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The optical absorption coefficient of pure Ge has been determined from new high-

accuracy, high precision optical measurements at photon energies covering both the indirect and 

direct gaps. The results are compared with a new theoretical model that fully accounts for the 

resonant nature of the energy denominators that appear in perturbation theory expansions of the 

absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, 

and leads to a predicted optical absorption that is in excellent agreement with the experimental 

values using just a single adjustable parameter: the average deformation potential DΓL coupling 

electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the 

fitted value, DΓL = 4.3×108 eV/cm, is in nearly perfect agreement with independent 

measurements and ab initio predictions of this parameter, confirming the validity of the proposed 

theory, which has general applicability. 
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The distinction between direct gap and indirect gap band structures is a central concept in 

semiconductor physics [1]. A simple operational definition is based on the energy dependence of 

the optical absorption coefficient α . If α 2 is linear in energy near the absorption edge, the band 

gap is presumed to be direct, whereas a linear dependence of α  is considered the signature of 

an indirect gap. These predictions are justified theoretically under a number of common 

assumptions, including parabolic dispersions, constant matrix elements, neglect of excitonic 

effects, and neglect of factors that depend weakly on energy at the band edge [1,2]. While these 

assumptions are common to both direct and indirect absorption, in the latter case an additional 

approximation is made to deal with 

the second-order nature of the 

absorption process, which involves 

the electron-phonon coupling. When 

α is calculated using Fermi's golden 

rule to second order, it contains an 

energy denominator , which 

is the difference between the incident 

photon energy and the intermediate 

state energy. This denominator is 

often replaced by a constant 

, where E0 is the direct gap energy, 

leading directly to the above-

mentioned α -rule. However, as 

illustrated in Fig. 1, α is actually an 

integral over many possible 

transitions with changing values of 

Em. If the changes in Em are small 

compared to the average value of 

, the constant-denominator 

assumption is a good one. This is the 

case in silicon [3], for which Em ~ 

 
Figure 1   Schematic illustration (energies not to scale) of the 
most resonant indirect absorption process in germanium. A 
virtual electron-hole pair is vertically excited across the direct 
gap near the Γ-point of the Brillouin zone. The minimum direct 
gap value E0 at Γ is indicated with a dashed black arrow. The 
electron is transferred to the L point valley at the fundamental 
indirect gap Eind (blue arrows). For a given photon energy , 
the absorption coefficient is obtained from a sum of transitions 
that satisfy energy and crystal momentum conservation, including 
the created or annihilated phonon of energy . The 
contributing transitions can be visualized as those that result from 
sliding the green band up and down within the limits of the grey 
band. As the green band slides, it selects intermediate states Em 
with different energies. 
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3.5 eV and ~ 1.2 eV, but it is a bad approximation for Ge because Em ~ 0.8 eV and  ~ 0.7 

eV. This important difference was first noted by Hartman [4], who showed that the integrals 

containing changing denominators could still be carried out analytically. Surprisingly, however, 

the Hartman solution does not appear to have ever been validated using published experimental 

data for Ge [5-7], and in fact these data are not entirely adequate for such validation, because 

they either do not cover the entire range between the indirect gap Eind and E0, or assume a 

dispersionless reflectivity, or both.  The Hartman formalism has been applied to III-V 

semiconductors [8], in some cases under hydrostatic pressure [9-11], but these have more 

complicated band structures in which several bands contribute to the absorption. This makes it 

extremely difficult to address an additional consequence of the varying energy denominators: the 

possibility that they may affect excitonic enhancements. The basic theory of excitonic effects 

was formulated in a classic paper by Elliott [12], who treated indirect transitions within the 

constant-denominator approximation. Two key conclusions are that excitonic effects on the 

intermediate states can be neglected, and that the enhancement depends only on the value of the 

final state excitonic wave function FλK(r) at r = 0. These conclusions, however, break down 

when the energy denominators are treated exactly. Recent work on the direct gap absorption in 

Ge at room temperature has shown that good agreement between theory and experiment requires 

consideration of excitonic enhancements [13,14]. Since these enhancements are large ( >2), one 

is led to the conclusion that any accurate theory of indirect absorption should go beyond the 

constant denominator approximation when including excitonic corrections. 

 

In this letter, we present new determinations of α in Ge based on high-accuracy, high-precision 

optical measurements covering the entire range between Eind and E0. The results are compared 

with expressions that generalize the Elliott exciton theory for the case of non-constant 

denominators, and contain a deformation potential constant DΓL as the only adjustable parameter. 

Excellent agreement with experiment is obtained using values of DΓL that are identical, within 

experimental error, to values determined independently and validated by ab initio calculations.  
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High-accuracy optical 

measurements were 

performed on 170-μm thick 

double-side polished 

(roughness < 1nm RMS) epi-

ready undoped Ge substrates 

from UMICORE [15]. For each 

sample, the transmittance T 

was measured at normal 

incidence with a Perkin 

Elmer Lambda 1050 

spectrophotometer, and the 

reflectance R was obtained at 

near-normal incidence 

(8.0º±0.25º) with a Lambda 

900 spectrophotometer 

equipped with a VW 

directional reflectance accessory (PE L6310200). The measurements were carried at an average 

temperature of 301 K, as recorded using a calibrated digital thermometer (Fluke Model 1529-R; 

uncertainty is ± 0.0025 °C at 25 °C) mounted inside the sample compartment.  The regular 

transmittance measurements are traceable to the well-characterized NRC Reference 

Spectrophotometer [16] and the accuracy of the absolute VW (Strong method) specular 

reflectance measurements was validated by comparison with a high reflectance dielectric laser 

mirror optimized for 2037 nm. The absorption coefficient was extracted from the data by solving 

the pair of equations 

   (1) 

where A=1-R-T , R is the (in principle unknown) reflectance at a single sample-air interface, and 

z = exp −αd( ) , where d is the sample thickness. This system is best solved iteratively, starting 

 
Figure 2    Experimental room-temperature absorption coefficient of Ge 
compared with a calculation using the theory described in this paper (solid 
blue line). The kink at 685 meV in the theoretical curve represents the 
onset of phonon emission. The blue dotted line shows the partial 
contribution from the excitonic bound states, and the blue dash-dotted line 
is the contribution from phonon-assisted direct transitions. The black-
dotted line is a calculation using the standard Elliott theory. 
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with R = R. Full convergence is typically achieved with only two iterations. Results for three 

different samples are virtually identical. Figure 2 shows the absorption coefficient for one of 

these samples.  

The most resonant contribution to α corresponds to the process illustrated schematically in Fig. 

1, involving the conduction band near the Γ-point of the Brillouin zone (BZ) as an intermediate 

electron state, and the absolute minimum of the conduction band near the zone-edge L-point as 

the final electron state. For this process, group theory shows that only zone-edge LA phonons 

contribute to the absorption [17], and the results of Hartman can be written as α free = α+ +α−  , 

with  

   (2) 

Here e, m, , and c are fundamental constants following the standard notation, P2/m = 12.61 eV 

is the valence/conduction momentum matrix element at the Γ point of the BZ, which we obtain 

by fitting the experimental Γ-point conduction band effective mass mc [18,19], ρ =5.323 g/cm3 is 

the material's density and nop = 4.13 the index of refraction at the indirect gap,  = 0.027 eV is 

the LA phonon energy,[20] nΩ is the Bose-Einstein occupation number,  = 1.58m is the 

longitudinal electron mass at the L minimum, and m⊥  = 0.078m is the corresponding transverse 

mass [21-23]. Eq. (2) is based on the standard assumptions of constant phonon energy and 

deformation potential, so that these quantities should be viewed as averages. The functions 

 are given by  

   (3) 

with βh = mh mc  , and mc = 0.0338m is computed from k·p theory using the above value of P 

and room temperature band gaps. The summation in Eq. (2) is over h = lh and h = hh, which 

correspond to the light- and heavy-hole bands, respectively.  Since the model does not include 

non-parabolicity or warping, we use the averages mhh = 0.375m and mlh =0.0385m, which give 

the best fit of the valence band density of states using the model of Ref. [24]. In the limit ηh
± → 0 

one can expand the square root in Eq. (3) and the expression becomes 

, which leads to the standard textbook expression 
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for indirect absorption [1,2]. This limit can be reached for βh → −1 (parallel conduction and 

valence bands near Γ) or, more realistically, when , which, as indicated above, is 

never a good approximation for Ge. Eq. (3) diverges as , whereas in the constant 

denominator limit one obtains a stronger divergence . This is understandable, since 

the dispersion of the intermediate state energies captured by the more realistic calculation should 

partially smear out the resonant enhancement. 

For a comparison with experiment we must incorporate excitonic effects, which we do by 

expressing α as 

   (4) 
where α bound  represents the contribution from the bound indirect excitons and S is the excitonic 

enhancement arising from the continuum solutions. A rigorous treatment of indirect excitons is a 

formidable problem due to the degeneracy of light- and heavy holes near the top of the valence 

band (Fig 1) and the strong mass anisotropy of the conduction band minimum. However, Lipari, 

Baldereschi, and Altarelli have shown that the excitonic Hamiltonian can be split into an s-like 

hydrogenic term and d-like perturbations.[25-27] Since the exciton binding energy is reproduced 

very well by the hydrogenic term alone, we only consider this term in our calculations. This is a 

poor approximation if one is interested in describing the low-temperature fine structure at the 

onset of absorption [17,26], but we expect it to be accurate in the continuum region that is the 

focus of our work. We note, however, that the electron and hole effective masses in the s-like 

Hamiltonian are given by[25-27] 

   (5) 

and therefore the excitonic expressions do not approach α free in the limit of vanishing electron-

hole Coulomb interaction. We circumvent this problem by computing  as the ratio 

between our excitonic continuum calculation and α free from Eq. (2) calculated using the Eq. (5) 

masses. For the bound component, we find that α bound ∝ me,effmh,eff( )3 2
, so that the correction 

factor is . 

The excitonic absorption coefficient is calculated as α ex = Ri→ f nop c , where Ri→ f  is the 

transition rate obtained from Fermi's Golden Rule. Since we  allow for excitons not only in the 



 7

final but also in the intermediate states, we rewrite the perturbation expression in terms of the 

intermediate state excitonic Green functions, and after some manipulations we arrive at the 

expression 

   (6) 

Here V is the sample volume, M 2 and A 2 are the squares of the moduli of the electron-phonon 

and electron-radiation matrix elements, sh = mh,eff me,eff + mh,eff( ) , and kL is the electron wave 

vector at the conduction band minimum. The excitonic wave functions FλK
* r( )  with 

eigenenergies Eλ ,K  satisfy a hydrogen-like Schrödinger equation. The index λ represents the 

quantum numbers for the relative electron-hole motion, and K is the wave vector for the center-

of-mass motion. The Green function for the intermediate states is given by[28-30] 

   (7) 

where EBΓ is excitonic binding energy at the Γ-point of the Brilloin zone, a0 the Bohr radius for 

this exciton, Γ(z) is the Gamma function, and Wκ,1/2 a Whittaker function of the first kind, with 

ρ = 2r κ a0( ), and . In the constant denominator limit we obtain  

  , (8) 

and inserting this back into Eq. (6) we recover Elliott's expression for α, in which the excitonic 

enhancement is proportional to FλK 0( ) 2
[12]. Notice that Eq. (8) is independent of the excitonic 

parameters at the Γ-point. This means that in this limit the absorption is not affected by the 

excitonic character of the intermediate states, which can be easily shown to be a consequence of 

the completeness of the excitonic wave functions set. 

The calculation of Eq. (6) proceeds numerically. Since Eq. (8) is not a good approximation for 

Ge, states with angular momentum l≠0 can in principle contribute. However, the weight of each 

bound state is proportional to n-3, where n is the principal quantum number, so that the 1s- state 

will still represent the dominant contribution. Furthermore, it turns out to that the overall bound 

state contribution is a small fraction of the continuum contribution, so that we neglect l≠0 states. 
For the continuum states the index λ becomes a wave vector k, and the wave function can be 

chosen as[31] 
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 FkK (r) = 1
V

Γ(1+ iν )eπν /2eik⋅r
1F1 −iν,1,−ikr − ik ⋅ r( )   (9) 

with ν = EBL ε  ,  , and μ−1 = me,eff
−1 + mh,eff

−1  . Here EBL is the binding energy of 

the indirect excition and 1F1(a,b, z)  is the Kummer confluent hypergeometric function. For 

EBL→0, we obtain FkK (r) = eik⋅r V , as expected. The sums over k and K are converted to 

integrals over the density of states, and one of those integrals is eliminated by the delta function. 

However, since the relative angles of r, K, and k are arbitrary, Eq. (6) is effectively a four-

dimensional integral over three spatial and one energy coordinate, which makes the calculation 

very time consuming and impractical for fitting experimental data. A dramatic speedup in the 

calculation results from taking . This is consistent with 

the "sphericalization" of the excitonic problem. We have verified that the approximated form of 

the wave function is in excellent agreement with the angular average of the exact wave function, 

and that the normalization condition is unaffected by the approximation. Under these 

assumptions the integral over r in Eq. (6) acquires cylindrical symmetry, and the overall 

calculation is reduced to a three-dimensional integral that can be easily carried out on a personal 

computer. 

The calculated excitonic enhancement is shown in Fig. 3 and compared with the enhancement 

obtained using Elliott's theory. At the onset of absorption near Eind our theory predicts a smaller 

enhancement. This can be understood by examining the wave function in Eq. (9). In Elliott's, 

theory, Eq. (8) causes the excitonic enhancement to be proportional to FkK 0( ) 2
. As shown in the 

inset of Fig. 3, the square of the wave function has a maximum precisely at r = 0, and therefore 

the enhancement will be less in our calculation because our expression averages over values r > 

0. On the other hand, as E0 is approached the excitonic character of the intermediate states causes 

an increase in the indirect absorption, but this increase is not captured by the Elliott model, 

which is insensitive to the nature of the wave functions at the Γ-point. 
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The final calculated 

absorption using Eq. 

(4) is shown as a solid 

line in Fig. 2. As the 

E0 is approached, an 

additional 

contribution arises 

from optical-phonon 

assisted direct 

transitions. We have 

calculated this 

absorption using a 

similar formalism and 

d0 = 41 eV for the 

optical phonon 

deformation potential 

[32,33]. The 

contribution from this 

process is small, as seen in Fig. 2, but it has been added to the indirect gap absorption for 

completeness. The best fit of the experimental data is obtained using DΓL = (4.3±0.1)×108 eV/cm. 

This is in excellent agreement with the value DΓL = (4.2±0.2)×108 eV/cm obtained from time-

resolved transmission experiments [34] as well as with ab initio theoretical values of 4.0×108 

eV/cm (Ref. [35]) and 4.1×108 eV/cm (Ref. [36]). On the other hand, the constant denominator 

Elliott model gives very poor agreement with experiment using DΓL = 4.3×108 eV/cm, and there 

is no value that produces a good fit because the overall lineshape is incorrect. 

It is important to note that as E0 is approached, the direct gap absorption cannot be ignored 

because the absorption edge is considerably broadened at room temperature. However, we have 

been able to obtain excellent fits of the direct absorption using Elliott's model, and the results 

indicate that at 20 meV below the energy of the direct gap, the direct gap absorption coefficient 

has been reduced to 10 cm-1. This region is indicated as a grey band in Fig. 2, and we see that 

most of our spectral range is unaffected by direct transitions. Within the grey band, it becomes 

 
Figure 3   Excitonic enhancement of the indirect absorption for the phonon-
annihilation component. The phonon-creation part has a similar dependence. The 
solid line is the present calculation and the dotted line corresponds to Elliott's 
theory. As the direct gap is approached, our theory predicts an enhancement due to 
the excitonic nature of the intermediate states, whereas Elliott's enhancement does 
not depend on the excitonic character of these states. Near the indirect gap, Elliott's 
enhancement is larger because it is proportional to FkK 0( ) 2 and the excitonic 
function has a maximum precisely at r = 0, as seen in the inset, which shows the 
angular average of the wave function. By contrast, Eq. (6) averages over non-zero r 
values, and therefore the excitonic enhancement is reduced.
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increasingly necessary to introduce broadening into our expressions. This cannot be simply 

accomplished by adding a constant imaginary part to the energies, because we find that a much 

better fit of the direct gap absorption is obtained with Gaussian instead of Lorentzian broadening. 

Since the states involved in the direct absorption are the same as the intermediate states for the 

indirect process, a self-consistent treatment of broadening will require a non-trivial expansion of 

our theory. 

If the excitonic enhancement is neglected, the overall fit worsens, and the required deformation 

potential becomes DΓL = 7.3×108 eV/cm, which not only disagrees with the values given above 

but exceeds the upper limit of 4.5×108 eV/cm derived by Li et al. [37]. Similarly, if we use the 

original Elliott enhancement, as opposed to the one calculated here, the fit is also distinctly 

worse, indicating the need for the more general theory presented here. 

Recently, ab initio results for the indirect gap absorption of Si have appeared.[3,38,39] These 

calculations do not include excitonic effects but are in good agreement with experiment, except 

near the direct absorption edge. The reason for the apparent suppression of excitonic effects is 

unclear, and must be reconciled with the significant excitonic effects observed at low 

temperature [27]. The reduced excitonic enhancement shown in Fig. 3 for Ge should not apply to 

Si, because this material is much closer to the Elliott limit. Ab initio calculations for Ge could 

potentially resolve this issue. However, since the resonant absorption in Ge requires the 

difference E0-Eind to be known within ~0.01 eV, a full ab initio approach may be very 

challenging in this case.  

In summary, we have presented new high-accuracy, high-precision experimental data on the 

optical absorption of Ge between the indirect and direct gaps, and we have developed a model of 

excitonic indirect absorption that generalizes the Elliott approach and leads to excellent 

agreement with the experimental data using independently measured deformation potential 

constants. A fundamental lesson from this model is that the excitonic enhancement of indirect 

transitions is qualitatively different from that of direct transitions in the resonant regime in which 

the energy of the intermediate states is comparable to the photon energy. The results presented 

here should find immediate applications in the emerging field of Ge optoelectronics, with 

particular emphasis on tensile-strained Ge. They are also extremely relevant to the study of the 

optical properties of Ge1-ySny alloys, in which the separation between the direct and indirect gaps 
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can be continuously tuned and brought to zero at y ~ 0.09 [40], causing Eq. (3) to diverge and 

mandating the development of a self-consistent treatment of lifetime broadenings. 
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