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Exact solutions and topological phase diagram
in interacting dimerized Kitaev topological superconductors

Motohiko Ezawa

It was recently shown that an interacting Kitaev topological superconductor model is exactly solvable based
on two-step Jordan-Wigner transformations together with one spin rotation. We generalize this model by in-
cluding the dimerization, which is shown also to be exactly solvable. We analytically determine the topological
phase diagram containing seven distinct phases. It is argued that the system is topological when a fermionic
many-body Majorana zero-energy edge state emerges. It is intriguing that there are two tetra-critical points, at

each of which four distinct phases touch.

Introduction: Majorana fermions were used for the first
time in condensed matter physics to exactly solve the
two-dimensional Ising model by mapping it to the one-
dimensional quantum spin model! with the use of the Jordan-
Wigner transformation®3. Recently, a renewed interest on
Majorana fermions has created one of the most active fields
in the context of topological superconductors*®. They are
expected to play a key role in future topological quan-
tum computations’. The Kitaev topological superconductor
(KTSC) model is a fundamental one which hosts Majorana
fermions®. It is exactly solvable since it describes free elec-
trons. An interplay between topology and interaction is a
fascinating subject. There are several works where electron-
electron interaction effects have been investigated®2%. It is
shown!>13:16 that there is a topological phase transition be-
tween a topological superconductor (TSC) state and triv-
ial charge-density wave (CDW) state at a certain interaction
strength.

The KTSC model is characterized by the three parameters,
i.e., the transfer integral ¢, the superconducting pairing gap
A and the chemical potential ;. The system is topological
for |u| < 2t, while it is trivial for || > 2¢. The interact-
ing KTSC model contains an additional electron-electron in-
teraction U. It is exactly solvable under the frustration free
condition?, i.e., u = 4,/U2 + tU + (t2 — A2)/4. Tt is also
exactly solvable at the symmetric point!'® A = U = t and
1 = 0. Recently, this exact solution is extended for A = ¢ and
1 = 0 with an arbitrary U by mapping the system to the KTSC
model?* with the aid of the combination of two-step Jordan-
Wigner transformations and one spin rotation. This method is
also applicable to the KTSC model with disorders?.

In this paper, we generalize the interacting KTSC model by
including the dimerization with parameter ), |n| < 1. The
model is exactly solvable for the case of A = tand u = 0
with an arbitrary U. We analytically obtain the topological
phase diagram in the (U/t)-n plane, which contains seven dis-
tinct phases. The topological properties of each phase are de-
termined based on the bulk-edge correspondence. It is argued
that the emergence of a fermionic many-body Majorana zero-
energy edge state is a manifestation of the topological non-
triviality of the system. We also discuss the duality relation
between topological phases.

Hamiltonian: We consider a one-dimensional chain of
spinless electrons: See Fig.1. The tight-binding model for
a hybrid system comprised of the Kitaev model® and the Su-
Schrieffer-Heager (SSH) model?® together with the electron-

electron interaction is given by

H=- ,ch}cj — th(C}CjJ,_l +hec.)
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with
= t{i-nY), A =a{i-n-17},
v; = U{1-n(-1y}, @

where p is the chemical potential, ¢ is the transfer integral, and
A is the superconducting pairing gap taken to be real. Param-
eters tj, A; and U; are dependent of sites due to the dimeriza-
tion 1. We assume ¢ > 0 without loss of generality, since the
local unitary transformation ¢; — —i (—1)” ¢, interchanges
t and —t. In addition, we assume A > 0 since the phase
transformation ¢; — ic; interchanges A and —A. Without
the interaction this Hamiltonian is reduced to the dimerized
KTSC model?’.

Jordan-Wigner transformation: The model with no dimer-
ization is exactly solvable?* for the case of A =t and 1 = 0.
We now show that, even if we include the dimerization 7, it is
exactly solvable for the case of A = ¢ and ;r = 0. We consider
the Jordan-Wigner transformation!313:19:232428 " representing
the fermion operators in terms of the spin operator, such that
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_ HM (—0%) and

j==

oF = o7 +io?. Tt follows that
0joi = c}cj‘+1 + c;[.ch + c}c}H +c¢jrici,  (3)
and
oio7, = (2c}cj _ 1) (QC}HCJ-H _ 1) @
The Hamiltonian is rewritten in terms of the spin operator as
H=> (~tjofoy,, +Ujoioi,,), 5)

J

which is the XZ spin model with dimerization?®. It is cus-

tomary to make a spin rotation>*** by 7 /2 around the x axis
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FIG. 1: Illustration of a semi-infinite chain of spinless electrons for
various dimerization n. For the case n = —1, the edge site is isolated,
leading to the SSH-like zero-energy edge state.

using the rotation operator R = exp [ im/23 ;07 |, and ob-
tain the XY model with dimerization,
H= Z —tjojoi +Ujo ]_H) (6)

J

We further make the inverse Jordan-Wigner transformation,

j—1
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of = ffi- ©)

The Hamiltonian turns out to be

H= Z Uj) £ fiva = (& + Up) 1 £l + el

(10)
This is solved explicitly as follows.

Phase diagram: The system has two sublattices A and
B made of the odd and even number sites in the presence
of the dimerization. Indeed, the parameters ¢;, A; and U;
in the Hamiltonian (1) are common in each sublattice, i.e.,
tj =ta), Aj = Agp)and U; = Uy, for all j belonging
to the sublattice A(B). Introducing the four-component oper-
ator C,I = (f,iA,f,IB,f,kA,f,kB), where A and B denote
the odd and even number sites, we express the Hamiltonian H
in the Bogoliubov-de Gennes form. We obtain

1
= 520,17{ (k) Ch, (11)
k

in the momentum space, with
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where
z(k)=—t+U)[1+n) +(1L—n)e "], (13)
wk)=—E-U)[(1+n)—1Q=n)e™], 14

and a is the lattice constant. Diagonalizing this Hamiltonian
we obtain the eigenvalues and the eigenfunctions explicitly.
In particular, the eigenvalues are

E*(k) /4= (1 +n)’+1Fn)°U?—2tU (1 —1?) cosk.
(15)

The gap closes for
n=L(t-U)/(t+U), £t+U)/(E-U). (16)

These gap-closing conditions generate the phase boundaries.
There are seven distinct phases as in Fig.2(a).

Our next task is to determine the topological properties of
each phase. However, we cannot discuss the topological prop-
erties of the original system with the use of the Jordan-Wigner
transformed operator f; since it is given by a non-local trans-
formation. Note that the topological properties are not con-
served by such a transformation!. Nevertheless, it is possi-
ble to discuss them by examining the edge state® based on
the bulk-edge correspondence by considering a semi-infinite
chain with one edge.

Majorana edge states: First we show that there are two
types of edge states. We introduce the Majorana represen-
tation /\3-4 = f; + f; and /\f = z(fjT — f;), and rewrite the
Hamiltonian (10) in the Majorana form,

H =iy ;07N + UAAT, (17)
J
This is separated into two independent Hamiltonias® as H =
Hy + Hjyy with
Hr= Zit?qu?,quﬁj-&-l + iUz 107,07 5, (18)
J

Hyp = Z *iU2j¢}31,j¢}4I,j+1 - it?j—1¢}41,j¢131,j, (19)
J

= /\gjfl’ ¢I€_7 2]5¢II] -
)\253 , and @7, §= )\é“j. This decoupling is in essence of the
relation between the XY model in zero field and two indepen-
dent transverse-field Ising models3?33.

The Jordan-Wigner transformed Majorana operators A/ are
written in terms of the original Majorana operators as’*2>>

where we have defined qb‘;{ j
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FIG. 2: (a) Topological phase diagram on the (U/t)-n plane. There are seven distinct phases indexed by (Q1, Q 1), where @, is the number of
the type-v edge states: Topological-superconductor (TSC), charge-density-wave (CDW), Schrodinger-cat (CAT), single-electron-dimer (SED)
and superconducting-dimer (SCD) phases. (b) The low-energy edge spectrum on the (U/t)-n plane. Although there are edge states for the
CDW and the CAT phases, they are bosonic and the systems are trivial. (c)—(e) The energy spectrum of a finite chain along the 7 line with
n = 1/4,0,—1/4, which is indicated by the arrow labelled by ¢, d, e in (a) and (b). Edge states are emphasized by red. The horizontal axis
represents U /t, upon which the number of the zero-energy edge states is given for a semi-infinite chain. It is one half of that for a finite chain.

A_ Tt B _ (.t
where we have defined v;* = ¢} + ¢; and V= ?(cj — c])
The zero-energy edge states of a semi-infinite chain are
constructed”®3* by operating the linear combination of the op-

erators Q) = >_ .~ ;@) ; to the Fock vacuum |vac), with
pw= A, Bandv = I, I, where the coefficients are given by

(24)

The edge is either the A site or the B site, according to which
we use the many-body Majorana operator Q2 or Q2.

The condition for the convergence of the edge state is given
by |, ;| < 1forv = I and I1. This is actually the condition
for the emergence of the zero-energy edge state in Hamilto-
nian f{,. For instance, if |o/;, j| > 1 there is no zero-energy
edge state in the Hamiltonian H;. Hence, for each phase of the
phase diagram we calculate (24) to decide whether |o; il<1
or not, and determine the number (), of the type-v edge states.
We show the results in the phase diagram as in Fig.2(a).

Topological properties: The Hamiltonian (1) does not con-
serve the fermion number N =}, c} ¢; due to the supercon-

ducting pairing term but conserves the fermion parity>3-2%283>

defined by Z{ = (—1)" since the superconducting paring
term only changes the fermion number by two. It commutes
(anticommutes) with any product of an even (odd) number of
fermion operators. It is rewritten in terms of the Majorana op-
erator as ZJ = I1; iviyP. We find that {Q, ZI} = 0and

QY Z{] = 0. Hence, the type-I edge states are fermionic,
while the type-II edge states are bosonic.

According to the bulk-edge correspondence, zero-energy
edge states necessarily emerge if the system is topological but

the reverse is not true. On one hand, it follows from (24)
that the type-I edge state is adiabatically connected to a non-
interacting Majorana zero-energy state as U — 0, where it is
shown to be topological based on the well-defined topological
argument. On the other hand, since the type-II edge state dis-
appears except for the n = —1 case, it is connected to a trivial
state as U — 0. It is bosonic, as we have mentioned. Conse-
quently, the system with the type-I edge state is topological,
while that with the type-II edge state is trivial®®.

TSC, CDW and CAT phases: We have found seven dis-
tinct phases. We investigate their topological and ground-state
properties more in details. First, we focus on the three phases
along the » = 0 line in Fig.2(a). They are already known?*
and named the topological-superconductor (TSC), charge-
density-wave (CDW) and Schrodinger-cat (CAT) phases. The
Schrodinger-cat state is a superposition of two superconduct-
ing states with different occupation numbers?*. These ground-
state properties are extended into the two-dimensional regions
as in Fig.2(a) for n # 0, and hence we use the same names
also for the two-dimensional phases. We note that the points
(U/t,n) = (£1,0) are tetra-critical points at which four dis-
tinct phases touch. It has been shown!>-1%2* that the TSC
phase is topological while the CDW and CAT phases are triv-
ial, which are consistent with the present results.

Dimer state: There are four phases which are absent for
n = 0. We name them as the single-electron-dimer (SED)
phases, and the superconducting-dimer (SCD) phases by the
ground-state properties. Their ground-state properties and
topological properties are made manifest in the strong dimer-
ization limit n = £1.

For n = 1 the system is separated into independent dimers
as in Fig.1(a). The Hamiltonian (1) reads H = Zj Hjj_1,25,



where for instance we have
Hyo = —t {cicg + cgcl] - A [cicg + czcl}
U (2c{c1 - 1) (2c§c2 - 1) . (25)

The diagonalization is straightforward®}. We note that, since
the two-site Hamiltonian commutes with the fermion parity
operator Z. ! the Hilbert space is decomposed into two sub-
spaces containing even or odd numbers of electrons.

The even subspace is composed of the following two states,

|00) = |vac) and [11) = ¢{el |vac), (26)

corresponding to there are no electrons or two electrons. The
Hamiltonian in the basis of {|00) , |11)} is given by

U -A
m=( %) @)

even

which yields the energy dispersion E{*" = U F A with the
eigenfunction 3" = %(|OO> +111)).
The odd subspace is composed of the following two states,

110) = ¢f [vac) and [01) = ¢} |vac) (28)

corresponding to two one-electron states occupying the first
site or the second site. The Hamiltonian in the basis of
{|10),]01)} is given by

-U -t
H—(_t_U), (29)
which yields the energy dispersion EM = —U F ¢ with the
eigenfunction ¢3* = (% |10) + [01)).
We may derive the following results. On one hand, when

the interaction is repulsive (U > 0), the ground state is a sym-
metric single electron hopping state ¢/ = %(HO) +(01))

with the energy ES% = —U — ¢. It is reasonable to call it
the SED state. On the other hand, when the interaction is
attractive (U < 0), it is a symmetric superconducting state

gen = %(\00) + |11)) with the energy E" = U — A.
Since the state contains a pair of electrons, it is reasonable to
call it the SCD state. Since there exist no zero-energy states,
the system is topologically trivial.

For 7 = —1 the semi-infinite chain system is separated into
independent dimers and an extra single site at the edge, as
in Fig.1(e). The analysis of the dimer parts is precisely the
same as in the limit » = 1. The single electron at the edge
plays a key role, since its energy is zero in the absence of
the chemical potential (1 = 0). There exist two zero-energy
states; the state |0) = |vac) is bosonic, while the state |1) =
c‘; |vac) is fermionic. The emergence of the fermionic zero-
energy state is a manifestation of the topological nontriviality
of the system.

These basic properties remain almost as they are for n #
+1. At least in the region near n = +1, the ground state is a
linear superposition of individual dimers [Fig.1(b) and (d)].
There are trivial dimer phases for n > 0, while there are
topological dimer phases for n < 0, which is differentiated
by the emergence of the zero-energy edge state, as shown in
Fig.2(c)—(e). We find there is no zero-energy state for n > 0,
while there are two zero-energy states per one edge for < 0,
which are the type-I and the type-II edge states. In the topo-
logical phase, there is an unpaired site at the edge of a semi-
infinite chain [Fig.1(d) and (e)], which results in the zero-
energy edge states. We note that the topological and trivial
phases alter once we take a half-shifted unit cell, which is a
reminiscence of the SSH model?.

Duality: The system has several duality relations'*¢. The
system (10) with n = 0 is self-dual®* for U = t. We gen-
eralize it to the case that  # 0. The Hamiltonian (17)
is invariant under the duality transformation, ¢ <> U and
)\j‘ )\JB . For n = 0, there is only one transition point
for U/t > 0, where the self-duality determines the transition
point** as U = t. For ) # 0, there are two transition points
atn = £ (t—U)/(t + U) corresponding to (16), which are
exchanged by the duality transformation.

The Hamiltonian is invariant also under the duality trans-
formation, t +» —U and /\]A < (=1) )\jB , for which a similar
argument follows. For 1y = 0, there is only one transition point
for U/t < 0, where the self-duality determines the transition
point as U = —t. For n # 0, there are two transition points
atn = £ (t+U)/(t — U) corresponding to (16), which are
exchanged by the duality transformation.

Finally, the Hamiltonian is invariant also under the duality
transformation, U <+ —U and AP < (=1)’ AP. For n #
+1, there are two transition points, U/t = (1+n) /(1 Fn)
and — (1 £ 1)/ (1 F n) corresponding to (16), which are ex-
changed by the duality transformation (the upper signs for
1 > 0 and the lower signs for ;x < 0). For n = *£1, there
is only one transition point at U/t = 0, where the system is
self-dual.
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Note added: After submission of the manuscript, a closely
related paper?’ was uploaded in cond-mat/arXiv, where an ex-
act solution on a similar interacting dimerized topological su-
perconductor is obtained by using the same method. There is
a difference between the two models that the interaction U is
not dimerized in the above paper. Their results are consistent
with ours.
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