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Due to the interaction between topological defects of an order parameter and underlying fermions,
the defects can possess induced fermion numbers, leading to several exotic phenomena of fundamen-
tal importance to both condensed matter and high energy physics. One of the intriguing outcome of
induced fermion number is the presence of fluctuating competing orders inside the core of topological
defect. In this regard, the interaction between fermions and skyrmion excitations of antiferromag-
netic phase can have important consequence for understanding the global phase diagrams of many
condensed matter systems where antiferromagnetism and several singlet orders compete. We crit-
ically investigate the relation between fluctuating competing orders and skyrmion excitations of
the antiferromagnetic insulating phase of a half-filled Kondo-Heisenberg model on honeycomb lat-
tice. By combining analytical and numerical methods we obtain exact eigenstates of underlying
Dirac fermions in the presence of a single skyrmion configuration, which are used for computing
induced chiral charge. Additionally, by employing this nonperturbative eigenbasis we calculate the
susceptibilities of different translational symmetry breaking charge, bond and current density wave
orders and translational symmetry preserving Kondo singlet formation. Based on the computed
susceptibilities we establish spin Peierls and Kondo singlets as dominant competing orders of anti-
ferromagnetism. We show favorable agreement between our findings and field theoretic predictions
based on perturbative gradient expansion scheme which crucially relies on adiabatic principle and
plane wave eigenstates for Dirac fermions. The methodology developed here can be applied to many
other correlated systems supporting competition between spin-triplet and spin-singlet orders in both
lower and higher spatial dimensions.

I. INTRODUCTION

Competing orders and quantum criticality are two
generic features of the rich phase diagrams displayed
by several strongly correlated materials, including heavy
fermion systems1–9. Of particular significance are the an-
tiferromagnetic phase and competing spin-singlet phases
such as charge and bond density waves and unconven-
tional pairings. Therefore, for a comprehensive under-
standing of the global phase diagrams of many strongly
correlated materials, it is essential to gain insights into
the relationship among different competing orders, which
spontaneously break distinct global symmetries. Within
the conventional theme of Landau theory of local order
parameters, describing smooth fluctuations or collective
modes, order parameters breaking distinct symmetries
do not seem to bear any specific relationship. How-
ever, the nonperturbative topological defects of order pa-
rameters such as domain walls, vortices, skyrmions and
hedgehogs can support competing orders as fluctuating
objects and thereby contain information about appar-
ently distinct ordered states10–45,47–53. In addition, the
interaction between fermions and topological defects can
be important in strongly correlated electronic systems
such as heavy fermion compounds, generically described
by effective Kondo-Heisenberg models1–3,7–9,42,45,47,48,54.
The strong competition among antiferromagnetism and
Kondo singlet formation in addition to spin-singlet super-
conductivity are essential features of many heavy fermion
compounds1–9, and a global phase diagram has been the-

oretically proposed7 which features the transitions be-
tween an antiferromagnetic order and a variety of spin-
singlet paramagnetic phases. This global phase diagram
has been studied in the Kondo-Heisenberg models using
various microscopic methods55,56, and has motivated ex-
perimental investigations in a number of heavy fermion
materials57–67. However, it remains a theoretical chal-
lenge to concretely access the spin-singlet orders (e.g.,
the heavy fermi liquid phase due to static Kondo sin-
glets) of the paramagnetic phases starting from the anti-
ferromagnetically ordered side. In this work, we are in-
terested in addressing the fluctuating spin-singlet orders
supported by gapped skyrmion excitations inside an anti-
ferromagnetically ordered phase of a Kondo-Heisenberg
model. We are also interested in identifying the most
dominant singlet orders which can be nucleated when
the antiferromagnet order is destroyed by quantum fluc-
tuations, causing the collapse of skyrmion excitation gap
inside the paramagnetic phase.

The general problem of interaction between fermions
and topological defects is often intractable. But valuable
insights can be gained by studying specific toy models
where fermionic degrees of freedom are modeled by Dirac
fermions. In this regard, a Kondo-Heisenberg model de-
fined on the honeycomb lattice plays a very instructive
role, as the coupling between Dirac fermions and anti-
ferromagnetic order parameter can be addressed employ-
ing diverse analytical and numerical methods42,45,54. In
one of our previous work, we have addressed the inter-
action between Dirac fermions and topologically nontriv-
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ial skyrmion configuration of antiferromagnetic order pa-
rameter, by employing perturbative gradient expansion
scheme45. Within such scheme the calculations of trian-
gle diagram for Goldstone-Wilczek current are controlled
by the inverse of Dirac mass (caused by uniform ampli-
tude of antiferromagnetic order) and rely upon adiabatic
principle.

A. Competition between spin Peierls and
antiferromagnetic orders

The simplest situation involves a doublet (two inequiv-
alent valleys or nodes) of spinful Dirac fermions coupled
to antiferromagnetic order that simultaneously breaks
time reversal and spatial inversion symmetries. The cor-
responding low energy theory can be described by the
effective action

S1 =

∫
d2xdτψ̄[γµ∂µ + gψ1⊗ η · n]ψ, (1)

where ψ is a eight-component spinor (incorporating two
sublattice, two nodal and two spin degrees of freedom),
γµ are three mutually anticommuting 4 × 4 Hermitian
matrices operating on sublattice and valley indices, 1 is
4 × 4 identity matrix that operates on sublattice and
valley indices, and Pauli matrices η act on spin com-
ponents. The coupling between fermion and the O(3)
vector order parameter n is denoted by gψ. Inside the
antiferromagnetically ordered phase Dirac fermions pos-
sess excitation or mass gap 2gψ〈ψ̄1 ⊗ η · nψ〉. The gra-
dient expansion analysis (controlled by the mass gap)
shows that a skyrmion acquires an induced chiral charge
Q5 = 〈ψ̄γ0γ5ψ〉 = 2Qtop, where Qtop is the topologi-
cal invariant or Pontryagin index for skyrmion config-
uration. Within the continuum description, the chiral
charge acts as the generator of translational symmetry
(an emergent U(1) symmetry when higher gradient ki-
netic terms are ignored). Inside the antiferromagneti-
cally ordered phase, the skyrmion number and conse-
quently the chiral charge Q5 act as conserved quanti-
ties, thus freely mixing two bilinears ψ̄M̂ψ and ψ̄M̂γ5ψ,
where [M̂, γ5] = 0, which cause hybridization between
two inequivalent nodes. Consequently, skyrmion core
supports translational symmetry breaking orders ψ̄M̂ψ
and ψ̄M̂γ5ψ as fluctuating quantities. The specific choice
M̂ = 1 corresponds to spin Peierls order, while other
choices for M̂ represent charge and current density wave
orders. All of these singlet orders mix two valleys, and
naturally break chiral or translational symmetry43,45.

B. Competition between Kondo singlets, spin
Peierls and antiferromagnetic orders

For the Kondo-Heisenberg model defined on the hon-
eycomb lattice, we have to account for two species of
eight-component fermions corresponding to conduction

and f-electrons. Inside the antiferromagnetically ordered
phase the low energy theory can be qualitatively under-
stood in terms of the effective action

S2 =

∫
d2xdτψ̄[γµ∂µ + gψ1⊗ η · n]ψ

+

∫
d2xdτχ̄[γµ∂µ + gχ1⊗ η · n]χ, (2)

where ψ and χ capture two distinct eight-component
Dirac fermions45,54. Crucially, the antiferrormagnetic
sign of Kondo coupling is described by the condition
gψgχ < 0 (same sign would represent Hund’s coupling
and describe spin-1 system). For simplicity all addi-
tional couplings between two species of fermions (resid-
ual quartic interactions) are being ignored. Both species
of fermions give rise to induced chiral charges, while
their sum vanishes. Interestingly, the difference be-
tween two types of induced chiral charge equals 4Qtop,
i.e., Q5,+ = 〈ψ̄γ0γ5ψ〉 + 〈χ̄γ0γ5χ〉 = 0 and Q5,− =
〈ψ̄γ0γ5ψ〉−〈χ̄γ0γ5χ〉 = 4Qtop. It has been shown that the
relative chiral charge Q5,− (hence the skyrmion number)
causes free rotation among several translational symme-
try preserving Kondo singlet operators (mixing ψ and χ
at same valley) in addition to conventional translational
symmetry breaking density wave operators. Therefore
gradient expansion scheme provided important insight
that the skyrmion texture supports several competing
Kondo singlet operators, spin Peierls (bond density) as
well as charge and current density wave orders inside the
antiferromagnetic insulating phase45.

C. One dimensional Kondo-Heisenberg model

A similar issue of interaction between Dirac fermions
and topological defects of antiferromagnetic order has
also been emphasized in one spatial dimension47,48. In
one dimension the relevant topological defects are in-
stantons or tunneling events for O(3) quantum nonlin-
ear sigma model. However these instantons in two-
dimensional Euclidean space, and static skyrmions of
(2+1)-dimensional model have identical forms. By em-
ploying different field theoretic methods (direct gradient
expansion and chiral anomaly), it has been found that
the instanton number is directly related to the expec-
tation value of bilinear ψ̄γ5ψ (which represents transla-
tional symmetry breaking, Ising spin-Peierls order). In
the presence of Kondo coupling, one finds the competi-
tion between Kondo singlet formation and spin-Peierls
order48. This picture is also qualitatively supported by
bosonization analysis.

D. Accomplishments of the present work

However, the gradient expansion scheme only employs
scattered states of Dirac fermions, while completely ig-
noring the effects of low energy bound states. How do
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these nonperturbative eigenstates affect the predictions
of gradient expansion? Which are the most dominant
singlet orders which can be nucleated after the antifer-
romagnetic order is destroyed by quantum fluctuations,
causing a collapse of skyrmion excitation gap? In the
present work we answer these important physical and
technical questions. We first solve for the exact fermion
eigenfunctions in the presence of topologically nontriv-
ial skyrmion background to establish the induced chiral
charge of skyrmion texture. Subsequently by employing
these nonperturbative eigenstates, we evaluate the sus-
ceptibilities of different competing orders. Based on the
susceptibilities, we demonstrate spin Peierls to be the
most dominant translational symmetry breaking singlet
order, which strongly competes against the static Kondo
singlet formation. We also substantiate our results ob-
tained in the continuum limit by calculations performed
with lattice regularizations. Intriguingly, we find remark-
able agreement between the analysis of this work and
the predictions of perturbative field theory45 and more
recent nonperturbative analysis of hedgehog-fermion in-
teractions inside the paramagnetic phase54.

Since the two dimensional skyrmion texture describes
the instanton or tunneling event of nonlinear sigma model
in one spatial dimension, our methodology can be di-
rectly applied to the one dimensional problem (1+1-
dimensional space-time) for computing the fermion de-
terminant in the presence of topologically nontrivial dy-

namic background (it is equivalent to solving a ficti-
tious two dimensional Hamiltonian defined in Euclidean
space). Therefore, we can also extract the dynamic infor-
mation regarding destruction of algebraic spin liquid in
favor of competing Kondo singlet and spin Peierls phases
for one dimensional Kondo-Heisenberg chain. Similarly,
our methodology can be applied for many two and also
three dimensional systems, supporting competition be-
tween spin-triplet and spin-singlet orders.

The rest of the paper is organized as follows. We in-
troduce the microscopic model and its continuum limit
in Sec. II, and briefly discuss the results of gradient ex-
pansion in Sec. III. The calculations of nonperturbative
eigenstates of Dirac fermions and order parameter sus-
ceptibilities are presented in Sec. IV. The results from
continuum limit are justified with lattice based calcula-
tions in Sec. V. We discuss the broader implications of
our analysis in Sec. VI, while we summarize our findings
in Sec. VII. Some details regarding the coupling between
Dirac fermion and nonlinear sigma model fields, and chi-
ral charge calculations are respectively relegated to Ap-
pendix A and Appendix B.

II. KONDO LATTICE MODEL ON
HONEYCOMB LATTICE

The Hamiltonian for Kondo-Heisenberg model on a
honeycomb lattice is given by

H =
∑
ri∈A

3∑
j=1

[
−tc c†A,α (ri) cB,α (ri + δj) + h.c+ JH SA (ri) · SB (ri + δj) + JK c†A,α (ri)

ηαβ
2
cA,β (ri) · SA (ri)

+
JK
3
c†B,α (ri + δj)

ηαβ
2
cB,β (ri + δj) · SB (ri + δj)

]
,

(3)

where c†A/B,α/β is the conduction electron creation op-

erator, and A, B denote two interpenetrating triangular
sublattices, and Pauli matrices η operate on spin indices
α and β, and δj are three coordination vectors connect-
ing two sublattices, as shown in Fig. 1. The explicit form

of these vectors are δ1 =
(
−a2 ,

√
3a
2

)
, δ2 = (a, 0) and

δ3 =
(
−a2 ,−

√
3a
2

)
, where a is the lattice spacing. The

local moments on sublattice A and B are represented
by SA (ri) and SB (ri + δj), respectively. The RKKY
coupling between local moment is modeled by nearest
neighbor Heisenberg interaction with strength JH , and
JK is the Kondo coupling between conduction electron
and local moment. We will consider both JH and JK to
be antiferromagnetic, i.e., JH > 0 and JK > 0.

After linearizing the dispersion relation for fermions
around two inequivalent nodal points of the hexagonal
Brillouin zone (located at K±) and analytically contin-

FIG. 1. The structure of honeycomb lattice, where the red
and the black circles, respectively, denote two interpenetrat-
ing triangular sublattices A and B. Coordinate vectors δi are
shown as solid line with arrows.

uing real time to imaginary time by setting τ = it, the
low energy effective physics of free conduction electron
can be described by the imaginary time action:

S0 =

∫
dx2dτψα (γ0 ⊗ η0∂t + vψγj ⊗ η0∂j)ψα, (4)
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where vψ =
√

3tca
3 is the Fermi velocity, spinor ψTα =

(c+,A,α, c+,B,α, c−,B,α, c−,A,α), ψα = ψαγ0, ± is index
for two valleys K±, and α is spin index. The gamma
matrices are defined as:

γ0 = τ1 ⊗ σ0 =

(
0 σ0

σ0 0

)
, γj = iτ2 ⊗ σj =

(
0 σj
−σj 0

)
,

γ5 = τ3 ⊗ σ0 =

(
σ0 0
0 −σ0

)
(5)

where the Pauli matrices σ, τ respectively operate on
the sublattice and valley indices.

Inside the antiferromagnetically ordered phase, the low
energy physics of local moments can be described by
QNLσM27,30,31,68:

Sn =
1

2cg

∫
d2xdτ

[
c2 (∂xn)

2
+ (∂τn)

2
]

+ iSB [n] (6)

The coupling constant g has the dimension of length,
and the antiferromagnetically ordered phase exists for
g smaller than a critical strength gc

68. The last term
SB [n] corresponds to Berry phase, which vanishes inside
the ordered phase. The Berry phase can be finite inside
the paramagnetic phase, but it does not possess a simple
continuum limit in (2+1) dimensions31.

Now we incorporate the Kondo coupling, which cap-
tures the scattering between conduction electron spinor
ψ and the QNLσM field n representing the local moment:

SK = gK

∫
d2xdτψαγ3n · ηαβψβ (7)

Therefore, the low energy theory of antiferromagnetic
phase for the Kondo-Heisenberg model can be described
by:

S = S0 + Sn + SK (8)

The lack of continuum representation for Berry’s phase
in (2+1)-dimensions makes it hard to analyze its conse-
quence inside the paramagnetic phase based on the coarse

grained representation. However, this can be circum-
vented by introducing auxiliary f-fermions for describ-
ing the local moments45. We assume that the auxil-
iary f-fermions only hop to the nearest neighbor sites
like the conduction fermions, with a hopping strength
tf . At low energies, these f-fermions can also be de-
scribed by the Dirac equation with a new spinor χTα =
(f+,A,α, f+,B,α, f−,B,α, f−,A,α). Thus, the resulting low
energy effective action for f-fermion inside AF phase is:

Sf =

∫
dx2dτχα [γ0 ⊗ η0∂t + vχγj ⊗ η0∂j + gχγ3n · η]αβ χβ

(9)

where vχ =
√

3tfa
2 . In fact, after integrating out the f-

fermion degrees of freedom, this action will return to the
same form of QNLσM of Eq. (6)38,40,41. We again remind
the reader that the Berry phase vanishes inside the an-
tiferromagnetically ordered phase and only becomes im-
portant for addressing the nature of paramagnetic phase.
The Hamiltonian operator from Eq. (7) involving only f-
electrons would be:

Hf = τ3 [−ivχ (σ1∂1 + σ2∂2) + gχn · ησ3] . (10)

Usually the introduction of auxiliary fermion description
requires the introduction of Lagrange multiplier or con-
straint gauge fields. Since in this work we would be
dealing with confined phases of matter such as antifer-
romagnet, spin Peierls or Kondo singlets, the constraint
gauge field does not affect any of our conclusions regard-
ing the competing order. For this reason we follow Ref. 69
and use an alternative method that avoids introduction
of any constraint gauge fields. Within this method one
considers actual f electrons in the presence of sufficiently
strong Hubbard interaction, which gives rise to an anti-
ferromagnetic phase. The relevant steps are described in
the Appendix A.

Therefore, the Hamiltonian operator for the combined
problem described by S = S0 + Sf + SK is given by

HΨ = τ3 [−iv+ (σ1∂1 + σ2∂2)− iv− (σ1∂1 + σ2∂2) ρ3 + g+n · ησ3 + g−n · ησ3ρ3] , (11)

which operates on the spinor Ψ = (ψ, χ) =
(cAα+, cBα+, cBα−, cAα−, fAα+, fBα+, fBα−, fAα−)

where v± =
vc±vf

2 and g± =
gK±gχ

2 , and new Pauli ma-
trices ρi act on the flavor index representing conduction
and f-electrons, (ψ, χ). Inside AF phase, we expect that
the staggered magnetic moments of conduction electron
ψ and f-electron χ anti-align to each other. Therefore,
we have gKgχ < 045 .

III. SKYRMION, INDUCED CHIRAL CHARGE
AND COMPETING ORDERS: PERTURBATIVE

ARGUMENT

The static nonsingular topological defect of QNLσM
in 2 + 1 dimensions is called skyrmion, which satis-
fies the boundary condition n (r →∞) = n0, where

r =
√
x2 + y2 and n0 is a constant unit vector. There-

fore, the two-dimensional space is compactified onto a
two sphere S2 and the skyrmion configurations are de-
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fined by an integer topological charge also known as
skyrmion number, since the homotopy group Π2

(
S2
)

=
Z. The skyrmion with topological charge Qtop ∈ Z
can have arbitrary profile function, provided it satis-
fies the boundary condition and the requirement that
1

4π

∫
d2xn · ∂1n × ∂2n = Qtop. Fig. 2 illustrates a real

space profile for single skyrmion with Qtop = 1.

FIG. 2. Illustration of single skyrmion. The red dot denotes
the origin of skyrmion core, and blue arrow is the direction of
staggered magnetization or antiferromagnetic order parame-
ter n.

It is well known, when Dirac fermions are coupled
to QNLσM, the skyrmion textures will acquire induced
fermion number23,28,29,38. For Hamiltonian of Eq. (10),
due to the overall matrix τ3 (appearing odd number of
times) operating on two inequivalent valleys, the total in-
duced fermionic charge vanishes. But the chiral charge,
defined as the difference of fermion densities at two val-
leys, will be proportional to the topological charge of
skyrmion:

Q± ≡
∫
d2x〈:f†±f±:〉 = ± sign (gχ)Qtop,

Q5 ≡
∫
d2x〈:χ†τ3χ:〉 =

∫
d2x

(
〈:f†+f+:〉 − 〈:f†−f−:〉

)
,

= 2 sign (gχ)Qtop,
(12)

Q± are the charges for ± valleys, and :: denotes normal
ordering operation. These relations can be proven by gra-
dient expansion method38, and the detailed derivation is
provided in Appendix B. We can also verify this result
numerically by solving for the spectral flow during adia-
batic formation of skyrmion, as shown in Fig. 3. We can
simulate the formation of single (anti)skyrmion without
loss of generality by assuming

n (~r, t) = (sin tf (r) cos θ, sin tf (r) sin θ, cos tf (r)) ,
(13)

where f (r) = πe−
r
2 . One can easily verify that Qtop = 0

at t = 0 and Qtop = −1 at t = 1, and the definition
of (anti)skyrmion does not depend on the precise form
of profile function. For + valley, as shown in Fig. 3, we
find there is precisely one state that crosses zero energy
(flowing out of negative energy states or filled Dirac sea)

during the formation of skyrmion. Therefore, the induced
charge is −1, just as Eq. (12) suggests. The relation
between the induced fermionic chiral charge of the system
and the topological charge of skyrmion is a consequence
of index theorem11.

FIG. 3. The spectral flow for + valley during the adiabatic
formation of skyrmion. Here we choose coupling constant
gχ = 2

Since gKgχ < 0, the induced chiral charges for conduc-
tion and f-electrons have opposite signs [electron Q5,ψ =
2 sign (gK)Qtop and f-electron Q5,χ = 2 sign (gχ)Qtop].
This means if one state for conduction fermion sinks into
the Dirac sea, there will be a state for f-electrons which
will emerge out of the Dirac sea. Therefore, the net chiral
charge of two species vanishes. Nonetheless, the differ-
ence between two chiral charges is quantized:

Q−,Ψ ≡
∫
d2x〈:Ψ†ρ3τ3Ψ:〉 = Q5,ψ−Q5,χ = 4 sign (gK)Qtop

(14)
Inside the AF ordered phase, the tunneling events de-

scribed by singular hedgehog and antihedgehog config-
urations (space-time singularities) are linearly confined,
leading to the conservation of skyrmion number. When
the AF order is gradually suppressed by quantum fluc-
tuations, the spin stiffness of the sigma model and the
skyrmion energy cost decrease. On the paramagnetic
side, the skyrmions excitation energy vanishes, and all
topologically distinct skyrmion configurations become
energetically degenerate. Hence, the tunneling events
between different skyrmion configurations become im-
portant for determining how ground state degeneracy is
lifted. Since Q5 and Q−,Ψ are proportional to the topo-
logical charge Qtop [as in Eq. (12) and Eq. (14)], Q5 and
Q−,Ψ would also be changed via tunneling events. Thus
Q5 and Q−,Ψ would act as fast variables inside param-
agnetic phase, and their conjugate operators will serve
as the appropriate slow variables or competing order pa-
rameters43,45.

Based on this argument, for one species of Dirac
fermions [e.g., for Hamiltonian Hf of Eq. (10)], the cor-
responding spin-singlet competing orders in the particle-
hole channel are found to be

QM = χ†M̂eiφτ3χ. (15)
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Competing
order

Matrix form M̂ anticommute with
HΨ?

Valence bond
solid

τ1, τ2 Yes

Charge den-
sity wave

τ1σ1, τ1σ2 No

Current den-
sity wave

τ1σ3 No

TABLE I. Competing orders for one species of fermion cou-
pled to antiferromagnetic order parameter.

Here M̂ is a 4 × 4 matrix operating on sublattice and
valley indices, and there are five distinct order parame-
ters OM , which are conjugate to chiral charge operator

Q̂5 = χ†τ3χ , i.e.,
[
Q̂5, OM

]
∝ χ†M̂ei(

π
2 +φ)τ3χ, as in-

dicated in TABLE I. The first two correspond to com-
ponents of the valence bond solid(VBS), which is also
called Kekule bond density wave order or spin Peierls or-
der breaking the translation symmetry unlike the usual
AKLT state resulting from spin-1 model, and the final
three correspond to different kinds of charge or current
density wave orders43,45. However, only the components
of VBS order anticommute with the whole Hamiltonian
operator Hf of Eq. (10), thus maximizing the energy
gap inside the skyrmion core. Therefore, from a weak
coupling perspective, the VBS order should be the most
dominant competing order of antiferromagnetism.

For the Kondo-Heisenberg model with two species of
eight component Dirac fermions [see Eq. (11)], Q−,Ψ is
proportional to the skyrmion number. Therefore, the
conjugate operators of Q−,Ψ would serve as competing
orders in the presence of antiferromagnetic Kondo cou-
pling, and they are listed in TABLE II. Besides VBS,
charge and current density orders already found in TA-
BLE I, the presence of ρ3 in Q̂−,Ψ gives rise to additional
competing orders involving ρ1 or ρ2, corresponding to hy-
bridization of two species or Kondo singlet formation45.
While the VBS orders (with τ1, τ2) always anticommute
with the combined Hamiltonian, the Kondo singlet oper-
ators do not generically anticommute with the combined
Hamiltonian. Hence from the weak coupling perspective,
they may not be dominant competing orders inside the
skyrmion core. Only for some special choice of param-
eters, some Kondo si nglet operators can anticommute
with the effective Hamiltonian. Therefore, the gradient-
expansion based results may not always predict the cor-
rect competing orders. In the following section, we cir-
cumvent this shortcoming of gradient-expansion scheme,
by evaluating the exact eigenstates of Dirac Hamiltonian
and subsequently computing the susceptibilities of differ-
ent competing orders.

Competing
order

Matrix form M̂ anticommute with
HΨ?

Valence bond
solid

τ1, τ2 Yes

Charge den-
sity wave

τ1σ1, τ1σ2 No

Current den-
sity wave

τ1σ3 No

Kondo sin-
glet

ρ1, ρ2, τ3ρ1, τ3ρ2 Yes iff v+ = 0 and
g+ = 0

Kondo sin-
glet

σ3ρ1, σ3ρ2, τ3σ3ρ1, τ3σ3ρ2 Yes iff v− = 0 and
g+ = 0

TABLE II. Competing spin-singlet orders in the presence of
Kondo coupling

IV. BEYOND PERTUBATIVE ARGUMENT

The eigenstates of Dirac fermions in the presence of
skyrmion configurations of O(3) nonlinear sigma model
have been previously discussed in Ref. 29. The main
goal was to establish the induced fermion number due
to spectral flow. But, the physical role of fermion dou-
blers (present for any lattice model) and competing or-
ders has not been addressed. By contrast, we would deal
with fermion doublers arising from the underlying lat-
tice model, and focus on identifying dominant compet-
ing orders residing in the skyrmion core. Therefore, we
would compute susceptibilities of competing spin singlet
order parameters, by using the exact eigenstates of Dirac
fermions. This is a new development for the problem of
interaction between Dirac fermions and O(3) skyrmion
configurations.

A. Without Kondo coupling

To calculate the local susceptibility of predicted com-
peting orders in TABLE I, we solve(

Hf + ∆M̂
)
χ = Eχ (16)

on a finite disk of radius R by performing exact diago-
nalization. We denote the Hamiltonian Eq. 10 with or
without single skyrmion as Hf,S and Hf,0, respectively.
For single skyrmion, we choose the profile function of
skyrmion n as

n = (sin f (r) cos θ, sin f (r) sin θ, cos f (r)) (17)

where f (r) = πe−
r
λ and λ is the length scale for

skyrmion. One can easily verify that in this case we have
1

4π

∫
d2xn · ∂1n× ∂2n = −1.

The eigenstates of Hf,0 constitute a suitable basis for
performing exact diagonalization. We choose the back-
ground field n = (0, 0, 1), such that:

Hf,0 = τ3 [vχ (σ1k1 + σ2k2) + gχη3σ3] . (18)



7

FIG. 4. The local susceptibility of VBS order M̂ = τ1, τ2 ver-
sus radial distance. The blue line and red line corresponds
to the presence and the absence of skyrmion on origin, re-
spectively. Once the skyrmion is present, the susceptibility
of VBS order will gain obvious enhancement near the core of
skyrmion defect.

Since Hamiltonian Hf,0 commutes with grand spin oper-

ator M̂3 = −i∂θ + σ3

2 + η3
2 , Hf,0 and M̂3 can be simul-

taneoulsy diagonalized. The solutions for Hf,0χ = Eχ
with fixed grand spin m consist of the following linearly
independent states:

χ+,m,j,n,η=1(r, θ) = eimθ

Cη=1
vχkm,j

nEm,j−gχ Jm−1 (km,jr) e
−iθ

iCη=1Jm (km,jr)

06×1



χ+,m,j,n,η=−1(r, θ) = eimθ


02×1

Cη=−1
vχkm,j

nEm,j+gχ
Jm (km,jr)

iCη=−1Jm+1 (km,jr) e
+iθ

04×1



χ−,m,j,n,η=1(r, θ) = eimθ


04×1

Cη=1
vχkm,j

nEm,j−gχ Jm−1 (km,jr) e
−iθ

iCη=1Jm (km,jr)

02×1


χ−,m,j,n,η=−1(r, θ) = eimθ

 06×1

Cη=−1
vχkm,j

nEm,j+gχ
Jm (km,jr)

iCη=−1Jm+1 (km,jr) e
+iθ


(19)

where the fist index ± means the ± valley, index n = ±1
denotes the solution with energy ±Em,j , and η is the
spin index. We have chosen the boundary condition
Jm (km,jR) = 0, with index j denoting the j-th zero of
Bessel function Jm (r) , so that the momentum km,j and

energy Em,j =
√
v2
χk

2
m,j + g2

χ are quantized. The coef-

ficient Cη is determined by the normalization condition
‖χ±,m,j,n,η‖2 ≡

∫
d2x〈χ±,m,j,n,η|χ±,m,j,n,η〉 = 1.

We then solve the equation Eq. (16) by diagonal-
izing the matrix with elements

∫
d2x〈χ±,m,j,n,η|Hf +

∆M̂ |χ±,m′,j′,n′,η〉. Besides the real space cut-off (i.e, the
radius of disk R), we also impose a large momentum cut-
off Λ, and the large grand spin cut-off M . We choose

FIG. 5. The local susceptibility of charge density wave order
M̂ = τ1σ1, τ1σ2 versus radial distance. Now the presence of
skyrmion can still enhance the susceptibility, but the amount
is smaller than VBS order.

our basis set spanning from grand spin −M to M . For
M̂ = τ1, τ2, τ1σ3, the Hamiltonian Hf + ∆M̂ commutes

with the grand spin M̂3. Therefore, we can diagonalize
the matrix in diagonal block with fixed value of grand
spin m. While for M̂ = τ1σ1, τ1σ2 (which do not com-

mute with M̂3), we have block off-diagonal elements and
need to diagonalize the whole matrix at once.

After finding the solutions for Eq. (16), we compute the
local susceptibility for each candidate competing order by
using

χM (r) = lim
∆→0

|〈χ†M̂χ〉|
∆

. (20)

The local susceptibility diverges with momentum cut-off
Λ in two dimensions, but once we choose a finite mo-
mentum cut-off Λ, it converges with radius of disk R and
the maximum of grand spin M . In this paper, we choose
R = 8, Λ = 8, M = 30, the length scale of skyrmion
λ = 2, and the coupling constant gχ = 2.

We have found that the local susceptibilities for VBS
orders M̂ = τ1 or τ2 gain expected enhancement near the
core of skyrmion, as shown in Fig. 446 On the other hand,
for other candidate competing orders like charge den-
sity wave (with τ1σ1 and τ1σ2), the enhancement is less

FIG. 6. The local susceptibility of current density wave order
M̂ = τ1σ3 versus radial distance. Instead of enhancement,
the presence of skyrmion now suppresses the susceptibility of
M̂ = τ1σ3 near the core of skyrmion.
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prominent, as shown in Fig. 5. Moreover, for current den-
sity wave τ1σ3, the presence of skyrmion even suppresses
the susceptibility, like Fig. 6. The suppression of the sus-
ceptibility for current density wave τ1σ3 demonstrates
that the pertubative arguments of gradient-expansion
scheme are not always sufficient.

B. With Kondo coupling

In the presence of Kondo coupling, we have to account
two types of fermion fields ψ and χ, and the pertuba-
tive argument predicts that the VBS and Kondo sin-
glet orders are important competing orders of antifer-
romagnetism [see TABLE II]. We want to establish the
validity of this prediction by using exact eigenstates of
Dirac Hamiltonian. This is particularly important, since
Kondo singlet operators do not generically anticommute
with the Hamiltonian, and within the weak coupling pic-
ture fully anticommuting VBS would seem to be the dom-
inant competing order. Whether the Kondo singlet or-
ders can be favored over fully anticommuting VBS over a
wide range of microscopic parameter regime is not clear
from the weak coupling arguments. By contrast, our
physical intuition suggests that the Kondo singlets should
be stabilized over a finite parameter region7. Here we ad-
dress this issue by solving the eigenstates of(

HΨ + ∆M̂
)

Ψ = EΨ, (21)

for each M̂ identified in TABLE II, and then computing
the local susceptibility by employing

χM (r) = lim
∆→0

|〈Ψ†M̂Ψ〉|
∆

. (22)

For diagonalizing this Hamiltonian we use the basis set:
Ψ±,m,j,n,η = (ψ±,m,j,n,η, χ±,m,j,n,η), where χ±,m,j,n,η’s

FIG. 7. The local susceptibility of Kondo singlet orders M̂ =
ρ1, ρ2, τ3ρ1, τ3ρ2 (M̂ = σ3ρ1, σ3ρ2, σ3τ3ρ1, σ3τ3ρ2) with vψ =
1, vχ = −1, gψ = 2, and gχ = −3 (vψ = 1, vχ = 1, gψ = 2,
and gχ = −3). The enhancement of susceptibility of these
Kondo singlet order by skyrmion can still sustain obviously,
even with parameters beyond where perturbative argument
can be applied. The enhancement of susceptibility of Kondo
orders in fact can sustain to very broad parameter space.

have been already defined in Eq. (19) and ψ±,m,j,n,η’s
are defined as:

ψ+,m,j,n,η=1(r, θ) = eimθ

Dη=1
vψkm,j

nE′
m,j−gK

Jm−1 (km,jr) e
−iθ

iDη=1Jm (km,jr)

06×1



ψ+,m,j,n,η=−1(r, θ) = eimθ


02×1

Dη=−1
vψkm,j

nE′
m,j+gK

Jm (km,jr)

iDη=−1Jm+1 (km,jr) e
+iθ

04×1



ψ−,m,j,n,η=1(r, θ) = eimθ


04×1

Dη=1
vψkm,j

nE′
m,j−gK

Jm−1 (km,jr) e
−iθ

iDη=1Jm (km,jr)

02×1



ψ−,m,j,n,η=−1(r, θ) = eimθ

 06×1

Dη=−1
vψkm,j

nE′
m,j+gK

Jm (km,jr)

iDη=−1Jm+1 (km,jr) e
+iθ

 .
(23)

Here E′m,j =
√
v2
ψk

2
m,j + g2

ψ and the coefficient Dη is ob-

tained from the normalization condition ‖ψ±,m,j,n,η‖2 ≡∫
d2x〈ψ±,m,j,n,ηbψ±,m,j,n,η〉 = 1. We diagonalize the ma-

trix with elements 〈Ψ±,m,j,n,η|Hf + ∆M̂ |Ψ±,m′,j′,n′,η〉.
As shown in Fig. 7, we have found that the enhance-

ment of these Kondo singlet orders by skyrmion is com-
parable with the enhancement of VBS orders. Moreover,
the enhancement of Kondo singlets is also sustained over
a broad parameter space, including the regime where per-
turbative arguments may not be applicable. Therefore,
we conclude that the Kondo singlet and VBS orders act
as the dominant competing orders inside a skyrmion core.
Therefore, the paramagnetic phase in the global phase
diagram can support both of these competing singlet or-
ders.

C. Crossover between VBS and Kondo order

The Hamiltonian of Eq. (11) is only useful for de-
scribing low energy physics inside the antiferromagnetic
phase. In the vicinity of a magnet to paramagnet phase
transition, such description is not sufficient to capture all
features of the Kondo lattice model, since the fluctuations
for competing channels and residual interactions in those
channels can become important. The effective Hamil-
tonian describing the competition among VBS, Kondo
singlet, and AF phases for a Kondo lattice model can be
postulated to have the form

H = HΨ + bρ1 +Qτ1
ρ0 − ρ3

2
, (24)

where b and Q capture the fluctuations for Kondo and
VBS channels and increase with JK , JH respectively42,55.
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The presence of ρ0−ρ3
2 reflects that the VBS order in a

Kondo lattice model can only be generated through the
frustrated RKKY interactions between local moments.

From the perspective of AF Hamiltonian HΨ, the fluc-
tuations of VBS and Kondo channels serve as external
perturbation, and thus induce the corresponding order
parameters approximately as:

〈χ†τ1χ〉 ∼= QχV BS (r)

〈Ψ†ρ1Ψ〉 ∼= bχKondo (r)
(25)

where χV BS (r) and χKondo (r) are the local susceptibil-
ities of VBS and Kondo orders, respectively.

Since we have already observed that the skyrmion de-
fect of AF order can enhance the susceptibility of VBS
and Kondo order inside AF phase, we expect that the
VBS and Kondo order parameters induced by these fluc-
tuations will also be enhanced by skyrmion. Moreover,
once the JK(JH) is enlarged, that is, the fluctuation into
Kondo(VBS) channel is larger, from Eq. (25), the re-
sulting enhancement of Kondo(VBS) order parameter by
skyrmion should also be enlarged.

This behavior actually is also manifested by solving
the Hamiltonian of Eq. (24) directly and computing the
resulting order parameters, as shown in Fig. 8. There-
fore, once we increase the Kondo coupling in microscopic
Kondo lattice model, the skyrmion will eventually favor
Kondo order over the VBS order, causing the transition
from VBS to Kondo phases. This result gives us a uni-
fying point of view to understand the crossover between
VBS and Kondo orders in a Kondo lattice model, begin-
ning from the antiferromagnetic phase.

V. JUSTIFICATION BY LATTICE MODELS

So far, the model we relied on are different kinds of
low energy effective Dirac-type Hamiltonian. In these

FIG. 8. The difference of Kondo singlet order 〈ρ1〉 between
the presence and the absence of the skyrmion on origin for
different fluctuation strength b. We choose vψ = 1, vχ= = −1,
gψ = 2, and gχ = −3 and Q = 0 here. ∆|〈Ψ†ρ1Ψ〉| is defined
as ∆|〈Ψ†ρ1Ψ〉| ≡ |〈Ψ†ρ1Ψ〉|1 − |〈Ψ†ρ1Ψ〉|0, where |〈Ψ†ρ1Ψ〉|1
and |〈Ψ†ρ1Ψ〉|0 means |〈Ψ†ρ1Ψ〉| calculated in the background
with and without single skyrmion, respectively.

FIG. 9. The VBS pattern with δtr,r+si = ∆ei
~K+·~siei

~G·~r/3 +
h.c . The blue thick(black thin) lines indicate hopping ampli-
tude is increased(decreased) by 2∆

3
( ∆

3
).

FIG. 10. The spectrum flow during the formation of
skyrmion for lattice Hamiltonian 26 involving f-electron
only. We choose coupling constant JH = 5, tf = 10
and simulate the formation of skyrmion by n (~ri, t) =
(sin tf (ri) cos θ, sin tf (ri) sin θ, cos tf (ri)), where f (ri) =

πe−
ri
2 and ri is the radial position of the site i. There is

one state flowing from negative state to positive state, and
precisely one state flowing oppositely. This is just a reflection
of relation 12, since the spectrum here consists of + and -
valley.

models, the presence of large momentum cut-off is prac-
tically inevitable, even though all of our conclusions hold
regardless of cut-offs. In order to further justify these
results, we have also solved the lattices models in the
presence of skyrmion defect (whose low energy effective

theory is equivalent to HΨ + ∆M̂ for different candidate
competing orders in TABLE I and Table II) through ex-

act diagonalization. For example, the VBS order M̂ = τ1
can be generated through the lattice model:
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(a)VBS order M̂ = τ1 (b)charge density wave order M̂ = τ1σ1

(c)current density wave order M̂ = τ1σ3 (d)Kondo singlet order M̂ = ρ1

FIG. 11. The difference between distinct order parameters in the presence and absence of a skyrmion at the origin. Here we
solve the lattice Hamiltonian whose low energy effective model is HΨ + ∆M̂ . The blue circle means the difference is positive,
and the bigger circle indicates the difference is larger. We can see obviously that VBS, charge density wave, and Kondo
singlet order gain enhancement near the core of skyrmion, while the current density wave is suppressed due to the presence of
skyrmion, which is consistent with the results from low energy Hamiltonian in last section. Similar conclusions hold for other
order parameters listed in TABLE I and II.

H =
∑
〈ij〉α

[
−tff†i,αfj,α − tcc

†
i,αcj,α + h.c

]
+
∑
iαβ

[
JH (−1)

A=0,B=1
f†i,α

(n · η)αβ
2

fi,β + JK (−1)
A=1,B=0

c†i,α
(n · η)αβ

2
ci,β

]
(26)

if we replace tf → tf + δtr,r+si and tc → tc + δtr,r+si ,

where δtr,r+si = ∆ei
~K+·~siei

~G·~r/3+h.c and G = K+−K−,
as Fig. 9. The resulting low energy effective Hamiltonian
of this model is exactly the same as HΨ + ∆τ1

70. By as-
signing the skyrmion configuration for local moment field
n, we can explore its influence on VBS order parameter
in a lattice model. The presence of skyrmion in the lattice
model also causes spectral flow events as in Fig. 10, which

is consistent with the low energy continuum theory. The
VBS order parameter in lattice model can be extracted
through the nearest-neighbor hopping amplitude. After
solving the lattice model, we can see that the presence of
skyrmion enhances the VBS order parameter as shown in
Fig. 11(a). Similar results for other competing orders are
presented in Fig. 11. All of the results are consistent with
our previous findings based on low energy Dirac theory.

VI. DISCUSSION

In the field theory literature, the nonperturba-
tive eigenstates of Dirac fermions have been already
employed for computation of induced fermion num-
bers15–22,24–26,29,54. Some famous examples are the in-
duced chiral charge of a domain wall in one dimension,

and baryon number of O(4) skyrmions in three dimen-
sions. A similar analysis has also been performed for
O(3) skyrmions in two spatial dimensions. However, the
physical issue of competing orders and the determination
of dominant fluctuating order based on nonperturbative
eigenbasis are new aspects of the present work. To the
best of our knowledge previous analysis along this direc-
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tion has been restricted to competing orders in a vortex
core (defects of Abelian theory).

Since we are explicitly solving for the eigenstates of the
Dirac Hamiltonian, we can also employ these states for
computing the competing orders away from half-filling.
Not much is known for such a situation from perturba-
tive field theory. Th chiral charge also acts as the gener-
ators for translational symmetry breaking paired states
(FFLO states). At half-filling they do not produce fully
gapped states and are less favorable compared to spin-
Peierls order (causing Dirac mass gap). However, when
we move away from the special case of half-filling, the
paired states are more effective in gap formation. There-
fore, we expect FFLO phases to become more important
in the generic situation of finite carrier density. Even
current and charge density wave orders which were ear-
lier disfavored compared to spin-Peierls order can become
more important (as none of them are able to effectively
gap out the Fermi surface). Such intriguing competition
among particle-hole and particle-particle channel conden-
sates are germane to understanding the generic global
phase diagrams of correlated metals, and will be eluci-
dated in a future publication.

Our methodology can be easily adapted for both higher
and lower dimensional problems. Specifically, the com-
puted energy-eigenstates for two dimensional model in
the presence of skyrmion configuration can be directly
taken over as the complete eigenbasis for evaluating the
fermion determinant in one dimension in the presence
of dynamic instanton background. Such calculations
can again be performed both at and away from half-
filled limit to unveil the competition among spin-Peierls,
Kondo singlets and paired states, which have been sug-
gested by different perturbative calculations as well as
some density matrix renormalization group analysis.

VII. CONCLUSION

We addressed the nonperturbative aspects of interac-
tion between topological defects and fermions, and how
it can give rise to competition among different order pa-
rameters. Specifically, we considered the interaction be-
tween topologically nontrivial skyrmion configurations of
antiferromagnetic phase and fermionic quasiparticles in
two spatial dimensions. To make progress we have mod-
eled the fermionic excitations by Dirac fermions. Be-
ginning with a half-filled Kondo-Heisenberg model on
a honeycomb lattice, we investigated fluctuating orders
that can be supported by skyrmion core inside the an-
tiferromagnetically ordered insulating phase. Inside this
ordered state, we have considered the coupling between

conduction and f-electrons to the collective mode, de-
scribed in terms of an O(3) quantum nonlinear sigma
model(QNLσM). By employing perturbative field the-
ory, exact numerical and analytical solutions for eigen-
functions of Dirac fermions in the presence of a single
skyrmion we have established the competition between
magnetism, Kondo singlet formation and spin Peierls or-
der. Our specific goal was to establish a framework for
finding dominant order parameter, which can be adapted
for many other problems involving the interaction be-
tween fermion and topological defects. The perturbative
field theory calculation of Goldstone-Wilczek current for
our model suggests the presence of several translational
symmetry breaking orders such as charge, bond and cur-
rent density waves as well as translational symmetry pre-
serving Kondo singlet formation. However, this method
does not clearly specify the dominant incipient order.
Therefore, we have explicitly computed the susceptibili-
ties for all possible local Dirac bilinears by using nonper-
turbatively determined eigenfunctions. Our analysis thus
provides strong evidence that the global phase diagram
of Kondo-Heisenberg can support a variety of compet-
ing singlet orders from skyrmion condensation (violation
of skyrmion number) on the paramagnetic side. All of
our results from continuum model have been consistently
justified by analysis performed on suitable lattice model.
This general strategy for identifying dominant compet-
ing orders mediated by topological defects can be useful
in both one and three spatial dimensions.

Appendix A: Coupling between fermions and
nonlinear sigma model

Since we are working with a bipartite honeycomb lat-
tice, an intraunit cell antiferromagnetic phase (Néel or-
der) describes the ground state of a nearest neighbor
Heisenberg model. The nonlinear sigma model descrip-
tion for this phase is usually derived by employing a large
spin approximation. However, for describing the com-
peting spin singlet orders such as spin Peierls and Kondo
singlet it is more advantageous to work with a fermionic
description. This is similar to the methods of Affleck and
Haldane69 for one dimensional spin-1/2 chain. The an-
tiferromagnetic phase for honeycomb lattice can only be
obtained from a Hubbard model for sufficiently strong
onsite repulsion, as the density of states for two dimen-
sional Dirac fermion vanishes at zero energy. The repul-
sive Hubbard interaction, Hint = U

∑
i ni,↑ni,↓, where

ni,s is the density operator for spin projection s =↑ / ↓,
can be decoupled in the magnetic channel by performing
the following Hubbard-Stratonovich transformation
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∫
dc†idci exp

[
−
∫ ~

kBT

0

dτ

~
Hint

]
=

∫
dc†idcidMi exp

[
−
∫ ~

kBT

0

dτ

~

{∑
i

[
3M2

i

2U
+ Mi · c†i,sηs,s′ci,s′

]
+
U

2

∑
i,s

ni,s

}]
. (A1)

Notice that the Hubbard interaction has been decou-
pled in the magnetic channel in terms of the vectors
Mi (i = A,B are assigned to two sublattices), where

Mi = (U/3)〈c†i,sηss′ci,s′〉. In the process of mean-field
decoupling the chemical potential has to be shifted by
the amount U/2, to maintain the condition of half-filling.
The antiferromagnetic phase corresponds to the choice
MA = −MB . Due to the vanishing density of states
the antiferromagnetic phase arises for U > Uc. Within
the continuum limit this leads to the following effective
action

S =

∫
d2xdτ

[
ψ̄γµ∂µ + gψ̄M · ηψ +

M2

2

]
, (A2)

with g ∝ U . At U = Uc (equivalently g = gc), we
have an itinerant version of paramagnetic semimetal to
antiferromagnet quantum phase transition, where the
fermion fields and both longitudinal and transverse parts
of the order parameter constitute gapless or critical ex-
citations. For U > Uc, the amplitude of the order pa-
rameter |M| ∼ |U − Uc|β is finite, and away from the
itinerant critical regime i.e., at the length scales larger
than the correlation length ξ ∼ |U − Uc|−ν we can effec-
tively freeze the amplitude fluctuations of the magnetic
order parameter. Since we can denote M = |M| n, where
n is the unit vector or nonlinear sigma model field, after
freezing M| Eq. (A2) can be reduced to

S =

∫
d2xdτ

[
ψ̄γµ∂µ + gψψ̄n · ηψ

]
.

This allows us to work with a nonlinear sigma model
coupled to Dirac fermions, as used in the main text. The
longitudinal part of the nonlinear sigma model field gives
rise to a charge gap for the Dirac fermions, and after in-
tegrating out the Dirac fermions by following38,40,41 one
can obtain a nonlinear sigma model. The ordered phase
of the nonlinear sigma model indeed corresponds to the
ordered phase obtained within the large spin approxi-
mation of nearest neighbor Heisenberg model. An ad-
vantage for the effective theory is that the bare stiffness
for nonlinear sigma model does not guarantee a global
long range order, and it remains possible that the emer-
gent gapped/insulating phase supports a nonmagnetic
competing order, where the Berry phase for the sigma
model does not vanish and follows from the evaluation of
fermion determinant40,41.

Appendix B: Topological charge of skyrmion and
induced charge

The induced charge for each valley is defined as the
difference of charge in each valley between system with
and without skyrmion (vacuum):

Q± =

∫ 0

−∞
dEρS,±(E)−

∫ 0

−∞
dEρ0,±(E)

= −1

2

∫ ∞
−∞

dEρS,±(E) sign(E) = −1

2
η±

(B1)

where ρS,±(E) and ρ0,±(E) is the density of state
at energy E with and without skyrmion for ± val-
ley, respectively, η± =

∫∞
−∞ dEρS,±(E) sign(E) =∫∞

0
dE (ρS,±(E)− ρS,±(−E)) is called the spectral asym-

metry, and we have used the fact that system without
skyrmion field has charge conjugate symmetry.

Since Hamiltonian of Eq. (10) does not break valley
symmetry, it can be decoupled into each valley space as
H±, the density of states in each valley is well-defined as:

ρ±(E) ≡ Tr δ (H± − E) =
1

π
Im Tr

(
1

H± − E − iε

)
(B2)

The spectral asymmetry then is:

η± =

∫ ∞
0

dE (ρS,±(E)− ρS,±(−E))

=
1

π

∫ ∞
0

dE

(
Im Tr

1

H± − E − iε
− Im Tr

1

H± + E − iε

)
=

1

π

∫ ∞
0

dE Im Tr

(
1

H± − E − iε
+

1

H± + E + iε

)
(B3)

where we use the identity 1
x±iη = P

(
1
x

)
∓ iπδ(x). By

changing the variable z = E + iε, we have

η± =
1

π
Im

∫ ∞+iε

iε

dzTr

(
1

H± − z
+

1

H± + z

)
=

2

π
Im

∫ ∞+iε

iε

dzTr

(
H±

1

H2
± − z2

) (B4)

In our case, H± = ± (vχ (σ1k1 + σ2k2) + gχn · ησ3) =
± (H0 + I), where H0 = vχ (σ1k1 + σ2k2) and I = gχn ·
ησ3, thus H2

± = H2
0 +V = −v2

χ∇2+g2
χ+igχvχσ3σ

i∂in·η,

where H2
0 = −v2

χ∇2 + g2
χ and V = igχvχσ3σ

i∂in · η
We assume that background field varies very slowly

compared with coupling constant, that is |∇n| � gχ,
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and then expand η± in order of |∇n|/gχ:

Tr

(
H±

1

H2
± − z2

)
= Tr

(
H±

1

H2
0 + V 2 − z2

)
= Tr

(
H±G0 (z) (1 +G0 (z)V )

−1
)

= Tr

(
H±G0 (z)

∞∑
n=0

(−G0 (z)V )
n

) (B5)

where G0 (z) = 1
H2

0−z2
.

By identity G0 (z)V = V G0 (z)+G0 (z) [V,H0]G0 (z),
we are now able to separate the trace into pure momen-
tum and real space part, and then do the trace sepa-
rately. The non-vanishing leading order of (A5) will be
±Tr

(
IV 2

)
Tr
(
G3

0 (z)
)
. Since

Tr
(
IV 2

)
= −g3

χv
2
χ Tr

(
σ3

3n · ησi∂in · ησj∂jn · η
)

= −g3
χv

2
χ Tr

(
σ3σ

iσjηaηbηcna∂inb∂jnc
)

= −4g3
χv

2
χ

∫
d2xεijεabcna∂inb∂jnc

Tr
(
G3

0 (z)
)

= Tr

(
1

H2
0 − z2

)3

= Tr

(
1

−v2
χ∇2 + g2

χ − z2

)3

=

∫
dk

(2π)
2

2πk(
v2
χk

2 + g2
χ − z2

)3 =
1

8πv2
χ

(
g2
χ − z2

)2
(B6)

Consequently, the leading order of η± will be

∓8g3
χv

2
χ

π
Im

∫ ∞+iε

iε

dz

8πv2
χ

(
g2
χ − z2

)2 ∫ d2xεijεabcna∂inb∂jnc

=
∓ sign (gχ)

4π

∫
d2xεijεabcna∂inb∂jnc

(B7)
Therefore,

Q± = −1

2
η± =

± sign (gχ)

8π

∫
d2xεijεabcna∂inb∂jnc

= ± sign (gχ)Qtop
(B8)
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