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We propose a diagnostic tool for detecting non-trivial symmetry-protected topological (SPT)
phases protected by a symmetry group G in 2+1 dimensions. Our method is based on directly
studying the 1+1-dimensional anomalous edge conformal field theory (CFT) of SPT phases. We
claim that if the CFT is the edge theory of an SPT phase, then there must be an obstruction
to cutting it open. This obstruction manifests as the in-existence of boundary states in the CFT
that preserves both the conformal symmetry and the global symmetry G. We discuss the relation
between edgeability, i.e., the ability to find a consistent boundary state, and gappability, i.e., the
ability to gap out a CFT, in the presence of G. We study several cases including time-reversal sym-
metric topological insulators, ZN symmetric bosonic SPT phases, and Z2×Z2 symmetric topological
superconductors.
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I. INTRODUCTION

A. SPT phases and quantum anomalies

Symmetry-protected topological (SPT) phases are
quantum states of matter with a global symmetry
G, which can be either an internal or a spacetime
symmetry.1–8 This symmetry prevents one from adiabat-
ically connecting an SPT state to a topologically triv-
ial state, namely, a product state. More precisely, this
means that one cannot find a symmetry-preserving quasi-
local unitary transformation that maps an SPT state to
a product state.1 In fact, as long as the symmetry is
unbroken (either explicitly or spontaneously), the phase
space of gapped systems is partitioned into topologically
distinct sectors that cannot be adiabatically connected
to each other. The trivial state lies in the trivial (in the
topological sense) sector of this classification. We will
henceforth refer to it as the trivial SPT phase.

The existence of SPT phases has a close connection
with quantum anomalies which are purely quantum phe-
nomena without any classical analogue. Crudely speak-
ing, it is expected that on the d-dimensional boundary of
an SPT phase in d+1-dimensional spacetime lives an in-
teresting phase of matter which is anomalous in the sense
that it cannot exist on a pure d-dimensional spacetime
manifold, but must always be realized on the boundary of
a d+ 1-manifold under the condition that the symmetry
is realized in the same way as in the bulk.9–13

Put differently, consistency conditions of a conformal
field theory (CFT) at the boundary and topological prop-
erties of a bulk phase are closely related. Basically, a con-
sistent CFT, when realized at the edge of a bulk system,
implies that the bulk is trivial, namely, continuously de-
formable to a trivial state. On the other hand, if a bulk
supports a CFT that is inconsistent as its boundary the-
ory, the bulk cannot be deformed into a trivial state.
This leads us to the question: What are the criteria for
a CFT to be consistent?
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For a (2+1)d SPT phase, modular (non-)invariance
of its (1+1)d edge theory has been used as a diagnos-
tic for the (non-)trivial bulk.14,15 For a non-trivial SPT
phase protected by symmetry G, there is a conflict be-
tween G and modular invariance of the edge CFT; more
precisely, the edge theory orbifolded by G is not mod-
ular invariant.14,15 A similar argument can be applied
to boundary theories of SPT phases in space dimensions
higher than two.16,17

B. Edgeability

In this paper, we will give further thought on consis-
tency conditions of CFTs. We will rely on the simple
geometrical identity, ∂2 = 0, which essentially says there
is no boundary to a boundary of a bulk system. This
would mean, in the context of SPT phases and their
boundaries, that boundary theories of SPT phases are
not allowed to have boundaries. Conversely, it is likely
that any ‘healthy’ (conformal) field theories should be
possible to have boundaries – this may be a consistency
condition of the (conformal) field theories.

In studies of surface topological orders of (3+1)d
SPT phases, such a consistency condition was called
‘edgeability’.18,19 (2+1)-dimensional surface theories are
said to be ‘non-edgeable’, meaning that it is not pos-
sible to create an edge between the theory in question
and the vacuum. The only boundary that one can pos-
sibly create is a domain wall. In contrast, any consistent
(2+1)d theory should be ‘edgeable’ to the trivial vacuum.
Here ‘edgeability’ may be also called ‘cuttability’, mean-
ing that the original theory defined on a closed spacetime
can be cut open.

We will follow this idea but focus on one lower dimen-
sion. In (1+1)d CFTs, in addition to modular invariance,
it is often claimed that a consistent conformal field the-
ory with boundaries must have a complete set of bound-
ary states. (See, for example, Refs. 20 and 21.) This
reminds us of ‘edgeability’. In fact, the construction of
modular invariant partition functions are closely related
to boundary conformal field theories (BCFTs). The per-
spective from SPT phases gives us some insight about
why BCFT is crucial for consistency, which may look
a little puzzling from other viewpoints. In order for a
CFT to exist as a pure (1+1)d system, both ‘edgeability’
and modular invariance must be satisfied. (Once again,
here ‘edgeability’ may be also called ‘cuttability’, mean-
ing that the original closed (1+1)d CFT can be cut open
into a well-defined BCFT.) In many known cases, these
two conditions are actually equivalent.

Simplest examples of (non-)edgeability can be provided
by chiral edge theories of topologically ordered phases, in
which the chiral central charge is non-zero. In these edge
theories, it is not possible to find conformally invariant
boundary conditions or boundary states. These confor-
mal field theories are hence non-edgeable and must be
realized at the boundary of a (topological) phase in one

Edgeablity Gappability

Boundary states

in (1+1)d CFTs
Gapped ground states

(= (1+1)d TQFT)

Anomalies

FIG. 1. Edgeability and gappability of conformal field theo-
ries are closely related – they both diagnose if they must be
realized as a boundary of (topological) systems in one higher
dimensions. Hence, edgeability and gappability are both re-
lated to quantum anomalies.

higher dimensions.
In the context of SPT phases, Ref. 22, gives an explicit

lattice construction of an (1+1)d CFT, which is the edge
theory of (2+1)d bosonic SPT phases protected by Zk
onsite unitary symmetry. In this construction, while the
CFT is successfully put on a one-dimensional lattice, the
Zk symmetry is not realized in a purely local way – the
action of the Zk transformation is non-on-site, and it
involves links of the lattice. It was claimed that its non-
onsite symmetry has been gauged, which is equivalent
to orbifolding Zk symmetry. As we will clarify, within
this CFT with the non-onsite action of the Zk symmetry
(and its lattice realization), it is not possible to make
a boundary which is consistent with the Zk symmetry.
Hence, this theory is non-edgeable.

C. Gappability

Let us now also give a slightly different perspective
from the correspondence between (1+1)d gapped states
and boundary states in CFTs. In Refs. 23 and 24, (1+1)d
conformal field theories perturbed by some operators are
considered. If the perturbation is such that it fully gaps
out the theory, we flow from the CFT to a massive phase.
It was claimed that the ground state of the massive phase
is described, with the Hilbert space of the CFT, by a
boundary state. In particular, in Ref. 23 this claim is
explicitly verified for various symmetry-protected topo-
logical phases in (1+1)d, which are obtained by perturb-
ing CFTs. These phases are fully gapped (1+1)d phases
protected by a certain set of symmetries. In particu-
lar, topological invariants, for instance, the group cocycle
ε ∈ H2(G,U(1)) of the group cohomology classification
of (1+1)d SPT phases,10,11 can be fully extracted from
boundary states that describe SPT phases.

In this paper, instead of (1+1)d SPT phases, we are
concerned with (2+1)d SPT phases, and in particular
their edge theories. In various examples, we establish
a claim similar to the above claim for the bulk (1+1)
dimensions; we again establish a connection between
gapped ground states in the edge theories and confor-
mal boundary states. The relation between edgeabil-
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FIG. 2. We claim that one cannot ‘cut’ or ‘make a bound-
ary’ while preserving G-symmetry for certain CFTs and cer-
tain symmetry implementations. These symmetry implemen-
tations correspond precisely to (2 + 1)d G-symmetric SPT
phases and the corresponding CFTs are their edge theories.

ity and gappability is schematically illustrated in Fig.
1. In particular, for the edge theories described by the
K-matrix theory, we establish the connection between
Haldane’s null vector criterion for gapping potentials25

and the boundary states.
More precisely, the main question we ask is which

boundary conditions (including symmetry projections)
can be imposed on conformal field theories that are de-
fined on the edge of (2+1)d systems with boundaries. We
show the equivalence between our BCFT formalism and
the K-matrix formalism used in Ref. 9 and show that
those CFTs that admit a consistent boundary state cor-
respond to edge theories of trivial SPTs and those that
do not admit a consistent boundary state correspond to
edges of non-trivial SPTs.

This criterion is very similar to that imposed by the
modular invariance of CFTs field theories on the torus.
Putting a theory on a torus in this context implies
that it can be realized on a strictly (1+1)d manifold
and need not be realized on the boundary of an SPT
phase.14,15,26,27

D. Working Principles

Following these motivations, let us now describe our
strategy to detect and diagnose non-trivial SPT phases.
We claim that one cannot construct a symmetry invari-
ant Cardy state (conformal boundary state) for a CFT
corresponding to the edge of a non-trivial SPT. As it was
mentioned in the above example, this is due to the fact
that although one may be able to put the edge theory of
an SPT on a lattice, G-symmetry cannot be implemented
in an onsite way – this shows up as non-edgeablity.

A Cardy state in conformal field theory is a coher-
ent state in the Hilbert space of the closed sector of the
CFT which satisfies an open-closed consistency relation,
namely the Cardy condition.28,29 We show that in the
case of non-trivial SPT phases, it is not possible to imple-
ment the symmetry and simultaneously satisfy the Cardy
condition.

We list our procedure for diagnosis of SPT phases as
follows (see Fig. 2 for an illustration).

• First, cut the 1d circle and impose appropriate
boundary conditions on the two ends.

• Second, solve for Ishibashi states30 of this open sys-
tem, which correspond to solutions to the boundary
conditions imposed.

• Third, try to construct a boundary state that is a
linear combinations of Ishibashi states, which sat-
isfies the Cardy condition and is also symmetry in-
variant. If such a state exists, then there is no
non-trivial SPT phases in a (2+1)d bulk system; if
such a state does not exist, then the corresponding
(2+1)d bulk is a non-trivial SPT phase.

• Fourth, once we have detected non-trivial SPT
phases, we can obtain its classification from the
transformation of the Cardy state under symme-
try operation, which will be explained in detail in
later sections.

Using this technique, we can study SPT phases protected
by spacetime and/or some internal symmetries. Exam-
ples include the time-reversal symmetric topological in-
sulators, bosonic SPT phases with ZN symmetry, and
topological superconductors protected by Z2 × Z2 sym-
metries. These examples have been also analyzed in the
literature by different methods.31–35

The organization of the rest of the paper is as follows.
In Sec. II, a brief introduction to BCFT is provided. In
Sec. III, we study (2+1)d time-reversal symmetric topo-
logical insulators from the edge theories and the corre-
sponding symmetric Cardy boundary states. Edge the-
ories of more general (2+1)d SPT phases described by
the K-matrix theories are considered in Sec. IV, where a
connection between the Cardy states and gapped phases
in (1+1) dimensions is shown explicitly. Then we apply
our approach to topological superconductors in Sec. V.
Discussions and conclusions are given in Sec.VI.

II. AN INTRODUCTION TO BCFT

A boundary condition in a CFT defines a relation be-
tween the holomorphic and anti-holomorphic sectors. In
other words, the two sectors are related to one another
on the boundary via an automorphism of the form

S(z) = ρβ
(
S̄(z̄)

)
, (1)

where S belongs to some symmetry algebra, ρβ denotes
an automorphism of the algebra of fields, and β is a con-
stant that parametrizes the boundary condition. S(z)
and S̄(z̄) are fields which have the following expansion in
terms of modes

S(z) =
∑
n∈Z

Snz
−n−h, S̄(z̄) =

∑
n∈Z

S̄nz̄
−n−h̄, (2)

where h and h̄ are the conformal weights of S and S̄
respectively. In most general situations, S and S̄ are
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FIG. 3. An illustration of the Cardy condition; a consistency
condition for conformal boundary states. For boundary states
that preserve conformal symmetry, the open channel partition

function Zopen := TrHopen

[
e−

2πi
τ
Hopen

]
must equal the am-

plitude for a ‘Cardy’ state A = 〈B|e2πiτHclosed |B〉

the holomorphic and antiholomorphic components of the
stress-energy tensor with h = 2. For CFTs with current
algebra symmetries, S and S̄ are taken to be the currents
with h = 1.

In the closed picture, a boundary condition is rep-
resented by a state in the Hilbert space of a CFT de-
fined on a circle. According to Cardy, such a boundary
state must transform consistently under the S-modular
transformation, namely, a π/2 rotation of the spacetime
manifold (worldsheet) illustrated in FIG.3. To construct
physical boundary states obeying this consistency con-
dition (the Cardy condition), one first constructs a set
of states, the so called Ishibashi states, |i, β〉〉, which are
annihilated by the boundary conditions (known as gluing
conditions) in the operator form after the π/2 rotation,[
Sn − ρβ

(
S̄n
)] worldsheet rotation−−−−−−−−−−−−→

[
Sn − (−1)hρβ

(
S̄n
)]

,
namely, [

Sn − (−1)hρ
(
S̄n
)]
|i, β〉〉 = 0. (3)

A Cardy state is a suitable superposition of the Ishibashi
states that satisfy the Cardy condition, which is an im-
plementation of open-closed channel consistency:

Zαβ(−1/τ) = 〈Bα|e2πiτHclosed |Bβ〉, (4)

where Zαβ is the partition function computed in the
open channel picture, and given as a trace over the open
Hilbert space with boundary conditions α, β on the two
ends, and τ is parameterized by the size of the system.36

The states |Bα〉 and |Bβ〉 which satisfy the above condi-
tion are the bonafide boundary states, the Cardy states.
For a more detailed introduction to boundary conformal
field theory, see, for example, Refs. 28, 29, 36–39.

Symmetry invariant Cardy states and the obstruction
A generic Cardy boundary state |B〉 (here we are sup-
pressing the label α, β specifying boundary conditions)

lies in the subspace of the closed Hilbert space and sat-
isfies

(T − T̄ )|B〉 = 0 (on a boundary), (5)

where T and T̄ are the holomorphic and anti-holomorphic
parts of the energy density operator, respectively. In
terms of the Virasoro generators, this condition can be
written as

(Ln − L̄−n)|B〉 = 0. (6)

Equation (6) implies (c− c̄)|B〉 = 0, where c and c̄ rep-
resent the central charges for the holomorphic and an-
tiholomorphic sectors, respectively. Thus, as expected,
one cannot construct (conformally invariant) boundary
states when c 6= c̄ since in this case, the (1+1)d CFT suf-
fers from the (infinitesimal) gravitational anomaly, and
hence it must be realized as the boundary theory of an
appropriate bulk system living in one higher dimensions.

For the rest of the paper, we will deal with systems
with the vanishing chiral central charge, c − c̄ = 0, and
hence there is no infinitesimal gravitational anomaly. We
will also focus on (1+1)d CFTs for which one can con-
struct a modular invariant, if one is willing not to im-
pose any additional symmetry. Hence, in the absence of
symmetries, the (1+1)d CFT can be safely gapped by
adding a suitable perturbation. However, if we impose
some symmetry, e.g., if we consider (1+1)d CFTs real-
ized potentially on the boundary of (2+1)d SPT phases,
there may be a conflict between the symmetry and mod-
ular invariance. Once symmetry is gauged (orbifold), the
modular invariance may be spoiled. Conversely, if the
modular invariance is enforced, the symmetry must be
broken.

At the level of BCFT, this would mean that one may
not be able to construct boundary states which are in-
variant under the symmetry. More precisely, we consider
a symmetry that preserves T and T̄ , respectively, or ex-
changes them. Classically, such a symmetry preserves the
conformally invariant boundary condition T = T̄ along
the boundary. However, once the theory is quantized,
there may be an obstruction to construct the correspond-
ing a boundary state. A symmetry of a CFT (on a closed
spacetime manifold) is anomalous if one cannot make
a boundary that preserves this symmetry both classi-
cally and quantum mechanically. Typically, this happens
when there is a conflict between the Cardy condition (4)
and the symmetry, so a symmetric Cardy state does not
exist. In this situation, the theory itself, together with
the symmetry, cannot be consistently defined and must
appear as a boundary theory of a SPT phase with the
same symmetry in one higher dimensions. Nevertheless,
by “stacking” copies of such SPT phases, the number of
degrees of freedom at boundaries increase, and the so-
lution space of the equation (5) is enlarged – it may be
possible to find a symmetric Cardy state if the number
of the copies is large enough. When this occurs, the cor-
responding CFT is anomaly free with respect to such a
symmetry and can exist alone in its own dimension.
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III. EDGE THEORIES OF (2+1)D
TIME-REVERSAL SYMMETRIC TOPOLOGICAL

INSULATORS

Let us begin with a simple example. Consider the edge
theory of a (2+1)d time-reversal symmetric topological
insulator, which is described by (1+1)d massless Dirac
fermions on a closed two-manifold Σ:

S =
1

2π

∫
Σ

dtdx
(
iψ̄R∂+ψR + iψ̄L∂−ψL

)
, (7)

where ∂± = ∂t ± ∂x. The system is invariant under both
charge U(1)C and time-reversal symmetries, which are
defined as

U(1)C : ψR → e−iθψR, ψL → e−iθψL

Tη : ψR → ψL, ψL → ηψR, η = ±1. (8)

Here in principle we have two choices for time-reversal
symmetry (characterized by η): T 2

1 = 1 and T 2
−1 =

(−1)F , where F is the total fermion number operator.
By analyzing the stability (gappability) of the theory
(7), at least at the quadratic level (namely, by consider-
ing adding symmetry-respecting fermion mass bilinears
to the action), we know that η = 1 (η = −1) corresponds
to the edge of the topologically trivial (nontrivial) phase.
It can also be shown the nontrivial topological phases
form a Z2 class.

Now let us study the same problem (classification of
topological insulators) by the BCFT approach. Consider
putting the theory (7) on a cylinder Σ with boundary
at x = 0, π. Then we would like to know, based on the
discussion in the previous sections, if there exists a Cardy
boundary state, which satisfies the conditions (4) and (5),
invariant under U(1)C and Tη. If such a Cardy state does
not exist, the corresponding theory must be the edge of
a (2+1)d topological insulator.

One obtains the boundary conditions by varying the
action (7) on the cylinder Σ[

ψ̄RδψR + ψRδψ̄R − ψ̄LδψL − ψLδψ̄L
]∣∣
∂Σ

= 0. (9)

This boundary condition can be solved by the following
set of gluing conditions40

Bβ-type : ψL = e−iβψR, ψ̄L = eiβψ̄R

Aα-type : ψL = e−iαψ̄R, ψ̄L = eiαψR. (10)

The two kinds of boundary conditions have been labeled
Bβ and Aα, respectively. Note that, as the bulk the-
ory respects all symmetries, the presence of boundary
might in general break (some of) the symmetries. To be
specific, the Bβ boundary condition (with arbitrary β)
preserves both U(1)C and T1, while either the Bβ or the
Aα boundary condition cannot preserve both U(1)C and
T−1. Therefore, it is impossible to, at least for a single
copy of the theory (7), find a symmetric Cardy state with
respect to both U(1)C and T−1, because there is no such
symmetry invariant boundary condition.

Let us first focus on the case of the symmetry group
U(1)CoZT12 , where ZT12 is generated by T1. Although the

Bβ boundary condition preserves U(1)C o ZT12 , we still
have to check that the corresponding Cardy state is also
symmetry invariant.

We impose boundary conditions B0, Bβ at x = 0, π,
respectively. In order to satisfy the boundary conditions,
we define a mode expansion

ψL =
∑

r∈Z+ β
2π

ψr(t)e
irx, ψ̄L =

∑
r′′∈Z− β

2π

ψ̄r′(t)e
ir′x,

ψR =
∑

r∈Z+ β
2π

ψr(t)e
−irx, ψ̄R =

∑
r′∈Z− β

2π

ψ̄r′(t)e
−ir′x.

(11)

The mode operators satisfy the following algebra

{ψr(t), ψ†r′(t)} = 2πδr+r′,0,

{ψr(t), ψr′(t)} = {ψ†r(t), ψ
†
r′(t)} = 0. (12)

We define the normal ordering with respect to a vacuum
|0, β〉 which is annihilated by ψr (≥ 0) and ψ̄r′ (≥ 0):

: ψ̄−rψr :=

{
ψ̄−rψr if r ≥ 0

−ψrψ̄−r if r < 0.
(13)

The Hamiltonian and U(1)C charge operator F take the
form

Ho =
∑

r∈Z+ β
2π

r : ψ̄−rψr : +
1

2

(
β

2π
−
[
β

2π

]
− 1

2

)2

− 1

24
,

F =
∑

r∈Z+ β
2π

: ψ̄−rψr : +
β

2π
−
[
β

2π

]
− 1

2
. (14)

The open-channel partition function with insertion
of symmetry flux e−2πi(a− 1

2 )F on the cylinder with
(`space, βtime) = (π, 2πT ) is

Za0β(T ) = TrHo

[
e−2πi(a− 1

2 )F e−2πTHo
]

=
ϑ
[

β
2π−1/2

−(a−1/2)

]
(0, iT )

η(iT )
. (15)

To construct the Cardy states, we work in Euclidean
signature, by performing the Wick rotation t = −iτ , and
consider boundary conditions in the closed channel (after
the spacetime cylinder has been rotated by π/2, namely,
(x′, τ ′) = (τ,−x)):

ψ′L = e−iβe−iπ/2ψ′R, ψ̄′L = eiβe−iπ/2ψ̄′R, (16)

where we have introduced the notation

ψ′R = eiπ/4ψR, ψ̄′R = eiπ/4ψ̄R,

ψ′L = e−iπ/4ψL, ψ̄′L = e−iπ/4ψ̄L, (17)
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for the fields with respect to the coordinate system after
the π/2 spacetime rotation.

In Euclidean signature, the original time-reversal sym-
metry Tη, which is an anti-unitary operator in the
Lorentz signature, becomes the unitary (CP)η symmetry,
the product of charge conjugation and spatial reflection
that flips τ to −τ . From the relation (17), this (CP)η is
further translated to (CP)′−η, which acts on the fermions
as

(CP)′−η : ψ′R(x′, τ ′)→ eiπ/2ψ̄′L(−x′, τ ′),

ψ′L(x′, τ ′)→ ηe−iπ/2ψ̄′R(−x′, τ ′). (18)

Therefore, under the π/2 spacetime rotation (together
with an analytic continuation from the Lorentz to Eu-
clidean signature), we have the following correspondence

T 2
η = ηF ←→ (CP)′

2
−η = (−η)F , η = ±1. (19)

One can check that (CP)′−1 preserves the boundary con-
dition (16) as T1 preserves the Bβ-type boundary condi-
tion in (10).

Now, since we inserted a U(1)C charge operator in the
trace when evaluating the open-channel partition func-
tion, the corresponding boundary states in the closed
channel must lie in the subspace of the Hilbert space
of the twisted fields that satisfy

ψ′R(x′ + 2π, τ ′) = e2πiaψ′R(x′, τ ′),

ψ′L(x′ + 2π, τ ′) = e2πiaψ′L(x′, τ ′). (20)

(Here we compactify the space direction as x′ ≡ x′+2π.)
Hence, we get the following mode expansions

ψ′R =
∑
r∈Z+a

ψ′re
irw′ , ψ̄′R =

∑
r′∈Z−a

ψ̄′r′e
ir′w′ ,

ψ′L =
∑
r̃∈Z−a

ψ̃′r̃e
−ir̃w′ , ψ̄′L =

∑
r̃′∈Z+a

¯̃
ψ′r̃′e

−ir̃′w′ , (21)

where ω′ = x′ + iτ ′. The Hamiltonian is

Hc =
∑
r∈Z+a

r : ψ̄′−rψ
′
r : +

∑
r̃∈Z−a

r̃ : ψ̄′−r̃ψ
′
r̃ :

+
1

2

(
a− [a]− 1

2

)2

+
1

2

(
a+ [−a] +

1

2

)2

− 1

12
.

(22)

The ground state |0〉a,−a is defined to be the state anni-

hilated by ψ′r (r ≥ 0), ψ̄′r′ (r′ > 0), ψ̃′r̃ (r̃ ≥ 0),
¯̃
ψ′r̃′ (r̃′ >

0).
The gluing condition (16) for the mode operators takes

the form

ψ′r = ieiβψ̃′−r ∀r ∈ Z + a,

ψ̄′r′ = ie−iβ
¯̃
ψ′−r′ ∀r′ ∈ Z− a. (23)

An incoming boundary state that solves the above gluing
condition is

|Bβ〉a

= exp

ie−iβ ∑
r′≥0

ψ′−r′
¯̃
ψ′−r′ + ieiβ

∑
r>0

ψ̄′−r
˜ψ′−r

 |0〉a,−a,
(24)

while the outgoing boundary state is

a〈Bβ |

=a,−a 〈0| exp

ieiβ ∑
r′≥0

ψ̃′r′ ψ̄
′
r′ + ie−iβ

∑
r>0

¯̃
ψ′rψ

′
r

 .

(25)

Then the closed-channel partition function on the cylin-
der with (βspace, `time) = (2π, πL) is given by

a〈B0|e−πLHc |Bβ〉a =
ϑ
[

β
2π−1/2

−(a−1/2)

]
(0, iL−1)

η(iL−1)
. (26)

Identifying T = L−1, we find that |Bβ〉a is indeed a
Cardy state that satisfies the Cardy condition

Za0β(T ) =a 〈B0|e−πLHc |Bβ〉a. (27)

It is clear that the state |Bβ〉a is invariant under both
U(1)C and (CP)′−1 (corresponding to T1). This is ver-
ified by looking at the symmetry action on the modes
(deduced from (18) and (21) at τ ′ = 0):

U(1)C : ψ′r → e−iθψ′r, ψ̃′r → e−iθψ̃′r

(CP)′−η : ψ′r → eiπ/2
¯̃
ψ′r, ψ̃′r → −ηeiπ/2ψ̄′r, η = ±1.

(28)

Note that we have assumed the ground state |0〉a,−a is
also invariant under all symmetries. On the other hand,
the state |Bβ〉a is only invariant under U(1)C ; it is not
invariant under (CP)′+1 (corresponding to T−1).

Let us now consider two copies of complex fermions
{ψ1,R, ψ1,L, ψ2,R, ψ2,L}. One can show that it is now pos-

sible to construct a U(1)CoZT−1

2 symmetric Cardy state.
One considers the following boundary conditions (before
π/2 spacetime rotation)

ψ1,L = e−iβ1ψ2,R, ψ̄1,L = eiβ1 ψ̄2,R,

ψ2,L = e−iβ2ψ1,R, ψ̄2,L = eiβ2 ψ̄1,R, (29)

which preserve U(1)C o ZT−1

2 if β1 = β2 ± π. The cor-
responding (total) Cardy state is the tensor product of
the outgoing boundary states associated with these two
boundary conditions

|Bβ1,β2
〉a = |Bβ1

〉a ⊗ |Bβ2
〉a, (30)
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which is invariant under both U(1)C and (CP)′1 (corre-
sponding to T−1).

In summary, a single copy (two copies), or in general,
any number of copies (an even number of copies) of the
theory (7) can be consistently formulated, in the pres-
ence of U(1)C and T1 (T−1) symmetries, on a cylinder Σ.
Therefore, the BCFT approach agrees with the classifi-
cation of (2+1)d fermionic SPT phases with U(1)C and
time-reversal symmetries given by the gappability argu-
ment. In fact, there is a correspondence between the form
of Cardy boundary states and gapped phases in (1+1) di-
mensions. In the following section, we study theories of
multi-component bosons, which describe (the edges of)
more general SPT phases in (2+1) dimensions, and will
see such correspondence explicitly.

IV. MORE GENERAL SPT PHASES IN (2+1)D

A. Canonical quantization

Let us consider the edge of a (2+1)d Abelian SPT
phase (either fermionic or bosonic ones) described by the
K-matrix theory of multi-component compactified boson
fields9

S =
1

4π

∫
d2x

[
KIJ∂tφ

I∂xφ
J − VIJ∂xφI∂xφJ

]
, (31)

where K is a 2N × 2N integer-valued symmetric ma-
trix and I, J = 1, . . . , 2N . We are interested in study-
ing SPT phases, namely, those that have no topological
order, hence we will restrict ourselves to theories with
detK = 1. Moreover, since SPT phases can be adiabat-
ically connected to trivial phases in the absence of sym-
metry, their edge theories are always non-chiral. VIJ in
Eq. (31) is a non-universal positive definite matrix, which
does not affect the topological properties of the theory;
φI are compact U(1) bosons that satisfy the compactifi-
cation condition φI ≡ φI + 2πnI , nI ∈ Z. When put on
a cylinder of circumference 2π, they satisfy the commu-
tation relations[
∂xφ

I(x), ∂xφ
J(x′)

]
=
∑
m∈Z

2πi(K−1)IJ∂xδ(x− x′ + 2πm),

It is more convenient to carry out the quantization in the
redefined basis ϕI which we define by diagonalizing the
K-matrix as27

Aφ = ϕ, AT ηA = K, (32)

where A ∈ O(2N) and η is a diagonal matrix with ±1 on
the diagonal. To have a non-chiral theory, we assume η
has equal number of +1 and −1 in its diagonal. Without
loss of generality we assume η = diag(1, ..., 1,−1, ...,−1).
The theory has N copies of non-chiral bosons. The action
in the ϕ basis takes the form

S =
1

4π

∫
d2x

[
(∂tϕ)T η(∂xϕ)− (∂xϕ)T (∂xϕ)

]
, (33)

where we have chosen V such that AVAT = I2N . The
Hamiltonian and momentum operators are obtained from
the action (33) as

H =
1

4π

∫
dx
[
(∂xϕ)T (∂xϕ)

]
,

P =
1

4π

∫
dx
[
(∂xϕ)T η(∂xϕ)

]
. (34)

After basis transformation, the redefined bosons satisfy
the compactification condition

ϕI ∼ ϕI + 2π (An)
I
, nI ∈ Z, (35)

and the canonical commutation relation[
∂xϕ

I(x), ∂xϕ
J(x′)

]
= 2πi(η−1)IJ∂x

∑
m∈Z

δ(x− x′ + 2πm).

The mode expansion compatible with the equations of
motion, ∂tϕ

IηII − ∂xϕI = 0, and the compactification
conditions takes the form

ϕI = ϕI0 +
2π

L
[t+ sgn(ηII)x]aI0

+
1√
2

∑
r 6=0

aIre
− 2πri

L [t+sgn(ηII)x]. (36)

Since
[
ϕI0, a

J
0

]
= 2πiηIJ and ϕI0 ∼ ϕI0 + 2π(An)I ,

vI ∈ (Am)
I Z, mI ∈ Z, (37)

where vI is the eigenvalue of aI0. The mode operators
obey the following canonical commutation relation[

aIn, a
J
m

]
= nδIJδn+m,0, n,m 6= 0. (38)

B. Ishibashi states

States that represents a conformal invariant boundary
condition are called Ishibashi states. They satisfy

[Lr − L̄−r]|I〉〉 = 0, (39)

where Lr and L̄r are the holomorphic and antiholomor-
phic Virasoro generators, respectively. For the K-matrix
theory defined in Eq. (33), they are given by

Lr =
1

2

∑
n∈Z

: (ar−n,L)Tan,L :,

L̄r =
1

2

∑
n∈Z

: (ar−n,R)Tan,R :, (40)

where

aTr =(ar,L, ar,R)T := (a1
r, . . . , a

N
r , a

N+1
r , . . . , a2N

r )T ,
(41)
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are operators that appear in the mode expansion (36).
While the general solution of (39) is not known, a suffi-
cient condition for it is given by41

(ar,L −Ra−r,R)|v〉〉 = 0, ∀r ∈ Z, (42)

where the matrix R ∈ O(N) does not depend on r. So-
lutions to Eq. (42)) have the form

|v〉〉 := exp

( ∞∑
r=1

1

r
(a−r,L)TRa−r,R

)
|v〉, (43)

where |v〉 are eigenstates of aI0 with eigenvalues vI that
are characterized by Eq. (37). The Ishibashi condition in
Eq. (42) can be further simplified by a basis transforma-
tion, after which R is rotated to be ±1. Let us clarify this
point. The Ishibashi condition in Eq. (42) is equivalent
to

ϕL = RϕR. (44)

Now we can choose a B ∈ O(2N) to be

B =

(
1 0
0 R

)
. (45)

If we redefine the boson fields(
ϕ′L
ϕ′R

)
=±B

(
ϕL
ϕR

)
, (46)

then Eq. (44) becomes

ϕ′L/R = ±ϕ′L/R. (47)

In terms of the mode operators, we have the Ishibashi
condition

(a′r,L ∓ a′−r,R)|v〉〉 = 0, ∀r ∈ Z. (48)

This basis rotation and Eq. (32) can be simultaneously
done if we define A′ = BA. In the following discussion,
we assume this has be done. To lighten the notation, we
drop the prime on the field and mode operators.

C. Equivalence between the Ishibashi condition
and Haldane’s null vector condition

Haldane’s null vector condition ofN copies of nonchiral
compactified massless bosons states: if there is a set of

N linearly independent integer vectors {li} satisfying the
condition

lTi K
−1lj = 0, ∀i, j = 1, · · · , N, (49)

then we can find a potential which can gap out the
N -component boson theory completely.9 This condition
comes from the locality requirement such that all the
bosons can be pinned at the minimum values in the gap-
ping potentials simultaneously. When Haldane’s null vec-
tor condition is met, one can find the gapping potential

Sgapping =
∑
{l}

cl

∫
dt dx cos (l · φ+ αl), (50)

where {l} is a set of independent gapping vectors.
In this section, we discuss the equivalence between the

Ishibashi condition and Haldane’s null condition. We will
establish their equivalence at the level of Cardy states,
from which the correspondence between Cardy states and
gapped phases (from condensation of independent ele-
mentary bosons in the language of Ref. 9) is manifest.

We start from the total Cardy state for the N -copy
boson system

|B, {αi}〉 =⊗Ni=1 |B,αi〉, (51)

where36

|B,αi〉 =
1

21/4

∑
ni∈Z

einiαi |vi〉〉ni (52)

(the repeated indices i are not summed over) is the Cardy
state for the i-th copy of the system and

|vi〉〉ni = e−
∑
r>0

1
r (vi,L·a−r,L)(vi,R·a−r,R)|nivi〉, ni ∈ Z,

(53)

is an Ishibashi state satisfying the Ishibashi condition
(48). Here {vi = (vi,L,vi,R) | i = 1, ..., N and vi,L =
−vi,R} is a set of linearly independent 2N -component
vectors that generates, with integer coefficients, all the
solutions satisfying both Eqs. (37) and (48).

Note that the Cardy state (51) satisfies the Cardy con-
dition automatically, since it is the direct product of de-
coupled Cardy states, each one satisfying Cardy condi-
tion separately. Now we want to rewrite Eq. (51) in an-
other form in which the connection to the gapping po-
tentials satisfying Haldane’s null condition is manifest.
First, let us write the ground state in a coherent state,
namely,

|nivi〉 = einivi·ϕ0 |0〉i = einiei·φ0 |0〉i, (54)

where |0〉i = |0〉i,L ⊗ |0〉i,R is the true vacuum asso-
ciated with the new zero modes vi,L/R · a0,L/R and

{ei := A−1vi} is a set of linearly independent integer
vectors (by the definition of {vi} defined in Eq. (37)).
Plugging Eqs. (52), (53) and (54) into Eq. (51), we ob-
tain
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|B, {αi}〉 = ⊗Ni=1

(
1

21/4

∑
ni∈Z

einiαie−
∑
r>0

1
r (vi,L·a−r,L)(vi,R·a−r,R)einiei·φ0 |0〉i

)

=
1

2N/4−1
e−

∑N
i=1

∑
r>0

1
r (vi,L·a−r,L)(vi,R·a−r,R)

∑
{ni∈Z}

cos [ni(ei · φ0 + αi)]|0〉1 ⊗ · · · ⊗ |0〉N . (55)

Note that the cosine term in the last line of Eq. (55)
is nothing but a gapping potential, and the summation
is over all the lattice constructed from the elementary or
primitive lattice vectors introduced in Ref. 9. Then we
conclude that in the N -boson system, once we have a
Cardy state satisfying the Ishibashi condition, Haldane’s
null vector condition is also implied, since gapping vec-
tors satisfy Haldane’s null condition.

Conversely, given a set of N vectors satisfying Hal-
dane’s null vector condition, we can always find the set
of primitive lattice vectors. Let us assume this is done.
Then we can construct the Cardy state by following Eq.
(55) backward, from the bottom to the top line. This
state satisfies the Ishibashi condition and Cardy condi-
tion manifestly.

D. Symmetry analysis

In the following subsections, in order to facilitate the
discussion, we use different bases interchangeably. One
can easily see their relations from Eqs. (32), (46).

We consider an onsite discrete abelian symmetry group
G with the group action of the form

ĝ : φ→ φ+ δφg, ∀g ∈ G, (56)

where we assume that δφg is constant. From the mode
expansion of φ, we can read off that ĝ only acts on the
zero mode φ0 ,

ĝ : φ0 → φ0 + δφg, ∀g ∈ G, (57)

Hence a complete set of symmetry invariant gapping po-
tentials, related by boundary conditions, is described by

ĝ : (lTφ0 + α)→ (lTφ0 + α) mod 2πZ. (58)

From the discussion in Sec.IV C, if we have a set of sym-
metry invariant Haldane vectors, we can find a set of de-
coupled symmetry invariant Ishibashi states, with which
we can construct a symmetry invariant Cardy state. We
will show it in the following discussion with two exam-
ples.

E. Example: Z2 symmetric bosonic SPT

Let us consider the simple case of Z2 symmetric
bosonic SPT phases. The edge theory is described by

L =
1

4π

[
(∂xφ)TK(∂tφ)− v(∂xφ)T (∂xφ)

]
, (59)

where K = σx. The Z2 symmetry, Z2 = {e, g}, acts on
the φ fields is

ĝ :

(
φ1

φ2

)
→
(
φ1

φ2

)
+ π

(
1
q

)
. (60)

The theory describes a trivial and a non-trivial SPT
phases for q = 0, 1 respectively.

As claimed above, for a trivial SPT phase, that is,
for which one can find a symmetric gapping potential,
there exists a symmetry invariant boundary state. The
conditions to be satisfied by a set of symmetric gapping
vectors {li} are

lTi K
−1lj = 0,

ĝ(lTi φ+ α)ĝ−1 = (lTi φ+ α) mod 2π ∀i, j. (61)

Since for the present case we only consider a single non-
chiral boson, we need to find a single gapping vector l.
In the case for q = 0 the above conditions are satis-
fied by l = (0, 1)T . Hence the symmetric gapping term
is cos(φ2 + α). In the chiral basis, this corresponds to

cos
(
(ϕL − ϕR)/

√
2
)
.

On the other hand, this gapping potential corresponds
to the Dirichlet boundary state that has the gluing con-
dition a0,L − a0,R = 0. The Ishibashi state takes the
form

|v〉〉 =e
∑∞
r>0

1
r a−r ā−r |a0,L = a0,R〉. (62)

And the Cardy state is

|B,φ0〉 =
1

ND

∑
n∈Z

einφ0e
∑∞
r>0

1
r a−r ā−r |a0,L = a0,R = n〉.

(63)

where φ0 specifies the position of the Cardy state with
the Dirichlet boundary condition.

On the other hand, in the non-trivial case, namely, for
q = 1, one cannot find a nontrivial symmetric gapping
vector as the conditions (61) imply that l1l2 = 0 and l1 +
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l2 = 0 mod 2. These cannot be satisfied simultaneously
for any non-trivial l.

However, we expect9–11 a Z2 classification so that two
copies of the above theory must be trivial. This double
copy is described by φ := (φ1, φ2, φ3, φ4)T and K = σx⊕
σx. The symmetry action on the two copies is taken to be
identical. In order to be Z2 symmetric the two gapping
vectors must satisfy

l1i l
2
j + l2i l

1
j + l3i l

4
j + l4i l

3
j = 0,

2∑
n=1

lni = 0 mod 2, (64)

which comes from Eqn.(61). These conditions can be sat-
isfied simultaneously by the following 2 gapping vectors

l1 =

 1
0
0
1

 , l2 =

 0
1
−1
0

 . (65)

This choice is not unique, for example an alternate choice
of gapping vectors could be

l̃1 =

 0
1
1
0

 , l̃2 =

 1
0
0
−1

 . (66)

For the set {l}, the gapping terms are

Lgapping

= λ cos
(
φ1 + φ4 + α

)
+ λ′ cos

(
φ2 − φ3 + α′

)
= λ cos

(
1√
2

(ϕ1,L + ϕ1,R + ϕ2,L − ϕ2,R) + α

)
+ λ′ cos

(
1√
2

(ϕ1,L − ϕ1,R − ϕ2,L − ϕ2,R) + α′
)

= λ cos (Φ1,L + Φ1,R + α) + λ′ cos (Φ2,L + Φ2,R + α′),
(67)

where we define basis transformed bosons

Φ1,L :=
1√
2

(
ϕ1,L + ϕ2,L

)
,

Φ1,R :=
1√
2

(
ϕ1,R − ϕ2,R

)
,

Φ2,L :=
1√
2

(
ϕ1,L − ϕ2,L

)
,

Φ2,R :=− 1√
2

(
ϕ1,R + ϕ2,R

)
. (68)

The mode expansion of Φi is

Φi,L = Φi,0,L +
2π

L
(t+ x)bi,0 +

1√
2

∑
r 6=0

bi,re
− 2πir

L (t+x),

Φi,R = Φi,0,R +
2π

L
(t− x)b̄i,0 +

1√
2

∑
r 6=0

b̄i,re
− 2πir

L (t−x),

(69)

where b1,0 = 1√
2
(a1,0,L + a2,0,L), b̄1,0 = 1√

2
(a1,0,R −

a2,0,R), b2,0 = 1√
2
(a1,0,L−a2,0,L) and b̄2,0 = − 1√

2
(a1,0,R+

a2,0,R). The oscillator modes bi,r for the redefined bosons
can be written in terms of mode operators in the original
basis based on Eq.(68).

The redefined mode operators satisfy the following
commutation relation

[bi,m, bj,n] = mδm+n,0δij , (70)

and there is a similar relation for the right moving mode
operators.

Hence the symmetry invariant Ishibashi states corre-
sponding to gapping vectors l1 and l2 can now be written
in terms of symmetric bosons Φi,L + Φi,R

|vi〉〉n = e−
∑
r>0

1
r bi,−r b̄i,−r |bi,0 = −b̄i,0 = n〉. (71)

We note that these Ishibashi states which are essentially
Neumann states for Φi are manifestly symmetric as the
bosons Φi,L + Φi,R are symmetric. The Cardy state con-
structed from the Ishibashi states is

|B, {αi}〉 =
( 1

21/4

∑
n1∈Z

ein1α1 |v1〉〉n1

)
⊗
( 1

21/4

∑
n2∈Z

ein2α2 |v2〉〉n2

)
. (72)

To show that this satisfies the Cardy condition, we first
compute the amplitude. The closed sector Hamiltonian
factorizes in bi basis as

Hc =
∑
i=1,2

[
1

2
(bi0)2 +

∑
r>0

bi−rb
i
r +

∑
r>0

b̄i−r b̄
i
r −

c+ c̄

24

]
.

(73)

Note that this Hamiltonian is not the physical Hamil-
tonian that we started with for the boson system with
boundaries, but the Hamiltonian obtained after we per-
form the S-transformation between space and time. The
amplitude decomposes as

A = 〈B, {αi}|qHc |B, {αi}〉

= ⊗i=1,2

[
〈B,αi|qH

i

|B,αi〉
]
, (74)

where q = exp(−2πL) and we have used the decompo-
sition of the Hamiltonian. Both the decomposed parts
give rise to the following modular function38

〈B,αi|qH
i

|B,αi〉 =
1

N 2
N

1

η(2iL)
, (75)

which transforms to the open channel partition function
under modular S transformation and hence satisfies the
Cardy condition. The subscript ‘N’ stands for Neumann
boundary conditions.
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F. Generalization to ZN cases

The discussion on Z2 symmetric bosonic SPT phases
can be generalized to case of ZN symmetry. As before9

the edge of a ZN symmetric SPT is described by a K-
matrix Luttinger liquid with K = σx in Eq. (31). The
symmetry acts as

ĝ :

(
φ1

φ2

)
→
(
φ1

φ2

)
+

2π

N

(
1
q

)
. (76)

where ĝ is the generator of ZN group. When q = 0, this
corresponds to a trivial SPT phase and q = 1, . . . , N − 1
corresponds to non-trivial SPT phases. In analogy to the
analysis for the Z2 case, one cannot find a symmetric gap-
ping vector when q 6= 0. This further implies the inability
to find a symmetry invariant Cardy state. However, N -
copies of a non-trivial ZN SPT phase can be deformed to
a trivial phase, hence we expect to construct a symmetric
boundary state for this enlarged theory.

We consider K = ⊕Ni=1σ
x, namely, N copies of non-

chiral bosons. In this case, the ZN symmetry transforma-
tion is simply copies of the above transformation, namely

ĝ :

(
φ1
i

φ2
i

)
→
(
φ1
i

φ2
i

)
+

2π

N

(
1
q

)
, i = 1, ., N. (77)

To completely gap out the system, we need N l vectors
that satisfy

lTi K
−1lj = 0,

ĝ lTi φ ĝ
−1 = lTi φ mod 2π ∀i, j. (78)

Equation (78) is equivalent to

N∑
α=1

(
l2αi l2α−1

j + l2α−1
i l2αj

)
= 0,

N∑
α=1

l2α−1
i + ql2αi = 0 mod N ∀i, j. (79)

Here we choose a simple set of l vectors.

{l} : l1 = (1, 0, 1, 0, · · · , 1, 0)T

l2 = (0, 1, 0,−1, 0, 0, · · · , 0, 0)T

l3 = (0, 0, 0, 1, 0,−1, 0, 0, · · · , 0, 0)T

...

lN = (0, 0, · · · , 0, 1, 0,−1)T . (80)

We can check that this set, the l vectors are linearly
independent. Then following what is done from Eq. (67),
we can write down the gapping potential term

L{l}gapping = λ1 cos (φ1
1 + φ1

3 + · · ·+ φ1
N + α1) + · · ·

= λ1 cos
(
Φ1 + α1

)
+ · · · ,

where the redefinitions are

Φ1 =
1√
N

(
φ1

1 + φ1
3 + · · ·+ φ1

N

)
Φ2 =

1√
2

(
φ2

1 − φ2
2

)
...

ΦN =
1√
2

(
φ2
N−1 − φ2

N

)
, (81)

based on the gapping vectors in Eq. (80). Then the Φi
fields can be expanded in terms of b fields like those in
Eq. (69). Then the analysis of Cardy states and the am-
plitude between boundary states follow that of Z2 case.

We work in the ‘Φi’- bosonic basis. In this basis, the
Ishibashi states are taken as Neumann free boson states
and are manifestly ZN -symmetric. They take the form

|vi〉〉n =
1

N i
N

exp

{
−
∑
r>0

1

r
bi,−r b̄i,−r

}
|bi,0 = −b̄i,0 = n〉,

(82)

where bi,r and b̄i,r are left and right mode operators cor-
responding to the boson Φi and bi,0,b̄i,0 are defined sim-
ilarly as those in Eq. (71). The Cardy state for Φi takes
the form

|B,αi〉 =
1

21/4

∑
n∈Z

einαi |vi〉〉n. (83)

The complete boundary state is a tensor product of indi-
vidual boundary states corresponding to vectors in {l}.

|B, {αi}〉 =⊗Ni=1 |B,αi〉. (84)

G. General symmetry groups

Finally, let us consider a more generic symmetry group
G acting on the boson fields:

ĝ : ϕ→ Ugϕ+ δϕg, ∀g ∈ G. (85)

The mode operators transform under g ∈ G as

ĝ : ar → Ugar, ϕ0 → Ugϕ0 + δϕg. (86)

In this case, we need to consider both the zero mode
part and the oscillator part in Eq. (55). In the previous
discussion, we had Ug = I. Thus we could focus on the
zero mode part, namely, the gapping potential of Eq.
(55). To simplify the discussion, we take one copy of
compactified boson fields. In this case, η = σz and the
mass matrix coupling the left and right moving mode
operators can be taken as M = σx from Eq. (48). Then
the invariance of the Hamiltonian or the action of the
theory gives the constraints

UTg Ug = I2, UTg σ
zUg = ±σz. (87)
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Then we have the following general solutions Ug =
σx, iσy, σz. When Ug = σx, we have UTg MUg = M ,
which means that the oscillator part in Eq. (55) is in-
variant. However, when Ug = iσy or σz, we have
UTg MUg = −M , meaning that the oscillator part would
flip sign. Physically, it means that the boundary state
changes into a Dirichlet boundary state from Neumann
boundary state. It is reminiscent of T-duality in string
theory. In this case, the zero mode part is usually not
invariant. Therefore, for general symmetry groups, we
can focus on the zero mode part, which is equivalent to
the gapping potential analysis in Ref. 9. We will have
more discussions on duality in Sec. VI.

V. (2+1)D TOPOLOGICAL
SUPERCONDUCTOR PROTECTED BY Z2 × Z2

SYMMETRY

From the discussion in the last section, we have seen
that the construction of a symmetric boundary state is
closely related to finding a gapping potential to gap a
given (edge) CFT without spontaneous symmetry break-
ing. In this section, we show that there is another way to
construct a symmetric Cardy boundary state by consid-
ering only the fundamental boundary conditions of the
free fermions.

An example is the class of (2+1)d topological sueper-
conductors protected by a Z2 × Z2 unitary on-site sym-
metry. The classification of these topological supercon-
ductors is Z8.14,42 Again, we consider the edge theories,
which can be described by the Nf copies of real fermion
fields in 1+1 dimensions. For Nf = 1, they are described
by the action

S =
1

2π

∫
d2xiΨ̄γµ∂µΨ (88)

Upon picking a Clifford basis where γ0 = σx and γ1 =
iσy and writing Ψ = (ψL, ψR), one can decompose a Ma-
jorana fermion into two Majorana-Weyl fermions. This
action is invariant under a Z2×Z2 symmetry group that
is generated by the fermion number parity for each chi-
rality.

A. Quantization and boundary states

Due to the fermionic nature of the fields, there are two
sectors depending on the periodicity of the fields under
rotations by 2π. The real fermion could have (Ramond
sector) or anti-periodic (Neveu-Schwarz sector) boundary
condition along the spatial direction. For the closed sys-
tem, the left and right moving fermion fields are decou-
pled. We can choose boundary conditions independently
for them. Therefore, there are four sectors corresponding
to the boundary conditions

(L,R) =(R,R), (R,NS), (NS,R), (NS,NS). (89)

The fermionic mode expansion takes the form

ψL(x, t) =

√
2π

L

∑
r

ψre
− 2πir(t+x)

L ,

ψR(x, t) =

√
2π

L

∑
r

ψ̃re
− 2πir(t−x)

L , (90)

where the mode operators satisfy {ψr, ψr′} = δr+r′,0,

{ψ̃r, ψ̃r′} = δr+r′,0 and {ψr, ψ̃r′} = 0 and r ∈ Z(+1/2)
for the Ramond and Neveu Schwarz sectors respectively.
a. Boundary state: By varying the action (88)

and requiring the boundary variation to vanish, one
can read off the suitable boundary conditions to be
{ψL ± ψR} |x=0 = 0. In order to construct the Cardy
state, we rotate the spacetime cylinder by π/2 such
that the manifold has a temporal boundary. Upon
spacetime rotation the boundary conditions transform
to {ψL ± iψR} |t=0 = 0 These are the relevant bound-
ary conditions for constructing the Ishibashi and Cardy
states. The Ishibashi states satisfy the following gluing
conditions (

ψk + iηψ̃−k

)
|η〉〉 = 0. (91)

where η = ±1. Since this is a free theory, the solutions
to the above gluing condition are known. There are two
solutions for each η corresponding to the NS-NS and R-R
sectors. These Ishibashi states are36

|η〉〉NS−NS = e−iη
∑
r>0 ψ−rψ̃−r |0〉NS−NS ,

|η〉〉R−R = e−iη
∑
r>0 ψ−rψ̃−r |η〉R−R, (92)

where |0〉NS−NS and |η〉R−R denote the nondegenerate
vacuum in the NS-NS sector and the degenerate ground
state associated with the η boundary condition in the
R-R sector, respectively.

Before moving onto the discussion of topological su-
perconductors we note the crucial fact: unless we can
construct a Cardy state with only a single boundary con-
dition (namely, η = +1 or −1) in the NS sector, it is
impossible to satisfy the Cardy condition without includ-
ing both sectors. This can be seen by considering the
overlap of real-fermion Ishibashi states43,

NS〈〈η|e−2πLHc |η〉〉NS =
ϑ3(2iL)

η(2iL)
,

NS〈〈η|e−2πLHc | − η〉〉NS =
ϑ4(2iL)

η(2iL)
,

R〈〈η|e−2πLHc |η〉〉R =
ϑ2(2iL)

η(2iL)
,

R〈〈η|e−2πLHc | − η〉〉R = 0, (93)

where ϑ2,3,4 are the Jacobi theta functions. Under modu-
lar S-transformation, these modular functions transform
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as

ϑ3

η(2iL)

L= 1
2t−−−→ ϑ3(it)

η(it)
,

ϑ4

η(2iL)

L= 1
2t−−−→ ϑ2(it)

η(it)
,

ϑ2

η(2iL)

L= 1
2t−−−→ ϑ4(it)

η(it)
. (94)

One can see that unless one can construct a Cardy state
with a single Ishibashi state (either η = +1 or −1), the
S-transformation mixes the R−R and NS−NS sectors.

We define the fermion number parity operators, (−1)F

and (−1)F̃ , for the left and right moving fermions, re-
spectively, which generate Z2 × Z2 symmetry. By con-
struction, these satisfy the following (anti)commutation

relations: {(−1)F , ψr} = {(−1)F̃ , ψ̃r} = 0, and

[(−1)F , ψ̃r] = [(−1)F̃ , ψr] = 0.
b. the NS-NS sector: It is straightforward to check

that the Z2 × Z2 invariant boundary state in the NS-NS
sector is

|B〉NS−NS =
1√
2

[
|+〉〉NS−NS − |−〉〉NS−NS

]
, (95)

since we have

(−1)F |η〉〉NS−NS = (−1)F̃ |η〉〉NS−NS = −| − η〉〉NS−NS ,
(96)

as the vacuum |0〉NS−NS is the eigenstate of both (−1)F

and (−1)F̃ with the eigenvalue −1. It can be seen that
both η = ±1 Ishibashi states are needed to construct
a fermion parity invariant boundary state in the NS-NS
sector. We need to include the R-R sector in order to
construct a symmetric Cardy state.

c. the R-R sector: The R-R sector is a bit more sub-
tle because of the presence of zero modes. Let us define

Γ± :=
1√
2

(ψ0 ± iψ̃0), (97)

which satisfy the anticommutation relations {Γ+,Γ−} =
1 and {Γ+,Γ+} = {Γ−,Γ−} = 0. In terms of the zero
mode operators, the fermion parity operators take the
following form

(−1)F =
√

2ψ0 = Γ+ + Γ−,

(−1)F̃ = i
√

2ψ̃0 = Γ+ − Γ−. (98)

The vacuum in the two sectors η = ± can be defined as

|η = +〉 = eiΦ+ |0〉,
|η = −〉 = eiΦ−Γ−|0〉, (99)

where Φ± are arbitrary phase factors. It can be shown
that a fermion parity invariant Ishibashi state does not
exist for a single fermion flavor in the R-R sector and con-
sequently we cannot construct a fermion parity invariant
boundary state.

B. Boundary states and the Z8 classification

Having found out that, for a single copy of fermions, it
is not possible to construct a Cardy state that preserves
the fermion number parity, we now proceed to analyze
multiple copies of real fermions. We will show for 8n
copies of fermions, there exists a fermion number parity
conserving Cardy state. This implies a Z8 classification
of topological superconductors. This agrees with results
in Refs. 14 and 42.

The boundary condition for Nf copies of fermions is

ψM + iηψ̃M = 0, M = 1, . . . , Nf . (100)

More generally, we may take ηM to be different for differ-
ent copies. But since later we will take direct a product
of Ishibashi states with the same η value, it is always
possible to transform such boundary conditions to the
identical η case. There could be mixing between differ-
ent copies, which is the most general case. We don’t
discuss it here. Since one can already construct an NS-
NS Ishibashi state for a single flavor of real fermions, we
will focus our discussion on the R-R sector. We follow
the convention in Ref. 44.

We first assume that Nf is even, namely, Nf = 2n, n ∈
Z. It is convenient to define

Γa± :=
1√
2

(ψ2a−1
0 ± iψ2a

0 ), a = 1, . . . , n. (101)

which satisfy the algebra {Γa+,Γb−} = δab,
{Γa+,Γb+} = {Γa−,Γb−} = 0. Then the Ishibashi
vacua |η〉0RR must satisfy

(Γb− + iηΓ̃b−)|η〉0RR = 0. (102)

The solution to this constraint is given by

|η〉0RR = e−iη
∑
b Γb+Γ̃b− |0〉RR, (103)

where the Fock vacuum are defined as Γa−|0〉RR =

Γ̃a+|0〉RR = 0. Finally, the Ishibashi state in the R-R
sector can be written as

|η〉〉RR = e−iη
∑
r>0

∑Nf
M=1 ψ

M
−rψ̃

M
−r |η〉0RR. (104)

By construction, (−1)F anticommutes with left-
moving fermionic modes, but commutes with all other

modes, while (−1)F̃ anticommutes with all right-moving
fermionic modes, but commutes with all other modes.
From the expressions (103) and (104), we thus have

(−1)F (F̃ )|η〉〉RR = | − η〉〉RR, (105)

provided (−1)F |0〉RR = (−1)F̃ |0〉RR = |0〉RR. On the
other hand, the fermion number parity operators can also
be represented, in the space of the ground states in the
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R-R sector, in terms of the zero mode operators as

(−1)F =

(
1

i

)n n∏
a=1

(
1− 2Γa+Γa−

)
,

(−1)F̃ =

(
1

i

)n n∏
a=1

(
1− 2Γ̃a+Γ̃a−

)
. (106)

Using the above relations, one can show

(−1)F |η〉0RR = (−i)n | − η〉0RR, (−1)F̃ |η〉0RR = in| − η〉0RR,
(107)

which implies, as the action of (−1)F (F̃ ) on the non-zero
modes is as before,

(−1)F |η〉〉RR = (−i)n | − η〉〉RR, (−1)F̃ |η〉〉RR = in| − η〉〉RR.
(108)

Now, it seems there are two different ways of how

(−1)F (F̃ ) acts on the Ishibashi states, namely, Eqs (105)
and (108). To avoid this ambiguity, we must require
n = 0 mod 4 or Nf = 0 mod 8 to have a well-defined
fermion number parity for each chirality.

Therefore, the symmetry invariant boundary state in
the R-R sector takes the form

|B〉RR =
1√
2
{|+〉〉RR + |−〉〉RR} , Nf = 0 mod 8.

(109)

The total Cardy states are now the combination of both
the NS-NS and R-R parts

|B〉± =
1

N
(|B〉NSNS ± i|B〉RR) , Nf = 0 mod 8.

(110)

The factor ±i between the NS-NS and the R-R compo-
nents are both allowed to satisfy the Cardy condition,
which also fixes the normalization factor N .

Finally for odd number of flavors of real fermion, there
would always be one singlet, which is not paired up. Thus
it is impossible to construct a fermion parity invariant
boundary state. Therefore the classification is indeed Z8.

C. Boundary conditions, gapping potentials and
triality

So far, we have only discussed the transformation of
boundary states under symmetry operation. But what
would happen to the gapping potential? Is it also invari-
ant under symmetry operation? Here we would like to
clarify two points: a) if we can find a symmetry invariant
boundary state, then there should exist a set of bound-
ary conditions that is also invariant under the symmetry
transformation; b) symmetry invariant gapping poten-
tials do not guarantee that the corresponding boundary
state is also symmetry invariant.

a. The case of Nf = 8 As we have shown before,
for 8 copies of Majorana fermions, we can construct a
fermion parity invariant boundary state, which also sat-
isfies the Cardy condition. We will now try to identify the
corresponding boundary conditions following the triality
used in Ref.45.

The boundary conditions and the fermion representa-
tion we are using in the notes are given in the vector
representation of SO(8) algebra. For this algebra, we
know that it has an important property–the triality. In
the vector representation, we can bosonize the (complex)
fermions as

ψαj = e−iφαj , ψ†αj = eiφαj , (111)

where α, j = 1, 2. Then under the fermion parity opera-
tor (−1)F , the boson fields change as

(−1)Fφαj(−1)F = φαj + π. (112)

Thus for each individual complex fermion, the boundary
condition is not invariant under this Z2 symmetry. Now
let us use triality to write the fermions in the spinor (c)
representation. In this representation, we use a new set
of boson fields to bosonize the (complex) fermions.

φch =
1

2

∑
α,j=1,2

φαj ,

φsp =
1

2

∑
α,j=1,2

(σz)ααφαj ,

φfl =
1

2

∑
α,j=1,2

(τz)jjφαj ,

φX =
1

2

∑
α,j=1,2

(σz)αα (τz)jjφαj . (113)

In this basis, with the transformation (112).. we can
easily check that

(−1)Fφi(−1)F = φi mod 2π, i = ch,sp,fl,X. (114)

Similar analysis can be used for the (−1)F̃ operator.
Then, by adding gapping potentials, φi defined in Eq.
(113) can be pinned at their ground state values simul-
taneously. Furthermore, by fermionizing these bosons to
define new fermion operators, Ci, i = ch,sp,fl,X via

Ci = e−iφ
i

, (115)

the boundary conditions can be expressed in terms of Ci,
namely,

CL,ch = CR,ch, CL,fl = CR,fl,

CL,sp = −CR,sp, CL,X = C†R,X at the boundary.

(116)

Then it is manifest that these boundary conditions are
invariant under the transformations defined in Eq. (112).
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b. The case of Nf = 4 Let us make the relation be-
tween boundary conditions, boundary states and gapping
potentials clear. Given a boundary condition, we can ob-
tain a boundary state as the solution to the boundary
condition. In this sense, there is a one-to-one correspon-
dence between boundary conditions and boundary states.
On the other hand, different gapping potentials can corre-
spond to the same boundary condition. In terms of gap-
ping vectors, it means that primitive and non-primitive
lattice vectors can represent the same boundary condi-
tion. In this sense, the correspondence between gapping
vectors and boundary conditions or boundary states is
many-to-one. Therefore, the symmetry invariance of a
specific set of gapping potentials does not imply the sym-
metry invariance of the boundary condition or the bound-
ary state. Let us take an example to clarify this point.
In Ref. 46, the authors show that for 2 copies of Dirac
fermions, which is equivalent to 4 copies of Majorana
fermions, there exists a set of symmetry invariant gap-
ping potential, which is equivalent to the boundary con-
dition. Specifically, in their language of Dirac fermions,
the gapping potentials

V1 ∝ ψ†1Rψ
†
2Rψ2Lψ1L + h.c. = cos (2θ1 + 2θ2),

V2 ∝ ψ†1Rψ
†
2Lψ1Lψ2R + h.c. = cos (2θ1 − 2θ2), (117)

are invariant under fermion parity projection. Here θa =
1
2 (φa,R − φa,L) , a = 1, 2 where ψ†a,R ∝ eiφa,R and ψ†a,L ∝
eiφa,L . However, the Z2×Z2 symmetry is spontaneously
broken, namely, the single particle backscattering terms
do not have vanishing vacuume expectation values (vev),

〈ψ†1Rψ1L〉 6= 0, 〈ψ†2Rψ2L〉 6= 0. In their language, the
boundary condition corresponds to the vev. Even if the
gapping potential is symmetry invariant, the vev is not
invariant. This is consistent with our analysis that there
is no fermion parity invariant boundary state for 4 copies
of Majorana fermions.

VI. DISCUSSION AND OUTLOOK

We have discussed the (1+1)d edge theories of (2+1)d
SPT phases from the perspective of boundary CFT. We
argue that, if a (1+1)d CFT is realized as an edge the-
ory of a (2+1)d SPT phase, it is not possible to find a
Cardy boundary state preserving the symmetry of the
SPT phase. And vice versa: when it is not possible to
find a symmetry-preserving Cardy boundary state in a
(1+1)d CFT, the CFT must be realized as an edge the-
ory of a (2+1)d SPT phase. In short, boundaries of
SPT phases are not “edgeable”, and, conversely, “non-
edgeable” CFTs must be realized as an edge theory of a
bulk theory in one higher dimensions.

We also observed that the “edgeablity” condition in
CFTs are naturally related to the “gappability” condi-
tion. This can be seen most straightforwardly if one
invokes the identification between boundary states and
gapped ground states (states obtained from a CFT by

adding a massive perturbation). Thus, (in)ability to find
a symmetry-preserving boundary state means (in)ability
to find a symmetry-preserving gapped state. In turn,
this also provides an alternative point of view on the re-
lation between BCFT and the modular invariance. It
should be noted that, in higher-dimensional SPT phases,
the gappability condition is replaced by a “weaker” con-
dition; (2+1)d boundaries of (3+1)d non-trivial SPT
phases are either ingappable or topologically ordered, if
the symmetry of SPT phases is preserved. Neverthe-
less, the edgeablity condition is still valid even for bound-
aries of higher-dimensional SPT phases. Thus, the edge-
ablity condition has some precedence over the gappabil-
ity condition in general, although they seem equivalent
in (1+1)d edges of bulk (2+1) SPT phases.

In the following, let us make a few more comments
before closing.

A. Symmetry actions on boundary states

First, let us summarize the way symmetries act on
boundary states in CFTs. In particular, we contrast
physics of (2+1)d and (1+1)d SPT phases. Let us con-
sider a CFT with a global unitary symmetry G (spatial
and time-reversal symmetries may be discussed in a sim-
ilar fashion). We consider conformally invariant bound-
ary states {|Ba〉} realized in the CFT, where a labels the
boundary states. Then, for a symmetry operation g ∈ G,
one expect the following possible behaviors of {|Ba〉} un-
der g: In the first case, the action of g on boundary states
is given by

g|Ba〉h = εa(g|h)|Ba〉h. (118)

Here, |Ba〉h is a boundary state in the sector twisted by
h ∈ G, and εa(g|h) is a phase factor. namely, boundary
states are invariant under the symmetry, up to a phase
factor. As claimed in Ref. 23, this case is relevant to
the physics of boundaries of (1+1)d SPT phases. In Ref.
23, the correspondence between gapped ground states of
(1+1)d SPT phases and boundary states in CFTs was
made. These boundary states are anomalous in the sense
that when acted with symmetry they give rise to anoma-
lous U(1) phases, Eq.(118). Furthermore, the anomalous
phase ε(g|h) is related to the 2-cocycles in H2(G,U(1)),
which gives the classification of (1+1)d SPT phases pro-
tected by G. (These phases, however, only appear in
boundary states in twisted sectors, namely, the sectors
with twisted boundary conditions by a group element in
G.)

On the other hand, there are cases in which a boundary
state |Ba〉 is mapped to another boundary state |Ba′〉,
which can be different from the original one:

g|Ba〉 = |Ba′〉. (119)

We further distinguish the following two cases: (a) There
are subset of boundary states which are mapped to them-
selves for all symmetry operations g ∈ G. (b) None of
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boundary states remain invariant under g ∈ G. Case
(a) is a typical situation when the (1+1)d CFT can be
realized on its own right, without referring to higher-
dimensional bulk systems. On the other hand, Case (b)
is relevant to (2+1)d SPT phases, as we have discussed
for the bulk of the paper.

B. Boundary states and locality

In Eq. (119), it should be noted that the RHS is not
given by a superposition of |Ba〉, but by a single bound-
ary state. In fact, superpositions of |Ba〉 in general do
not satisfy the Cardy condition, and are disqualified as a
physical boundary state. (In this respect, the symmetry
transformation law in Eq. (119) is analogous to anyonic
symmetry which acts on (2+1)d topologically ordered
phases by permuting anyons.) In the present context,
this is in perfect agreement with the standard theory
of spontaneous symmetry breaking. When spontaneous
symmetry breaking happens, ground states having differ-
ent expectation values of a order parameter should not
be superposed in the thermodynamic limit. (These states
are “superselected”.) The overlap of these states vanishes
in the thermodynamic limit, and hence a given ground
state with a definite value of the order parameter cannot
be mixed by any physical (local) operation. (However,
the overlap between different boundary states may not
be zero, and defines the Affleck-Ludwig g function.)

In some sense, one can think of Cardy states setting
the notion of locality. It should be noted that there are
multiple sets of solution to the Cardy equations, which
correspond to different modular invariant bulk partition
functions.

Let us further illustrate the notion of locality set by
the Cardy states: As we demonstrated through various
examples, when none of boundary states are invariant
under symmetry G, the CFT must be realized as an edge
theory of a bulk non-trivial SPT phase protected by on-
site unitary symmetry G. In the edge theory, the criti-
cality (gapless spectrum) is enforced by the symmetry G.
This is quite different from criticalities (conformal field
theories) that occur in isolated (1+1)d systems; There
are typically perturbations at a critical point which are
G-symmetric. By perturbing the critical point by such
perturbation, it may be possible to flow into a gapped
phase where the G-symmetry is preserved. This suggests
that the symmetry G acting within the edge theory of
a non-trivial SPT phase is not an ordinary symmetry.
In fact, as noted in Ref. 22, the symmetry G is realized
non-locally or as a non-on-site symmetry within the edge
theory.

C. Duality and triality

Another canonical example is provided by the Z2 sym-
metric topological superconductor discussed in Sec. V.

The edge theory in this case is described by the action
(88). Here, the Z2 symmetry flips the sign of the mass
term, and hence enforces the criticality. In the language
of the (1+1)d transverse-field quantum Ising model (or
the 2d Ising model), this is nothing but the Kramers-
Wannier duality. It is a non-local operation which ex-
changes the Ising spin operator σ and the disorder oper-
ator µ.

Let us have a look at how this Z2 symmetry acts on
boundary states. In the critical Ising model, there are
three physical conformal boundary conditions, the free
condition |f〉, and the fixed ones |+〉 and |−〉. The peri-
odic (R) sector contains three scalar fields, the identity,
the spin field σ and the energy density ε, of chiral con-
formal weight 0, 1/16 and 1/2 respectively. They lead
to three Ishibashi states |0〉〉R, | 1

16 〉〉R, and | 12 〉〉R. The
second, antiperiodic (NS) sector contains a single scalar
field, the disorder field µ, with the same conformal weight
1/16 as the spin field, and gives rise to one Ishibashi state
| 1
16 〉〉NS. The Cardy boundary states are given in terms

of these Ishibashi states as

|±〉 =
1√
2

[
|0〉〉R ±

√
2

4
| 1

16
〉〉R + |1

2
〉〉R
]
,

|f〉 = |0〉〉R +
√

2
4
| 1

16
〉〉NS − |

1

2
〉〉R, (120)

which, in terms of the Ising spin variables, correspond to
the fixed boundary condition with spin pointing up/down
at the boundary, and the free boundary condition. The
Kramers-Wannier duality exchanges the free boundary
condition |f〉 and one of the fixed boundary condition
(|+〉). This is so since the duality transformation ex-
changes σ and µ, and hence the Ishibashi states |1/16〉〉R
and |1/16〉〉NS. (In fact, Ref. 47 proposed a method to
diagnose the existence of the Kramers-Wannier duality,
for a given CFT, by using boundary states.)

Let us next consider Nf copies of (2+1)d topological
superconductors protected by Z2 symmetry discussed.
We will focus on the cases where Nf is even. In these
cases, spin operators (analogue of σ and µ in the critical
Ising model) in the edge theory are given by

Θs
R = ei

∑
a saφ

a
R , sa = ±1

2
, (121)

in the bosonized language (in the right-moving sector).
These operators are an intertwining (vertex) operator
that maps the untwisted sector to the twisted sectors
specified by s. By state-operator correspondence, these
operators are identified with a state in the corresponding
twisted sector. (Note that there is ground state degen-
eracy for the R sectors). Thus, we have a set of states
{|0〉NS, |s〉R}. These states appear when one constructs
boundary states, and are exchanges under the action of

the unitary Z2 symmetry. (Here, this is not the Zf2 sym-
metry). The spin operators satisfy

Θs
R(z)Θs′

R (w) = e2πis·s′sgn(x−x′)Θs′

R (w)Θs
R(z), (122)



17

where s · s′ = (1/4)
∑
a(±1). This phase can be made

an integer when the number of complex fermions is a
multiple of 4 (namely, the number of real fermions is a
multiple of 8, Nf = 8n) and if we choose

s = (1/2, 1/2, · · · ) or s′ = (−1/2,−1/2, · · · ). (123)

The unitary Z2 symmetry can exchange spin operators
Θs
R, as the Kramers-Wannier duality of the critical Ising

model exchanges σ and µ. However when Nf = 8n, the
spin operators are mutually local. Hence in this case, the
Z2 symmetry is not a duality (or non-local) symmetry.

Rather, it is a (part of) triality symmetry.
Finally, recall that the presence of boundary breaks

the Kramers-Wannier duality. This is another indication
of the Kramers-Wannier duality is non-local.
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