

f . For
the case we consider, with a nonzero orbital level difference,
∆α,β ≡ ∆α −∆β 6= 0, the susceptibility describing the lin-
ear response of 〈f†kαfkβ〉 to Wαβ

k will be finite, leading to
〈f†kαfkβ〉 ∝W

αβ
k ∝ 〈z̃α〉〈z̃†β〉; this is illustrated in Fig. 1, top

panel. As a result, the kinetic hybridization of the spinons is

〈Hmf
f 〉αβ =

∑
k

εαβk 〈z̃
†
α〉〈z̃β〉〈f

†
kαfkβ〉 ∝ |〈z̃α〉|

2|〈z̃β〉|2.

(19)
Consider next Eq. (13), which shows that the slave-spin

operator z̃α for orbital α experiences an effective field of
hα =

∑
β Q

f
αβ〈z̃β〉, where Qfαβ is defined in Eq. (14). Simi-

lar reasoning as in the previous paragraph gives rise to

Qfαβ ∝ 〈z̃α〉〈z̃
†
β〉, (20)

for α 6= β and ∆α,β 6= 0. In other words, hα ∝ 〈z̃α〉|〈z̃β〉|2,
as illustrated in Fig. 1. Taking the expectation value of z̃†α
with respect to Hmf

S then yields the following component of
the free energy from Hmf

S :

〈Hmf
S 〉αβ → |〈z̃α〉|2|〈z̃β〉|2. (21)

From Eqs. (19) and (21), we see that for both the spinons
and the slave spins, the interorbital correlations appear as a bi-
quadratic coupling |zα|2|zβ |2. This biquadratic interaction is
a natural result of a self-consistent solution of the two saddle-
point equations, Eqs. (12) and (13) (Fig. 1). It is crucial to
the stabilization of an OSMP. As zα approaches zero, so does
Qfαβ ; correspondingly, the effective field acting on the slave
spin, hα, also goes to zero in spite of a nonzero zβ , making
the OSMP an internally consistent solution.

To see how the OSMP arises more explicitly, we can con-
struct a Landau free-energy functional in terms of the quasi-
particle weights, zα. For simplicity of notation, we take the
3d xy and another 3d orbital as orbitals 1 and 2, but our anal-
ysis straightforwardly applies to the case of more than two

FIG. 1. (Color online) Illustrating the effect of the interorbital
kinetic hybridization in the U(1) slave-spin theory. The black
curve shows the effective spinon dispersion, which is generated by
Wαβ
k f†ασfβσ . (The physical spin index σ is suppressed in the fig-

ure legends.) Meanwhile, the slave-spin Sα experiences a local field,
hα =

∑
β Q

f
αβ〈z̃β〉, where Qfαβ ∝ 〈z̃α〉〈z̃†β〉. The red arrows in-

dicate the self-consistency between Wαβ
k and hα, which results in a

biquadratic interorbital coupling as shown in Eqs. (19) and (21).

orbitals. The free-energy density reads

f =
∑
α=1,2

(
rα|zα|2 + uα|zα|4

)
+ v|z1|2|z2|2, (22)

in which the biquadratic coupling v term comes from the ki-
netic hybridization as discussed above. The quadratic terms
rα|zα|2 arise from the kinetic energy of the saddle-point
Hamiltonian in Eq. (13) [as well as in Eq. (12)]. For ex-
ample, since

∑
k〈f
†
kαfkα〉 is the spinon density in orbital α,

which is of order O(1) even when zα approaches zero; thus,
Qfαα ∼ O(1), and gives rise to the quadratic terms (rα|zα|2)
in the Landau free-energy density. Taking the derivatives with
respect to |zα|, we obtain

∂f

∂|z1|
= |z1|(2r1 + 4u1|z1|2 + 2v|z2|2) = 0, (23)

∂f

∂|z2|
= |z2|(2r2 + 4u2|z2|2 + 2v|z1|2) = 0. (24)

There could then be three solutions:

1. r1 + 2u1|z1|2 + v|z2|2 = r2 + 2u2|z2|2 + v|z1|2 = 0,
which yields |z1| 6= 0, |z2| 6= 0, corresponding to a
metallic phase;

2. |z1| = |z2| = 0, corresponding to a Mott insulator;

3. |z1| = 0, |z2| =
√
− r2

2u2
(or |z2| = 0, |z1| =

√
− r1

2u1
),

corresponding to an OSMP.



5

IV. THE ORBITAL-SELECTIVE MOTT TRANSITION IN A
FIVE-ORBITAL MODEL FOR IRON CHALCOGENIDES AS

AN ILLUSTRATION OF THE LANDAU THEORY

In the previous section we have constructed a Landau the-
ory, and shown that an OSMP is an allowed solution to the
free-energy functional. Strictly speaking, the Landau theory
works only when zα is sufficiently small for each orbital. In
the more realistic situation, such as in the five-orbital model
for iron chalcogenides, zxz/yz may still be sizable across the
OSMT for the localization of the 3d xy orbital. Therefore, it
is instructive to show that the general consideration obtained
in the previous section is valid in the five-orbital model.

2 3 4 5 60 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 0 0 . 1 0 . 2 0 . 30 . 0 0

0 . 0 2

 

 

U  ( e V )

J H / U = 0 . 2 5
 Z x z / y z
 Z x y
 | Q  f

x z ; x y |

U O S M T

( a )

 

 

|Q f xz;
xy|

z x y

( b )

FIG. 2. (Color online) (a): The evolution of the quasiparticle spec-
tral weights Zxy , Zxz/yz , and the renormalization factor for the
interorbital hybridization |Qfxz/yz,xy| as a function of U in a five-
orbital model for KxFe2−ySe2 (without ordered iron vacancies),
with JH/U = 0.25 and electron filling n = 6. An OSMT occurs
at U = UOSMT. (b): |Qfxz/yz,xy| vs. zxy . The linear dependence
expected from the Landau analysis is shown by a linear fit (dashed
line). The model parameters are the same as in (a).

For this reason, we revisit the OSMT in the five-orbital
model for KxFe2−ySe2 system.11 For an illustrative purpose,
we consider the case without iron-vacancy order and with the
electron filling n = 6. For definiteness, we fix the ratio of
the Hund’s rule coupling to the intraorbital Hubbard interac-
tion to JH/U = 0.25. We have calculated the evolution of the
quasiparticle spectral weights Zα = |zα|2 with increasing U
for the 3d xz/yz and xy orbitals. The results are summarized
in Fig. 2(a). An OSMT takes place, at which Zxy vanishes,
where Zxz (as well as Zyz = Zxz , Zx2−y2 and Z3z2−r2 ) re-
main nonzero.

On approach of the OSMT, we can investigate how
the renormalization factor for the interorbital hybridization,
Qfxz,xy (and Qfyz,xy , which is equal to Qfxz,xy as dictated by
the C4 symmetry) behaves. We see that for U smaller than
4 eV, where the system is sufficiently away from the OSMT,
Qfxz,xy decreases relatively slowly. By contrast, as U gets
closer to UOSMT, where the system enters the linear-response
regime, Qfxz,xy rapidly decreases. This behavior implies that

suppressing the interorbital hybridization is key to the OSMT.
Indeed, it follows from the general analysis in the previous
section that Qfxz/yz,xy would vanish as the OSMT is reached.
The relationship Qfxz,xy ∝ zxzzxy would be expected if both
zxy and zxz were small. In our case, since zxz is still sizable
across the OSMT, the relationship Qfxz,xy ∝ zxz would ac-
quire sizable corrections; such corrections will not affect the
existence or critical behavior of the OSMT. On the other hand,
near the transition, Qfxz,xy is expected to be linearly propor-
tional to zxy . This proportionality is indeed satisfied, as shown
in Fig. 2(b).

V. DISCUSSIONS

We have analyzed the OSMT in multiorbital models per-
tinent to the FeSCs. From a Landau free-energy functional,
the OSMP can be realized because the effective coupling be-
tween the quasiparticle weights of the different orbitals is bi-
quadratic (instead of bilinear). In our analysis, we have em-
phasized the role of a nonzero orbital level splitting between
the 3d xy orbital and the other 3d orbitals (particularly the
xz/yz orbitals).

We have clarified how the crucial feature of the Landau
analysis, namely the absence of the bilinear coupling between
the quasiparticle weights of the different orbitals, arises within
the U(1) slave-spin approach. Crucial to this feature is the
coupling of the pseudofermions at different sites. At the
saddle point level, the slave spins are treated through a lo-
cal description, with its condensate capturing the quasipar-
ticle weight. By contrast, the effective Hamiltonian of the
pseudofermions, which is at least bilinear, must contain in-
tersite coupling. Because the slave spins have a U(1) symme-
try, we can construct the saddle-point equations in the gauge
with the slave spins alone describing the charge degrees free-
dom. Correspondingly, the physical spin degrees of freedom
are entirely captured by the pseudofermions. Thus, the inter-
site pseudofermion coupling reflects the intersite coupling of
the physical spin degrees of freedom. In this way, the analysis
here highlights the importance of the intersite spin correla-
tions in renormalizing the interorbital kinetic hybridization to
zero, as the OSMP is realized.

This insight suggests complementary means of studying the
OSMP. In terms of physical variables, another setting in which
interorbital hybridization has been shown to be dynamically
suppressed is in the heavy fermion systems51–53. There, the
RKKY spin-exchange interactions compete against the Kondo
hybridization between the f and conduction electrons, and
the resulting destruction of the Kondo hybridization can be
viewed as an OSMT of f electrons. One of the means that
captures this interplay between the hybridization and collec-
tive spin correlations is the extended dynamical mean field
theory (EDMFT)54. In the EDMFT approach, such intersite
spin correlations are treated in terms of physical spins (instead
of the auxiliary fermions).

For the multiorbital Hubbard Hamiltonian, Eq. (1), the ef-
fect of intersite spin correlations can be taken into account
by adding an explicit exchange interaction, Jij , between the
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spins at the different sites. The total Hamiltonian is then the
multiorbital analogue of the one-band Hubbard-Heisenberg
model55. (Alternatively, such a term can be considered as be-
ing effectively generated at an intermediate energy scale, by
integrating out the incoherent part of the slave-spin fluctua-
tion spectrum.) Within the EDMFT, the effects of such in-
tersite correlations are studied dynamically through a bosonic
bath, whose spectrum is determined self-consistently. This
coupling of the bosonic bath to the local spin degrees of free-
dom competes with the hybridization term. When the compe-
tition is strong enough, it can drive the hybridization to zero,
thereby realizing an OSMP. For the Anderson lattice model
relevant to heavy fermion systems, this method has already
shown that an OSMP arises, even when an on-site hybridiza-
tion is present. This line of study holds a clear promise to
bring about further new insights into the orbital-selective Mott
physics in multiorbital models pertinent to the iron-based su-
perconductors.

We close this section by noting that the orbital-selective
Mott physics is also of interest in a variety of other
contexts, such as VO2

56 and multiorbital systems at low
dimensions57–59.

VI. CONCLUSION

In this paper, we have revisited on the orbital-selective Mott
phase identified in previous studies in the multiorbital Hub-
bard models for iron pnictides and iron chalcogenides. This
type of models contains kinetic hybridization between the 3d
electron orbitals. We have constructed a Landau free-energy
functional in terms of the quasiparticle renormalization factor,
zα. We have shown that a kinetic hybridization between the
different orbitals introduces biquadratic couplings between
the quasiparticle renormalization z factors of the different or-
bitals. The absence of bilinear couplings is a property that is
generic to multiorbital models with nonzero orbital level split-
tings. It makes the orbital-selective Mott phase possible.

Within the microscopic U(1) slave-spin approach, the ab-
sence of the bilinear coupling among the z’s can be traced to
the intersite spin correlations. This amounts to a linear re-
lationship between the renormalized interorbital kinetic hy-
bridization and the quasiparticle weight for the 3d xy orbital
(when the latter is sufficiently small). Such a linear relation-
ship is shown to be satisfied in the previously identified solu-
tion near the orbital-selective Mott transition.

More generally, our analysis here illustrates that intersite
spin correlations are important in renormalizing the interor-
bital kinetic hybridization to zero, thereby generating the
OSMP. This insight suggests additional means of studying
the orbital-selective Mott physics in the multiorbital models.
In particular, an extended dynamical mean field theory al-
lows the study of the dynamical competition between the in-
terorbital hybridization and collective spin correlations. This
method has been used to demonstrate an OSMP in the case of
Anderson lattice model, which contains an on-site hybridiza-
tion. It would be a promising way to gain further insights into
the dynamical suppression of the hybridization effect for the

orbital-selective Mott phase in multiorbital models pertinent
to the iron-based superconductors. Given the growing recog-
nition that the orbital selectivity plays an important role in the
iron pnictides and iron chalcogenides, such studies are clearly
worth the efforts.

In short, through a Landau analysis, we have demonstrated
the robustness of the orbital-selective Mott phase in multior-
bital models pertinent to the iron-based superconductors. We
have also suggested means for further theoretical studies of
the orbital-selective Mott physics, which may be relevant to
bad metals in a variety of correlated electron systems.
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After completing this manuscript, we became aware of an-
other work [60] which studied a particle-hole-symmetric mul-
tiorbital Hubbard model with an inter-orbital kinetic and/or
onsite hybridization and without an orbital-level splitting. The
two works reached consistent conclusions where there is over-
lap.

Appendix A: Derivation of the saddle-point equations

To facilitate the detailed derivations and analyses pre-
sented in the next two appendices, we summarize here the
derivation32 of the equations Eqs. (12) and (13) from Eq. (10).
By decomposing the slave (Schwinger) boson – or, equiva-
lently, the slave spin – and the pseudofermion operators in
Eq. (10), we obtain

Hmf
f =

1

2

∑
ijαβσ

tαβij 〈ẑ
†
iασ ẑjβσ〉f

†
iασfjβσ

+
∑
iασ

(∆α − λiασ − µ)f†iασfiασ, (A1)

Hmf
S =

1

2

∑
ijαβσ

tαβij 〈f
†
iασfjβσ〉z

†
iασzjβσ

+
∑
iασ

λiασ
2

(n̂aiασ − n̂biασ) +HS
int, (A2)
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where 〈· · · 〉 denotes the averaging taken with respect to these
Hamiltonians, and n̂aiασ = a†iασaiασ . Here, Hmf

S has an in-
ternal U(1) symmetry of the bosons. For the single-orbital
case, it is a Bose-Hubbard model for two species of hard-core
bosons (or, equivalently, a model for interacting XY spins),
and it possesses a phase transition from a bosonic Mott insu-
lator to a superfluid. More generally, we start from the side
with a Bose condensation in the composite boson field ziασ .
The leading term is captured by a single-site decomposition
in Eq. (A1) and Eq. (A2), with ẑ†iασ ẑjβσ ≈ 〈ẑ

†
iασ〉ẑjβσ +

ẑ†iασ〈ẑjβσ〉 − 〈ẑ
†
iασ〉〈ẑjβσ〉. We focus on the paramagnetic

phase with the translational symmetry preserved, in which the
spin and site indices can be dropped without causing ambigu-
ity. The boson Hamiltonian then reads

Hmf
S ≈

∑
αβ

Qfαβ
(
〈ẑ†α〉ẑβ + 〈ẑβ〉ẑ†α

)
+
∑
α

λα
2

(n̂aα − n̂bα) +HS
int. (A3)

In Eq. (A3), we Taylor-expand ẑα and ẑ†α in terms of Â−〈Â〉
(where Â = n̂a, n̂b, a†b), and keep up to the linear terms in
Â− 〈Â〉. This leads to

ẑ†α ≈ z̃†α + 〈z̃†α〉ηα[n̂aα − n̂bα − (2nfα − 1)], (A4)

where z̃†α = 〈P+
α 〉a†αbα〈P−α 〉. The details involved in the

derivation of Eq. (A4) is given in Appendix B. Note that
nfα = 〈n̂aα〉 = 1−〈n̂bα〉 from the constraints. With this, we find
that 〈ẑα〉 = 〈z̃α〉, which is defined as zα (cf. Eq. (11)). Us-
ing Eq. (A4), the saddle-point Hamiltonian given in Eq. (A3)
becomes

Hmf
S ≈

∑
αβ

Qfαβ
(
〈z̃†α〉z̃β + 〈z̃β〉z̃†α

)
+
∑
α

(
λα
2

+ ε̄αηα

)
(n̂aα − n̂bα) +HS

int. (A5)

Further using the constraint Eq. (5), we can redefine λα to
move the term proportional to ηα to Hmf

f by introducing an

effective onsite potential µ̃α. We then arrive at the two saddle-
point Hamiltonians, Eqs. (12) and (13). Recognizing the
hard-core nature of the bosons (or, equivalently, recognizing
that they can be transformed back to XY spins), we can ex-
actly diagonalize the Hamiltonian in Eq. (13) even thought it
contains quartic terms of the boson operators in HS

int.

Appendix B: Derivation of Eq. (A4)

Starting from the definition of the projectors P±iασ =

1/
√

1/2 + δ ± (n̂aiασ − n̂biασ)/2, we expand n̂aiασ − n̂biασ
about its saddle-point value and obtain

P+
α =

1√[
1
2 + 1

2 (〈n̂aα〉 − 〈n̂bα〉) + δ
] [

1 + ∆n̂
1+〈n̂aα〉−〈n̂bα〉+2δ

]
≈ 1√

1
2 + 1

2 (〈n̂aα〉 − 〈n̂bα〉) + δ

{
1− ∆n̂

2(1 + 〈n̂aα〉 − 〈n̂bα〉+ 2δ)

}
,

(B1)

where ∆n̂ = (n̂aα− n̂bα)− (〈n̂aα〉−〈n̂bα〉). Here we have again
dropped the site and spin indices for simplicity. By using the
constraint in Eq. (5) we have 〈n̂aα〉 − 〈n̂bα〉 = 2nfα − 1. This
further simplifies Eq. (B1) to

P+
α ≈

1√
nfα + δ

(
1− ∆n̂

4(nfα + δ)

)
. (B2)

Similarly, we have

P−α ≈
1√

1− nfα + δ

(
1 +

∆n̂

4(1− nfα + δ)

)
. (B3)

Inserting these into the definition of ẑ†α in Eq. (6), we obtain

ẑ†α ≈ 〈P+
α 〉

(
1− ∆n̂

4(nfα + δ)

)[
〈a†αbα〉+ (a†αbα − 〈a†αbα〉)

]
〈P−α 〉

(
1 +

∆n̂

4(1− nfα + δ)

)

≈ 〈P+
α 〉a†αbα〈P−α 〉+ 〈P+

α 〉〈a†αbα〉〈P−α 〉
(2nfα − 1)∆n̂

4nfα(1− nfα) + δ
+O(∆n̂2), (B4)

where we have defined 〈P+
α 〉 = 1/

√
nfα + δ and 〈P−α 〉 =

1/
√

1− nfα + δ. Using the definition of z̃†α given in Eq. (15)
and that of ηα given in Eq. (18), we arrive at

ẑ†α ≈ z̃†α + 〈z̃†α〉ηα∆n̂, (B5)

which, then, yields Eq. (A4).

Appendix C: Recovery of the proper noninteracting limit in the
U(1) slave-spin approach

In this section we show how the saddle-point equations of
the U(1) slave-spin theory recovers the correct noninteracting
(U = JH = 0) limit for a general multiorbital Hubbard model.
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In the noninteracting limit, the quasiparticle spectral weight
of the itinerant electrons is not renormalized by the electron
correlations; therefore

Zα = 1 (C1)

for each orbital. In addition, the spinon dispersion should be
identical to the original tight-binding dispersion of the physi-
cal d electrons. Both features would be captured if Eq. (C1) is
accompanied by

λα = µ̃α. (C2)

Indeed, in this case Eq. (12) becomes

Hmf
f =

∑
kαβ

{
εαβk + δαβ(∆α − µ)

}
f†kαfkβ . (C3)

This generates exactly the same dispersion as for the original
tight-binding model of the 3d electrons in Eq. (2).

We now show that Eqs. (C1) and (C2) indeed solve the
saddle-point equations in the non-interacting case. Our strat-
egy is to show that λα = µ̃α leads to Zα = 1 in this case.
With λα = µ̃α, the Hamiltonian Hmf

S at U = JH = 0 in
Eq. (13) becomes

Hmf
S =

∑
αβ

{
Qfαβ

(
〈z̃†α〉z̃β + 〈z̃β〉z̃†α

)
+ δαβ

µ̃α
2

(n̂aα − n̂bα)

}
=
∑
α

{
hαz̃

†
α + h∗αz̃α + (hα〈z̃†α〉ηα + h∗α〈z̃α〉ηα)(n̂aα − n̂bα)

}
,

=
∑
α

(a†α, b
†
α)Hmf

Sα

(
aα
bα

)
, (C4)

where hα =
∑
β Q

f
αβ〈z̃β〉, andHmf

Sα is a 2× 2 matrix,

Hmf
Sα =

 (2nfα−1)(hα〈z̃†α〉+c.c.)

4nfα(1−nfα)

hα√
nfα(1−nfα)

h∗α√
nfα(1−nfα)

−(2nfα−1)(hα〈z̃†α〉+c.c.)

4nfα(1−nfα)

 . (C5)

Without losing generality, we take 〈z̃α〉 to be real, in which
case hα is also real. By diagonalizingHmf

Sα, we obtain that, at
T = 0,

|〈z̃α〉| =
1

2

√
(nfα − 1/2)2|〈z̃α〉|2 + nfα(1− nfα)

. (C6)

This equation has two solutions, either |〈z̃α〉| = 1 or |〈z̃α〉| =
−1/(2nfα − 1)2 < 0. Because the second solution is unphys-
ical, we have |〈z̃α〉| = 1, corresponding to Zα = 1 for each
orbital α.

Therefore, in the noninteracting case, λα = µ̃α, and the
saddle-point equations of the U(1) slave-spin theory recover
the correct noninteracting limit of the multiorbital Hubbard
model. In the case of degenerate orbitals at half-filling, this
result is straightforward. On the other hand, for the generic
case of non-degenerate orbitals, when the electron density of
orbital α (which is proportional to 〈n̂aα〉− 〈n̂bα〉) is away from
half-filling, λα is generally nonzero, and a nonzero µ̃α is cru-
cial for the recovery of the proper noninteracting limit.

1. Comparison with the Z2 slave-spin theory

We now make a comparison between the U(1) and the Z2

slave-spin theory. In the Z2 formulation, the field µ̃α is ab-

sent. Therefore, for multiorbital models with non-degenerate
orbitals away from half-filling, the saddle-point equations of
the Z2 formulation do not correctly capture the limit of zero
interactions. It has been shown in Ref. 32 that by choosing a
particular projector, the saddle-point Hamiltonian Hmf

S of the
U(1) theory – which does incorporate the parameters µ̃α –
can be written in a form appropriate for the Z2 slave-spin the-
ory. This suggests a route to remedy the Z2 formulation in the
generic case of multiorbital models with non-degenerate or-
bitals away from half-filling, such that the µ̃α parameters be
introduced; whether this can be done in a natural way remains
unclear. Note that, even if this is achieved, the agreement be-
tween the saddle-point results of the U(1) and Z2 formula-
tions only applies to the metallic phase where the slave spins
are ordered. The Z2 theory is insufficient to describe a Mott
insulating state, due to the fact that the pseudofermions must
carry not only the physical spin degrees of freedom but also
the physical charge degrees of freedom48.
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