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The Sachdev-Ye-Kitaev (SYK) model describes a collection of randomly interacting Majorana
fermions that exhibits profound connections to quantum chaos and black holes. We propose a solid-
state implementation based on a quantum dot coupled to an array of topological superconducting
wires hosting Majorana zero modes. Interactions and disorder intrinsic to the dot mediate the desired
randomMajorana couplings, while an approximate symmetry suppresses additional unwanted terms.
We use random matrix theory and numerics to show that our setup emulates the SYK model (up
to corrections that we quantify) and discuss experimental signatures.

Introduction. Majorana fermions provide building
blocks for many novel phenomena. As one notable
example, Majorana-fermion zero modes [1, 2] capture
the essence of non-Abelian statistics and topological
quantum computation [3, 4], and correspondingly now
form the centerpiece of a vibrant experimental effort
[5–16]. More recently, randomly interacting Majorana
fermions governed by the ‘Sachdev-Ye-Kitaev (SYK)
model’ [17–19] were shown to exhibit sharp connections
to chaos, quantum-information scrambling, and black
holes—naturally igniting broad interdisciplinary activity
(see, e.g., [20–39]). The goal of this paper is to exploit
hardware components of a Majorana-based topological
quantum computer for a tabletop implementation of the
SYK model, thus uniting these very different topics.

The SYK Hamiltonian reads

HSYK =
∑

1≤i<j<k<l≤N

Jijklγiγjγkγl, (1)

where γi=1,...,N denote Majorana fermions with ‘all-to-
all’, Gaussian-distributed random couplings Jijkl satisfy-
ing

〈Jijkl〉 = 0, 〈JijklJi′j′k′l′〉 = δi,i′δj,j′δk,k′δl,l′
3!J̄2

N3
. (2)

At large N the model is solvable and exhibits rich be-
havior. Most remarkably, for temperatures satisfying
J̄/N � T � J̄ the SYK model enjoys approximate con-
formal symmetry and, similar to black holes, is maxi-
mally chaotic as diagnosed by out-of-time-ordered corre-
lators. These properties are expected for a holographic
dual to quantum gravity, and there has been much inter-
est in the corresponding bulk theory [33, 40].

Laboratory realizations of Eq. (1) face intertwined hur-
dles: First, hybridizing Majorana fermions naively yields
bilinears of the form iMjkγjγk as the dominant couplings,
yet these are absent from the Hamiltonian. Second, gen-
erating all-to-all couplings requires abandoning locality
for the Majorana fermions. And finally, the host plat-

form must carry sufficient disorder to at least approxi-
mate independence among the large number of random
Jijkl’s. References 23 and 38 proposed SYK-model plat-
forms using cold atoms and topological insulators, re-
spectively, while Ref. 24 suggested a qubit simulation
of the model capable of probing correlations. We in-
stead envision a realization [Fig. 1(a)] that exploits Ma-
jorana zero modes germinated in proximitized semicon-
ductor nanowires [41, 42]—a leading experimental archi-
tecture for topological quantum information applications
[5–9, 11, 13–15].

More precisely, we explore an array of such wires in-
terfaced with a disordered quantum dot that mediates
coupling among the constituent Majorana modes and
randomizes the corresponding zero-mode wavefunctions.
Unwanted Majorana bilinears are suppressed by an ap-
proximate time-reversal symmetry [43] that, importantly,
is preserved by the dominant sources of disorder expected
in the dot. Interactions intrinsic to the dot instead gen-
erate the desired all-to-all four-Majorana couplings, thus
approximating the SYK model up to corrections that we
quantify (and which appear generic for any physical real-
ization). We discuss several future directions that our ap-
proach spotlights, including tunneling experiments that
provide a natural first probe of SYK physics.

Setup. We begin with the Hamiltonian for a clean,
single-subband proximitized wire:

Hwire =

∫
x

[
ψ†
(
− ∂2x

2m
− µ− hσx − iασy∂x

)
ψ

+ ∆(ψ↑ψ↓ +H.c.) + · · ·
]
, (3)

which features Zeeman coupling h generated by a mag-
netic field B, spin-orbit coupling α, and proximity-
induced pairing ∆. Together these ingredients allow
the formation of Majorana zero modes γ, γ̃ at the wire
ends over a chemical potential window centered around
µ = 0 [41, 42]. Crucially, the terms explicitly dis-
played above respect a time-reversal transformation T
that sends ψ → ψ, i → −i and thus satisfies T 2 = +1
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FIG. 1. (a) Device that approximates the SYK model us-
ing topological wires interfaced with a 2D quantum dot. The
dot mediates disorder and four-fermion interactions among
Majorana modes γ1,...,N inherited from the wires, while Majo-
rana bilinears are suppressed by an approximate time-reversal
symmetry. (b) Energy levels pre-hybridization. The dot-
Majorana hybridization energy λ is large compared to Nδεtyp,
where N is the number of Majorana modes and δεtyp is the
typical dot level spacing; this maximizes leakage into the dot.
(c) Energy levels post-hybridization. The N absorbed Ma-
jorana modes enhance the energy ε to the next excited dot
state via level repulsion; four-Majorana interactions occur on
a scale J < ε.

[43]. Additional couplings denoted by the ellipsis can in
general violate T since it is not a true microscopic sym-
metry. Nevertheless, we will assume that such perturba-
tions are negligible, which is not unreasonable at low den-
sities appropriate for the topological regime. (See Discus-
sion for further comments.) Under the approximate T
symmetry the Majorana-zero-mode operators transform
as γ → γ and γ̃ → −γ̃. The opposite signs acquired
by γ, γ̃ ensure that T commutes with the ground-state
fermion parity P = iγγ̃, as it must.

Consider now N topological wires ‘plugged into’ a 2D
disordered quantum dot [Fig. 1(a)], such that the Majo-
ranas γ1,...,N that are even under T hybridize with the
dot while their partners γ̃1,...,N decouple completely. The
full architecture continues to approximately preserve T
provided (i) the dot carries negligible spin-orbit coupling
and (ii) the B field orients in the plane of the dot so
that orbital effects are absent. Here the setup falls into
class BDI, which in the free-fermion limit admits an in-
teger topological invariant ν ∈ Z [44, 45] that counts the
number of Majorana zero modes at each end; interac-
tions collapse the classification to Z8 [46, 47]. In essence
our device leverages nanowires to construct a topological
phase with a free-fermion invariant ν = N : All bilinear

couplings iMjkγjγk are forbidden by T and thus cannot
be generated by the dot under the conditions specified
above. We exploit the resulting N Majorana zero modes
to simulate SYK-model physics mediated by disorder and
interactions native to the dot, similar in spirit to Refs. 21
and 38.

Figures 1(b) and (c) illustrate the relevant parameter
regime. The dot-Majorana hybridization energy λ sat-
isfies λ � Nδεtyp, where δεtyp denotes the typical dot
level spacing. This criterion enables the dot to absorb
a substantial fraction of all N Majorana zero modes as
shown below. The dot’s disordered environment then effi-
ciently ‘scrambles’ the zero-mode wavefunctions, though
we assume that their localization length ξ exceeds the dot
size L. More quantitatively, we take the mean-free path
`mfp � L to maximize randomness and the dimensionless
conductance g = kF `mfp > 1 such that L < ξ. Turning
on four-fermion interactions couples the disordered Majo-
rana modes with typical Jijkl’s that are smaller than the
energy ε to the next excited state (which as we will see
is enhanced by level repulsion compared to δεtyp). This
separation of scales allows us to first analyze the dis-
ordered wavefunctions in the non-interacting limit and
then explore interactions projected onto the zero-mode
subspace. We next carry out this program using random-
matrix theory, which is expected to apply in the above
regime [48, 49].

Random-matrix-theory analysis. We model the
dot as a 2D lattice composed of Ndot � N sites hosting
fermions ca=1,...,Ndot

[50]. In terms of physical dot param-
eters we have Ndot ∼ (L/`mfp)2— that is, the fermions
represent degrees of freedom coarse-grained on a length
scale of order the mean-free path. The Hamiltonian gov-
erning the dot-Majorana system is H = H0 +Hint, with
H0 and Hint the free and interacting pieces, respectively.
We employ a Majorana basis and write ca = (ηa+iη̃a)/2,
where ηa is even under T while η̃a is odd (similarly to
γi, γ̃i). In terms of

Γ = [η1 · · · ηNdot
; γ1 · · · γN ]T , Γ̃ = [η̃1 · · · η̃Ndot

]T , (4)

H0 takes the form

H0 =
i

4

[
ΓT Γ̃T

] [ 0 M
−MT 0

] [
Γ

Γ̃

]
. (5)

Time-reversal T fixes the zeros above but allows for a
general real-valued (Ndot + N) × Ndot-dimensional ma-
trix M . (The matrix is not square since we discarded
the γ̃i modes that trivially decouple.) One can perform
a singular-value decomposition of M by writing Γ = OΓ′

and Γ̃ = ÕΓ̃′. HereO, Õ denote orthogonal matrices con-
sisting of singular vectors, i.e., the matrix Λ ≡ OTMÕ
only has non-zero entries along the diagonal. Writing
Γ′ = [η′1 · · · η′Ndot

; γ′1 · · · γ′N ]T and similarly for Γ̃′, the
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Hamiltonian becomes

H0 =
i

2

Ndot∑
a=1

εaη
′
aη̃
′
a (6)

where εa ≡ Λaa are the non-zero dot energies. Most
importantly, γ′i=1,...,N drop out and form the modified N
Majorana zero modes guaranteed by T symmetry.

We are interested in statistical properties of the asso-
ciated Majorana wavefunctions in the presence of strong
randomness. To make analytic progress we assume (for
now) that all elements of M in Eq. (5) are indepen-
dent, Gaussian-distributed random variables with zero
mean and the same variance, corresponding to the chi-
ral orthogonal ensemble [51, 52]. This form permits
Cooper pairing of dot fermions—an inessential detail
for our purposes—and also does not enforce the strong-
hybridization criterion λ� Nδεtyp. We will see that the
Majorana wavefunctions nevertheless live almost entirely
in the dot as appropriate for the latter regime.

The probability density for such a random matrix M
is [53] P (M) ∝ exp

[
− π2

8Ndotδε2typ
Tr(MTM)

]
. Because

P (M) is invariant under M → OTMÕ, the singular-
vector matrices O, Õ are uniformly distributed over the
spaces O(Ndot + N) and O(Ndot), respectively. In par-
ticular, the Majorana wavefunctions φi corresponding
to γ′i are the final N columns of a random element of
O(Ndot+N). For large Ndot+N the distribution of wave-
function components is asymptotically Gaussian [48, 54]:

〈φi,I〉 = 0, 〈φi,Iφj,J〉 =
δi,jδI,J
Ndot +N

≈ δi,jδI,J
Ndot

. (7)

Summing φ2i,I over the dot sites thus gives unity up to
corrections of order N/Ndot, i.e., the dot swallows the
Majorana modes as claimed.

Once absorbed by the dot, the N Majorana zero modes
repel the nearby energy levels. Random matrix the-
ory allows us to estimate the energy ε to the first ex-
cited dot state. References [55, 56] show that the small-
est eigenvalue for the Wishart matrix MTM approaches
(
√
a−
√
b)2v, whereM is an a× b matrix with variance v

for each element. The energy ε is the square root of this
eigenvalue. For our matrix M we thus obtain

ε ≈ 1

π
Nδεtyp. (8)

The enhancement compared to δεtyp [sketched in
Fig. 1(c)] isolates the N Majorana modes from adjacent
levels, justifying projection onto the zero-energy sub-
space.

Let us now examine a general T -invariant four-
fermion interaction among dot fermions, Hint =∑
abcd Uabcdc

†
ac
†
bcccd. Projection follows from ca →

1
2

∑
i φi,aγ

′
i, which yields

H →
∑

1≤i<j<k<l≤N

Jijklγ
′
iγ
′
jγ
′
kγ
′
l (9)

Jijkl =
1

24

∑
abcd

Uabcd
∑
p

spφp(i)aφp(j)bφp(k)cφp(l)d.(10)

The p sum runs over permutations of ijkl, and sp = ±1
is the parity of permutation p. Notice that only the
part of Uabcd that is asymmetric under swapping any
pair of indices contributes to Jijkl. For density-density
interactions among the coarse-grained fermions—where
Uabcd ∝ δadδbc—all Jijkl consequently vanish. This
in fact is a virtue that underlies compatibility of SYK
physics with randomness in our setup. Density-density
interactions would project nontrivially only if potential
disorder δµac†aca did as well, but the latter would gener-
ate unwanted Majorana bilinears that tend to spoil SYK
properties. Other physical couplings such as current-
current interactions produce non-zero Jijkl. We stress,
however, that microscopic density-density interactions
will generically contribute to Jijkl after coarse graining.

Emulating the SYK model requires that the Jijkl’s en-
code all-to-all Majorana interactions and form indepen-
dent random variables whose correlations obey Wick’s
theorem. Using Eq. (7) one reproduces Eq. (2) with

J̄2 =
3N3

8N4
dot

∑
abcd

(Uas
abcd)

2 ∼ N3

Nα
dot

. (11)

Here Uas
abcd denotes the antisymmetric part of Uabcd. The

exponent α on the right side is interaction-dependent.
An (unphysical) non-local interaction with (Uas

abcd)
2 =

constant yields α = 0, while a local Uas
abcd with support

only for bcd ‘near’ a instead yields α = 3.
Equation (11) implies all-to-all coupling but does not

guarantee independence of the Jijkl’s. Since there are(
N
4

)
∼ N4 such couplings and N × Ndot independent

Majorana-wavefunction components in the dot, a neces-
sary condition for the latter property is

Ndot & N3. (12)

Corrections to Wick’s theorem persist even in this regime,
however. For example, Eq. (7) yields

〈JijklJklmnJijmn〉 ∝
1

N6
dot

∑
abcdef

Uas
abcdU

as
cdefU

as
abef ∼

1

Nβ
dot

,

(13)

whereas in the SYK model such correlations vanish.
(Note that our system still preserves the statistical
SO(N) ‘flavor’ symmetry corresponding to rotations
among the Majorana fermions that is present in the SYK
model.) A local interaction implies β = 5; Eq. (13)
then decays faster with Ndot compared with 〈J2

ijkl〉3/2.
In this sense the Jijkl’s asymptotically form independent
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FIG. 2. (a) Average absorption of Majorana wavefunctions into the dot versus the hybridization strength λ with N = 16 zero
modes. Inset: probability density for a Majorana wavefunction swallowed and randomized by the dot of size 51 × 51. (b)
Enhanced level repulsion of the first excited dot state ε by N absorbed Majorana modes; cf. Figs. 1(b) and (c). (c) Histogram
of Jijkl couplings obtained from local current-current interactions on a dot of size 21× 21, together with a Gaussian fit (solid
line). (d) Scaling of the variance ∝ J̄2 of these couplings versus Ndot.

Gaussian random variables as in Ref. 23. Corrections to
Wick’s theorem do nevertheless introduce a proliferation
of new Feynman diagrams that may qualitatively alter
SYK-model physics over some energy scales [57].

Numerics. We now semi-quantitatively validate
random-matrix-theory predictions using a more physi-
cally motivated Hamiltonian. Consider first the free part,

H0 = −
∑
a6=b

tabc
†
acb+

∑
a

Vac
†
aca+λ

N∑
i=1

γi(cai−c†ai). (14)

Here Va is an uncorrelated Gaussian disorder landscape
with zero mean and variance V̄ 2. In the λ hybridization
term, Majorana γi couples to a single dot site ai. For
the hoppings tab, we consider uniform nearest-neighbor
tunnelings of strength t (yielding an Anderson model)
and compare results with purely random, arbitrary-range
hopping satisfying 〈tab〉 = 0, 〈tabta′b′〉 = t2 (yielding a
random-matrix model). All data below correspond to
V̄ = t with adjacent Majorana modes separated by two
or three dot sites. Unless specified otherwise λ = t/2,
the dot system size is 31 × 31, and results are disorder-
averaged over many configurations [20 for Fig. 2(a), 50
for (b) and (d), and 500 for (c)].

Figure 2(a) corresponds to N = 16 and plots the
fraction of the Majorana mode wavefunctions absorbed
by the dot—averaged over all 16 zero modes—versus
λ/(Nδεtyp). For both the Anderson and random-matrix
models the fraction is of order one at λ/(Nδεtyp) & 4,
eventually saturating to unity as in random matrix the-
ory. The inset shows the probability density for a zero-
mode wavefunction nearly fully absorbed by the dot, ob-
tained from an N = 1 Anderson model; the wavefunction
appears thoroughly randomized and loses all information
about its original position (in this case, the center). Fig-
ure 2(b) illustrates level repulsion of the excitation energy
ε (normalized by the level spacing δεtyp) versus N . Note
that the dot almost completely absorbs all zero modes
up to the largest N shown. The random matrix model
yields a slope that agrees within ∼ 5% with Eq. (8) ob-
tained from random matrix theory, while the Anderson

model agrees within ∼ 20%.
Next we include a local current-current interaction

Hint = U
∑
〈ab〉

c†a∇ca · c
†
b∇cb, (15)

with ∇ a lattice gradient, projected into the zero-mode
subspace. Figure 2(c) plots a histogram of the resulting
Jijkl couplings (in units of U) using an Anderson model
with N = 8 and a 21×21 dot. The data agrees well with
a Gaussian distribution; see solid line. Finally, Fig. 2(d)
illustrates the Ndot-dependence of the variance ∝ J̄ for
Jijkl [recall Eq. (2)] with N = 8. The Anderson model
yields a scaling close 1/N2

dot—slower than 1/N3
dot result

from random matrix theory [Eq. (11)]. We attribute this
difference primarily to localization effects that effectively
reduce the system area. As a check, the random-matrix
model, which should not suffer localization due to the
non-local hoppings, indeed yields the expected 1/N3

dot

scaling.
Discussion. We showed that in certain regimes our

Majorana wire/quantum dot setup can emulate the SYK
model up to very generic corrections. Chiefly, we in-
voked an approximate time-reversal symmetry that sup-
presses bilinears, strong dot-Majorana coupling that de-
localizes and randomizes the wavefunctions, level repul-
sion that suppresses pollution of the zero-mode subspace
by additional dot levels, and sufficient randomness to ap-
proximate independent, random all-to-all couplings Jijkl.
Regarding the last property, Eqs. (11) and (12) imply
that independence requires J̄ ∼ 1/N3 for a dot with
local interactions. Since J̄ � ε excited dot states in-
deed can be safely ignored. We saw that level repulsion
of the dot states scales with N , implying that one can
enlarge the dot to accommodate arbitrarily many wires
without spoiling this property, provided the system size
does not exceed the localization length. (For larger scales
we lose all-to-all coupling, as the Majorana wavefunc-
tions localize.) However, increasing N rapidly diminishes
the strong-coupling temperature window T � J̄—where
much of the interesting physics emerges. This challenge
can be alleviated with long-range interactions, which lead
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to slower decay with N . Alternatively, one can intention-
ally abandon independence to boost J̄ , though the fate of
SYK physics in such cases remains to be systematically
understood.

To maintain approximate T symmetry graphene-based
dots appear ideal due to their strict two-dimensionality
and extremely weak spin-orbit coupling. In this case the
dominant source of T violation will likely originate from
the Majorana wires. We can crudely assess the impact of
such perturbations by adding local T -breaking terms for
the dot in the vicinity of the wires and projecting, e.g.,

δH = χ

N∑
i=1

(ic†aicai+1 +H.c.)→
∑

1≤j<k≤N

iMjkγ
′
jγ
′
k

Mjk = χ

N∑
i=1

(φj,aiφk,ai+1 − φk,aiφj,ai+1) (16)

The Mjk bilinear couplings are random with zero mean
and variance 2χ2N/N2

dot ∼ 1/N5, where we used
Eq. (12). The correction to the two-point correlation
function 〈γi(t)γi(0)〉 is thus ∝ N(χ2/N5), and should
be compared to the contribution J̄2 ∼ U2/N6 (for local
interactions) from four-Majorana interactions. This cor-
rection is small provided χ . U/N ; longer-range interac-
tions relax the criterion further. Tunneling into the dot
provides an appealing benchmark of proximity to SYK
physics: the conductance approaches a constant at zero
bias if bilinears dominate but diverges as V −1/2 for the
large-N SYK model [19].

The setup we propose suggests several other tantaliz-
ing applications. First, with relatively few wires (N ≤ 8)
one can experimentally explore the Z→ Z8 reduction of
the BDI classification by interactions [46, 47], very simi-
lar to Refs. 58 and 59. One can also investigate quantum
quenches as a possible probe of SYK physics by discon-
necting or reconnecting the dot and wires to effectively
freeze the zero modes or restore their coupling. Finally,
much work has been done regarding measuring out-of-
time-order correlators in cold atoms and qubit systems;
see, e.g., [60–63]. Our setup offers the exciting prospect of
exploiting Majorana hardware and topological quantum
information ideas to measure such quantities in pursuit
of the SYK model’s hallmark maximal chaos. Develop-
ing protocols to this end poses an interesting challenge
highlighted by our study.
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