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We investigate thermoelectric transport through a SU(N) quantum impurity in the Kondo regime.
The strong coupling fixed point theory is described by the local Fermi-liquid paradigm. Using
Keldysh technique we analyse the electric current through the quantum impurity at both finite bias
voltage and finite temperature drop across it. The theory of a steady state at zero-current provides
a complete description of the Seebeck effect. We find pronounced non-linear effects in temperature
drop at low temperatures. We illustrate the significance of the non-linearities for enhancement of
thermopower by two examples of SU(4) symmetric regimes characterized by a filling factor m: i)
particle-hole symmetric at m=2 and ii) particle-hole non-symmetric at m=1. We analyse the effects
of potential scattering and coupling asymmetry on the transport coefficients. We discuss connections
between the theory and transport experiments with coupled quantum dots and carbon nanotubes.

PACS numbers: 73.23.-b,73.50.Lw,73.63.Kv,73.50.Fq

Introduction. Recent progress in understanding of ther-
moelectric phenomena on the nanoscale stimulated both
new experiments1–3 and development of new theoretical
approaches to this problem (see e.g.4 for review). One
of the fundamental properties of the quantum transport
through nano-sized objects (quantum dots (QD), carbon
nanotubes (CNT), quantum point contacts (QPC) etc)
is associated with the charge quantization5. It offers a
very efficient tool for the quantum manipulation of the
single-electron devices being building blocks for quan-
tum information processing. The universality of the
heat flows in the quantum regime, scales of the quantum
interference effects and limits of the tunability are the
central questions of the new emergent field of the quan-
tum heat transport1–3,6–8. Besides, the effects of strong
electron correlations and resonance scattering become
very pronounced at low temperatures and can be mea-
sured with high controllability (e.g. external electric
and magnetic fields, geometry, temperature etc) of the
semiconductor nano-devices. Therefore, investigation of
the quantum effects and influence of strong correlations
and resonance scattering on the heat transport (both
experimentally and theoretically) is one of the corner-
stones of quantum electronics.

As follows from the Fermi-liquid (FL) theory, the
thermoelectric power (Seebeck effect) of bulk metals is
directly proportional to the temperature T and inversely
proportional to the Fermi energy εF

9. The resonance
scattering on a quantum impurity, however, dramati-
cally enhances this effect due to the emergence of new
quasiparticle resonances at the Fermi level described by
the Kondo effect10–12. The contribution to the Seebeck
effect proportional to the concentration of impurities
at low T , as a result, scales as T/TK

9,12 where TK is
a characteristic energy defining the width of the Kondo
resonance, the Kondo temperature (Fig. 1). The Kondo
effect in nano-devices is key for enhancing the thermo-
electric transport coefficients8. The tunable thermo-
transport through nano-devices controlling the heat flow
is needed for efficient operation of quantum circuits el-
ements: single-electron transistors, quantum diodes etc

to perform controllable heat guiding.

The Kondo effect has been observed in the exper-
iments on the semiconductor quantum dots and the
single wall carbon nanotubes13–16. The effect mani-
fests itself by complete screening of spin of the quan-
tum impurity and, as a result, the FL behaviour in the
strong coupling (low temperatures) regime10,11,17. Here
we use the local FL paradigm18–25 which is a powerful
tool for the description of thermodynamic and transport
properties of quantum impurity in the strong coupling
regime. It has also been applied recently for explana-
tion of ”0.7-anomaly” in QPCs26,27. The s=1/2 SU(2)
Kondo impurity physics arises at the half-filled particle-
hole (PH) symmetric regime. We refer to ”electrons”
as quasiparticles above εF and ”holes” as the excita-
tions below εF . The PH symmetry, being responsible for
the enhancement of the electric conductance, suppresses
however the thermo-electric transport: the thermo- cur-
rent carried by electrons is completely compensated by
heat current carried by holes challenging however to in-
vestigate Kondo models in the regime away from PH-
symmetry. To achieve appreciable thermopower, the oc-
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FIG. 1. (Color online) Left panel: cartoon for the tunneling
tL/R through the SU(N) quantum impurity (see the main
text). Right panel: Fermi distribution functions of the left
(hot) and right (cold) leads at temperatures TL/R and chem-
ical potential µL/R. The thermo-voltage ∆V = |µR − µL|/e
is applied to achieve the steady state with zero net current
across the impurity. Left (red)/right (blue) arrows show di-
rections of thermo- and electric- currents. Resonance Kondo
peak of width TK in DoS is shown by the green color.
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cupation factor of the quantum impurity should be inte-
ger (Coulomb blockade valleys5), while the particle-hole
symmetry should be lifted. Such properties are generic
for the SU(N) Kondo models with the filling factors dif-
ferent from 1/2.

The SU(N) Kondo physics with N=4 is experimen-
tally realized in CNTs28–31 and double QDs32. The
SU(N) Kondo model has also been proposed to in-
vestigate in ultra-cold gases experiments33,34. There
are several theoretical suggestions for realization of
SU(N) Kondo physics with N=334,35 N=636 and
N=12 reported in37. While the electron transport
through SU(N) Kondo impurity is well understood
theoretically21,38–40, the thermo-electric transport in
the Kondo regime remains challenging41–45.

In this Letter we present a full fledged theory for the
Seebeck effect of SU(N) Kondo model for the strong cou-
pling regime T�TK . Our approach is based on real time
out-of equilibrium Keldysh calculations. We used the lo-
cal Fermi-liquid paradigm for constructing a perturba-
tive expansion for the electric current around the strong
coupling fixed point of the model. We illustrate the
thermoelectric properties of the SU(N) Kondo model
on two particular examples, namely, N=4 with the fill-
ing factors 1/4 and 1/2. We compute the thermoelectric
power for arbitrary temperature drop between the elec-
tron reservoirs and discuss the significance of non-linear
effects in temperature drop.

Setup. We consider an SU(N) quantum impurity
(such as a CNT or coupled QDs) sandwiched between
two leads (Fig. 1). The model geometry resembles the
experimental setup8. The temperature of the drain elec-
trode (R) is taken as the reference temperature of the
system. The temperature of the source electrode (L) is
controlled by the Joule heat released due to the finite
current flowing along the lead8. Thus, the temperature
drop ∆T is fixed for all measurements. The bias voltage
∆V is applied between the source and the drain in order
to stop the thermo-current (Fig. 1 right panel):

I = 0 = G(T )∆V +G12(T )∆T. (1)

The differential thermoelectric power is defined at the
total current across the impurity tuned to zero:

S(T ) = − lim
∆T→0

∆V

∆T

∣∣∣∣
I=0

=
G12(T )

G(T )
, (2)

G=∂I/∂∆V |∆T=0 is the electric conductance and
G12=∂I/∂∆T |∆V=0 is the thermoelectric coefficient.

Model. The tunneling of electrons through the SU(N)
quantum impurity (Fig.1 left panel) is described by the
Anderson model21:

H =
∑
kαr

εkc
†
αkrcαkr +

∑
r

ε0d
†
rdr

+
∑
r<r′

Ud†rdrd
†
r′dr′ +

∑
kαr

tαd
†
rcαkr +H.c.

(3)

Here dr annihilates an electron in the dot level ε0 with
orbitals r = 1, 2, ...N , cαkr annihilates a conduction

electron with the momentum k and orbital r in the leads
α = L,R and U is the Coulomb repulsion (charging) en-
ergy in the dot, tα is lead-dot tunneling and εk = εk−εF
is the linearized conductance electron’s dispersion. We
assume that the charging energy U is the largest energy
scale of the model and therefore take into account only
”last” occupied state. We project out the charge states
by applying the Schrieffer-Wolff transformation46. As a
result we obtain the effective SU(N) Kondo model de-
scribing the physics at the weak coupling T�TK limit:

HK = JαβK
(
c†αλ

µcβ
) (

d†Λµd
)
, (4)

where c†=(c†1, ...., c
†
N ) is a row vector of the electron

states in the leads and d†=(d†1, ...., d
†
N ) represents the

local states in the dot. The SU(N) generators λµ and
Λµ for µ = 1, 2, ....N2 − 1 are traceless N × N Hermi-
tian matrices of the fundamental representation, satisfy-
ing the commutation relations [λµ, λν ]=ifµνρλρ where
fµνρ is the set of fully anti-symmetric structure factors.

As a last step we diagonalize the matrix JαβK ∼|tαtβ |/U
in the sub-space of two leads α,β=L,R performing the
Glazman-Raikh rotation47–49. Similarly to the SU(2)
Kondo model, the anti-symmetric combination of the

electron states in the leads a† = (c†L − c†R)/
√

2 is fully
decoupled from the Hamiltonian while the symmetric

combinations b† = (c†L + c†R)/
√

2 remains coupled to
the quantum impurity50 (without loss of generality we
present here the results for symmetric tL=tR dot-lead
coupling; general equations for arbitrary coupling are
presented in Supplemental Materials51).

The FL Hamiltonian describing the strong coupling
T�TK regime is obtained by applying the standard
point-splitting procedure to :

(
b†λµb

)
·
(
b†λµb

)
: (see17

for the details), HFL=H0+Hα+Hφ
52:

H0 = ν
∑
r

∫
ε

ε
[
a†εraεr + b†εrbεr

]
(5)

Hα = −
∑
r

∫
ε1−2

[α1

2π
(ε1 + ε2) +

α2

4π
(ε1 + ε2)2

]
b†ε1rbε2r

Hφ =
∑
r<r′

∫
ε1−4

[
φ1

πν
+

φ2

4πν

(
4∑
i=1

εi

)]
: b†ε1rbε2rb

†
ε3r′

bε4r′ : .

The Kondo floating paradigm10,11,17–25 leads to
the following FL identities: α1=(N−1)φ1 and
α2=(N−1)φ2/4, ν is the density of states at εF . The
connection between α1 and α2 is given by the Bethe
ansatz21. We use α1=1/TK as the definition of the
Kondo temperature49.

Charge Current. The current operator at position x
is expressed in terms of first-quantized operators ψ at-
tributed to the linear combinations of the Fermi opera-
tors in both leads

Î(x) =
~e

2mi

∑
r

[
ψ†r(x)∂xψr(x)− ∂xψ†r(x)ψr(x)

]
. (6)

For the expansion of Eq.(6), we choose the basis of
scattering states that includes completely elastic and
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FIG. 2. (Color online) Main frame: Thermoelectric coeffi-
cient G12 as a function of the reference temperature T=TR

at different values of potential scattering δP . Insert: differ-
ential conductance G as a function of T for δP =0.3. The
legend is shown on the left panel. Solid lines - numerical
solution obtained from (1) with (S6-S7, S11-S12)51. Dashed
lines - analytical solution given by (15, 16). Solid and dashed
lines are almost indistinguishable.

Hartree terms21 to get it in compact form:

Î =
e

2νh

∑
r

[
a†r(x)br(x)− a†r(−x)Sbr(−x) +H.c.

]
,(7)

where ar(x)=
∑
kakre

ikx, br(x)=
∑
kbkre

ikx,
Sbr(x)=

∑
kSkbkre

ikx and the N×N S-matrix is

expressed in terms of a phase shift δ(εk) as Sk= e2iδ(εk).
Elastic current. Calculation of the expectation value

of (7) in the absence of interactions is equivalent to use
the Landauer-Büttiker formalism5:

Iel =
Ne

h

∫ ∞
−∞

dεT (ε)∆f(ε), (8)

where ∆f(ε)=fL(ε)−fR(ε), fL/R are Fermi distribu-
tion functions of L/R leads; µL−µR=e∆V� TK are
the chemical potentials, TR=T is the reference tem-
perature and TL=T+∆T (Fig.1 right panel). The en-
ergy dependent transmission T (ε)=sin2 [δ(ε)]. Follow-
ing Ref.21, we Taylor-expand the phase shift for all
flavours r in the presence of voltage bias e∆V and tem-
perature drop ∆T as δr(ε) = δ0 + α1ε + α2

(
ε2 −A

)
,

where A =
[

(e∆V )2

4 + (πT )2

3 + π2T∆T
3

]
and δ0=πm/N

for the quantum impurity’s occupation m=1, ...,N−1.
The zero energy transmission is given by T0=sin2 δ0. Us-
ing the above equation for the phase shift δr we expand
the current up to the second order in T/TK � 1 to get
the elastic contribution. The linear response result is:

Iel
Ne/h

=

[
sin2 δ0 +

α2
1

3
(πT )2 cos 2δ0

]
e∆V

−
[α1

3T
(πT )2 sin 2δ0

]
∆T. (9)

Inelastic current. The inelastic contribution to the
current is computed using the non-equilibrium Keldysh
formalism53:

δIin = 〈T
C
Î(t)e−i

∫
dt′Hφ(t′)〉, (10)

where C denotes the double side η = ± Keldysh
contour53. Here TC is the time ordering operator on
a contour and the average is performed with the Hamil-
tonian H0 whereas the contribution from Hα is already
accounted in Iel. As discussed in detail in Ref.22, the
second order interaction correction to the current is ex-
pressed in terms of the self-energies

δIin = S
∫ ∞
−∞

dε

2π

(
Σ−+(ε)− Σ+−(ε)

)
iπν∆f(ε), (11)

we used the notation: S = N(N−1)eπ
h cos 2δ0.

The self-energies in Eq.(11) are defined in
terms of the Green’s functions as: Ση1,η2(t) =(
φ1

πν2

)2∑
k1,k2,k3

Gη1,η2bb (k1, t)G
η2,η1
bb (k2,−t)Gη1,η2bb (k3, t).

The local Green’s functions of aa/bb fermions and the
mixed ab fermions in real-time are given by

G±(t) = −πν
2

[
TLe

−iµLt

sinh(πTLt)
± TRe

−iµRt

sinh(πTRt)

]
, (12)

with G+(t)=G+−
aa/bb(t) and G−(t)=Gba/ab(t)=iπν∆f(t).

Computing the integrals in the presence of the finite
bias voltage and finite temperature drop one gets:

Σ−+(ε)− Σ+−(ε) =

φ2
1

iπν

[
3

4
(e∆V )2 +

∆T

T
(πT )2 + ε2 + (πT )2

]
. (13)

In the limit ∆T→0, ∆f(ε)=−(∆T ·ε/T )·∂f/∂ε and the
FL self-energies, being even functions of ε, do not con-
tribute to the thermo-current at ∆V=0. Therefore, the
thermoelectric coefficient G12 at ∆T→0 is fully deter-
mined by elastic processes54. The linear response in-
elastic contribution to the current at ∆T= 0 reads

δIin
Ne/h

=

[
2

3
(πT )

2
(N − 1)φ2

1 cos 2δ0

]
e∆V. (14)

The equation for the total current beyond the lin-
ear response is cumbersome and given in Supplemental
Materials51. Finally, the differential conductance G and
differential thermo-electric coefficient G12 are give by:

G(T ) = G0

[
sin2 δ0 +

α2
1

3

N + 1

N − 1
(πT )2 cos 2δ0

]
, (15)

G12(T ) = −G0

[α1

3e
π2T sin 2δ0

]
, (16)

where G0 = Ne2/h is the unitary conductance.
Potential scattering. As is seen from (16), the G12

at given reference temperature T in linear response is
proportional to sin 2δ0. For the particle-hole symmet-
ric (PHS) case in the absence of potential scattering
m=N/2 (we assume N even), δ0=π/2 and both G12

and the thermoelectric power are zero - the particle
thermo current exactly compensates the hole thermo
current (Fig. 2 right panel, blue curve). The poten-
tial scattering explicitly breaks the PH symmetry. It
can be accounted by replacement of δ0 by δ̃0=δ0+δP ,
δP�δ0. As a result, the finite G12 and thermopower
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FIG. 3. (Color online) Main frame: Thermoelectric power
S as a function of the reference temperature T=TR; blue
dashed curve: differential S given by (2) with (15, 16); solid
curves correspond to S defined under zero-current condition
by (1) with (S6-S7, S11-S12)51 at different values of ∆T (see
the legend); δP =0.3. Insert: evolution of the zero current
steady state as a function of the temperatures of L-R leads
at finite voltage e∆V /TK= 0.02.

arises. The results of calculations obtained from the
zero-current conditions for SU(4) quantum impurity are
illustrated on Fig. 2. First, for the case of singly occu-
pied quantum impurity m=1 (Fig. 2 left panel) δ0=π/4
and the PH symmetry is explicitly broken. At zero po-
tential scattering inelastic effects associated with the fi-
nite bias voltage vanish and the thermoelectric power
is completely defined by elastic processes. The effect of
potential scattering is two-fold: i) it detunes G12 from
it’s maximal value and ii) it results in finite-temperature
inelastic corrections to the conductance (see the Fig. 2
insert). For the PHS case of double occupation m=2
(Fig. 2 right panel) δ0=π/2. Therefore the finite po-
tential scattering results in finite G12 and differential
thermopower S is proportional to sin 2δP . Crossover
between m=2 SU(4) and m=1 SU(2) has been studied
recently experimentally55. Note that the current across
the dot symmetrically coupled to the leads contains only
odd powers of the voltage both for the PHS m=2 and
the PH-non-symmetric (PHN) m=1 cases.56

Seebeck effect. In the limit T→0 the differential ther-
mopower is given by57

S(T ) = −2eL0T cot δ̃0
∂δ̃(ε)

∂ε

∣∣∣∣∣
ε=0

= −πγT
e

cot δ̃0, (17)

where L0=π2/(3e2) is the Lorentz number and
γ=2πα1/3∼1/TK in accordance with the FL theory12.

The thermopower measurements8 refer however not to
the differential Seebeck effects (see Fig. 1). Since there
were no independent measurements of TL and TR, the
temperature drop was estimated from the Joule heat.
It appeared that the ∆T was finite and not fulfilling
the condition |∆T |�TR. To demonstrate the signifi-
cance of non-linear effects associated with finite tem-
perature drop we show on Fig. 3 the thermopower of
SU(4) model computed by two different methods: i) the
dashed blue line stands for the differential thermopower
S(T )=G12/G whereG12 is obtained at zero voltage drop

while G is calculated at equal temperatures of the leads;
ii) the solid lines corresponds to S=−∆V /∆T resem-
bling the experimental situation in8 : the temperature
drop is fixed ∆T/TK= 0.05 (red) 0.025 (green) 0.01
(orange) and the thermo-voltage is obtained from the
zero current condition. As one can see, at small ref-
erence temperatures ”finite ∆T” thermopower always
overshoots the differential S. The effect is more pro-
nounced in PHS regime58. This observation can explain
the thermo-voltage offset observed in the experiment8

in the Kondo limit of SU(2) quantum impurity (PHS
regime). According to our calculations this offset is as-
sociated with a non-linear ∆T dependence of the current
at low reference temperatures (see Fig. 3 inserts). We
suggest to check this statement experimentally by per-
forming Seebeck effect measurements varying the tem-
perature in the ”hot” lead.

Coupling asymmetry. The effect of coupling asymme-
try tL 6=tR in (3) manifests itself in the following way:
for broken PH-symmetry case it results in an asym-
metric I-V curve due to a contribution to the current
quadratic in voltage which, in turn, depends linearly
on the coupling asymmetry. For both PHS and PHN
cases the coupling asymmetry results in i) renormaliza-
tion of the elastic contribution to the charge current
(see51 Eq. S5); ii) renormalization of the Kondo tem-
perature due to tunneling rates asymmetry51; and iii)
renormalization of the coefficient in front of the term cu-
bic in voltage. The magnitude of current is suppressed
by the coupling asymmetry. Besides, it also affects the
thermo-current. However, this effect is proportional to
∆V ·∆T and therefore beyond the linear response theory
(see the Supplemental Materials51 for details).

Peltier effect. In order to compute other thermo-
electric coefficients, e.g. Peltier effect, one needs to de-
fine and compute the heat current. To proceed with full
fledged Keldysh calculations one can e.g. deal with the
Luttinger ”gravitational potential” approach59–61. Such
a theory would access the effects non-linear in ∆T 62. In
the linear response theory the Peltier coefficient Π(T )
can be calculated using the transport integrals method
(see, e.g.63 for details) based on calculation of different
momenta of the single-particle lifetime τ(ε,T ) (see the
Supplemental materials51) and is related to the ther-
mopower by the Onsager’s relation Π(T )=S(T )·T .64

Summary. The full fledged theory based on Keldysh
out-of equilibrium calculations of the electric current
is constructed for the SU(N) Kondo quantum impurity
subject to a finite bias voltage and a finite tempera-
ture drop. The transport coefficients: conductance G,
thermoelectric coefficient G12 and thermopower S are
computed under condition of zero-current state for the
strong-coupling regime of the quantum impurity. It is
shown that pronounced non-linear effects in tempera-
ture drop influence the transport coefficients at the low-
temperature limit. These effects are likely sufficient to
resolve the experimental puzzle of the thermo-transport
through the Kondo impurity at the strong coupling.
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16 D. M. Schröer, A. K. Hüttel, K. Eberl, S. Ludwig, M. N.
Kiselev, and B. L. Altshuler, Phys. Rev. B 74, 233301
(2006).

17 I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297
(1993).

18 C. Mora, Phys. Rev. B 80, 125304 (2009).
19 P. Vitushinsky, A. A. Clerk, and K. LeHur, Phys. Rev.

Lett. 100, 036603 (2008).
20 C. Mora, X. Leyronas, and N. Regnault, Phys. Rev. Lett.

100, 036604 (2008).
21 C. Mora, P. Vitushinsky, X. Leyronas, A. A. Clerk, and

K. LeHur, Phys. Rev. B 80, 155322 (2009).
22 C. Mora, C. P. Moca, J. von Delft, and G. Zaránd, Phys.

Rev. B 92, 075120 (2015).
23 K. LeHur, P. Simon, and D. Loss, Phys. Rev. B 75,

035332 (2007).
24 C. B. M. Hörig, C. Mora, and D. Schuricht, Phys. Rev.

B 89, 165411 (2014).

25 M. Hanl, A. Weichselbaum, J. von Delft, and M. Kiselev,
Phys. Rev. B 89, 195131 (2014).

26 T. Rejec and Y. Meir, Nature 442, 900 (2006).
27 F. Bauer, J. Heyder, E. Schubert, D. Borowsky,

D. Taubert, B. Bruognolo, D. Schuh, W. Wegscheider,
J. von Delft, and S. Ludwig, Nature 501, 73 (2013).

28 P. Jarillo-Herrero, J. Kong, H. S. van der Zant, C. Dekker,
L. P. Kouwenhoven, and S. D. Franceschi, Nature 434,
484 (2005).

29 A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein,
Phys. Rev. B 75, 241407 (2007).

30 A. Makarovski, J. Liu, and G. Finkelstein, Phys. Rev.
Lett. 99, 066801 (2007).

31 M. Ferrier, T. Arakawa, T. Hata, R. Fujiwara, R. Dela-
grange, R. Weil, R. Deblock, R. Sakano, A. Oguri, and
K. Kobayashi, Nat. Phys. 12, 230 (2016).

32 A. J. Keller, S. Amasha, I. Weymann, C. P. Moca,
I. G. Rau, J. A. Katine, H. Shtrikman, G. Zaránd, and
D. Goldhaber-Gordon, Nature Physics 10, 145 (2014).

33 J. Bauer, C. Salomon, and E. Demler, Phys. Rev. Lett.
111, 215304 (2013).

34 Y. Nishida, Phys. Rev. Lett. 111, 135301 (2013).
35 Y. Nishida, Phys. Rev. A 93, 011606(R) (2016).
36 I. Kuzmenko, T. Kuzmenko, Y. Avishai, and G.-B. Jo,

Phys. Rev. B 93, 115143 (2016).
37 I. Kuzmenko and Y. Avishai, Phys. Rev. B 89, 195110

(2014).
38 K. LeHur, P. Simon, and L. Borda, Phys. Rev. B 69,

045326 (2004).
39 R. Lopez, D. Sanchez, M. Lee, M.-S. Choi, P. Simon, and

K. LeHur, Phys. Rev. B 71, 115312 (2005).
40 D. R. Schmid, S. Smirnov, M. Marganska, A. Dirnaichner,

P. L. Stiller, M. Grifoni, A. K. Hüttel, and C. Strunk,
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