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The band structure of a general class of buckled square lattice materials is investigated using
ab initio calculations along with tight-binding modeling. We show that buckling and spin-orbit
interaction give rise to a large quasi-Rashba splitting in the absence of an external electric field.
The generality and the robustness of the effect make this class of materials promising candidates
for spintronic applications.

I. INTRODUCTION

The spin-orbit interaction (SOI) occupies a special
place in physics, where even its simplest manifestation
is highly non-trivial, being relativistic in nature. In solid
state systems, SOI can be either extrinsic or intrinsic.
Extrinsic system-wide SOI is generally described using
the Rashba formalism, where a perpendicular electric
field is applied to the system, leading to a lifting of band
degeneracy..

Intrinsic SOI in two dimensions is only detected in ma-
terials with heavy elements, like some transition metal
dichalcogenides, or graphene-like buckled “X”enes. For
both classes of materials, SOI results in band splitting,
opening a gap1–6. In addition, a recent paper7 used sym-
metry arguments to predict the properties of nodal ma-
terials arising from strong spin-orbit coupling.

In this work, we focus our attention on buckled square
lattices with strong spin-orbit coupling. We show that
unlike hexagonal lattices where SOC leads to level split-
ting and/or gap opening the K point, here, spin-orbit
effects result in a Rashba-like dispersion even without an
external electric field. It is worth noting that while this
work is theoretical, the class of systems considered has
very simple structures and can be constructed using the
existing technology.8,9 In addition, we have performed ab
initio calculations to show that the system in question is
amenable to being grown on top of metallic substrates.

The paper is organized as follows. In Sec. II, we con-
struct a tight binding model for a general buckled square
lattice. Following this, we focus on two high-symmetry
points of the Brillouin zone in Sec. III to show the appear-
ance of the Rashba-like dispersion. Our results demon-
strate that this dispersion is found at the M point even
when the lattice is composed of a single atomic species
with no dipole moment perpendicular to the system. At
the Γ point, on the other hand, the quasi-Rashba bands
arise only if the lattice contains two different types of
atoms. We provide a numerical confirmation of our re-
sults in Sec. IV. Discussion and conclusions can be found
in Sec. V.

II. TIGHT BINDING

In this section, we construct a tight-binding Hamilto-
nian for a general buckled square lattice involving s and
p orbitals. The purpose of the tight-binding model is to
provide an intuitive platform for understanding the mi-
croscopic origins of the quasi-Rashba dispersion. In the
following section, we will consider Γ and M points of the
Brillouin zone using a low-momentum expansion of the
full Hamiltonian we obtain here.

To keep the number of hopping parameters to a min-
imum, we include only nearest-neighbor hopping. We
proceed by first neglecting spin-orbit effects in order to
simplify the problem by focusing on a single spin.

A buckled square lattice is composed of two inequiva-
lent shifted square sublattices A and B, as seen in Fig. 1.
We set the bond length to a and the (buckling) angle that
it makes with the horizontal to θ. This yields the unit cell
size of 2αa×2αa, where α = cos θ/

√
2. From this, the di-

mensions of the Brillouin zone are − π
2αa ≤ qx, qy ≤ π

2αa .
As a concrete example of such a lattice, Fig. 1 shows a
buckled square lattice of lead atoms on top of bulk copper
[100] surface.

Since we allow hopping only between nearest neigh-
bors, in the absence of spin-orbit interaction, there is no
coupling between different orbitals of the same sublat-
tice. This means that in the basis of (s, px, py, pz), the
on-site energies are given by

Σi =

Si 0 0 0
0 Pi 0 0
0 0 Pi 0
0 0 0 Pi

 , (1)

where Si and Pi are s- and p-orbital energies for sublat-
tice i.

To write down the hopping matrix, we use the fol-
lowing Slater-Koster matrix elements for the orbitals of
neighbouring atoms10:

s-s : Vssσ ,

s-p : Vspσd̂ · ôj ,

p-p : (ôi · ôj)Vppπ +
(
ôi · d̂

)(
ôj · d̂

)
(Vppσ − Vppπ) . (2)
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FIG. 1. (Top)Buckled square lattice with the two sublattices
represented by the two different colors. The dashed square
marks the unit cell. (Bottom) Pb buckled square lattice on
top of bulk copper.

Here, ôi is the orientation of the ith orbital and d̂ is the
unit vector pointing from atom 1 to atom 2. This leads
to the following A → B hopping matrix:

K = 4 cos (kx) cos (ky)


Vssσ 0 0 −βV (1)

spσ

0 Vppπ + α2∆ 0 0
0 0 Vppπ + α2∆ 0

βV
(2)
spσ 0 0 Vppπ + β2∆

− 4α2∆ sin (kx) sin (ky)

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0



+ 4α cos (kx) sin (ky)


0 0 iV

(1)
spσ 0

0 0 0 0

−iV (2)
spσ 0 0 −iβ∆

0 0 −iβ∆ 0

+ 4α cos (ky) sin (kx)


0 iV

(1)
spσ 0 0

−iV (2)
spσ 0 0 −iβ∆

0 0 0 0
0 −iβ∆ 0 0

 . (3)

The dimensionless momentum kx/y = αaqx/y and β =
sin θ. To keep the expression more compact, we have in-
troduced ∆ = Vppσ − Vppπ. In addition, since A and B
species are not necessarily the same, we have two quan-
tities of the Vspσ form.

While it is convenient to use s and p orbitals to write
down the hopping matrix, since we are interested in in-
cluding SOI in our model, it is helpful to go to a basis
which is more natural for the angular momentum opera-

tors:

|0, 0〉 = |s〉 , |1,±1〉 =
∓|px〉 − i|py〉√

2
, |1, 0〉 = |pz〉 ,

(4)

where the first number represents the orbital momentum
quantum number and the second one is its projection
along the ẑ direction. This basis change does not alter
the Σ matrices. The inter-lattice hopping portion of the
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Hamiltonian, on the other hand, becomes

K̃ = 4 cos(kx) cos(ky)


Vssσ 0 0 −βV (1)

spσ

0 Vppπ + α2∆ 0 0
0 0 Vppπ + α2∆ 0

βV
(2)
spσ 0 0 Vppπ + β2∆

+ 4α2∆ sin(kx) sin(ky)

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

+

+ 2
√

2α sin(kx) cos(ky)


0 −iV (1)

spσ iV
(1)
spσ 0

iV
(2)
spσ 0 0 iβ∆

−iV (2)
spσ 0 0 −iβ∆

0 iβ∆ −iβ∆ 0

+ 2
√

2α sin(ky) cos(kx)


0 V

(1)
spσ V

(1)
spσ 0

V
(2)
spσ 0 0 β∆

V
(2)
spσ 0 0 β∆
0 −β∆ −β∆ 0

 . (5)

In the following section, we will obtain simplified
Hamiltonians for high-symmetry points of the Brillouin
zone and include the atomic spin-orbit interaction in
them.

III. EFFECTIVE HAMILTONIAN

Having constructed a tight-binding Hamiltonian for a
general buckled system, we show how spin orbit cou-
pling gives rise to the Rashba-like dispersion at the high-
symmetry points of the Brillouin zone.

For the square Brillouin zone of our system, there are
two particular points of interest: Γ and M. We will ad-
dress them individually using a simplified version of K̃
from Eq. (5). Before we proceed, however, let us intro-
duce the atomic spin-orbit coupling Hamiltonian:

Hi
SOC = Ti

(
L+ ⊗ s− + L− ⊗ s+

2
+ Lz ⊗ sz

)
, (6)

where L± and s± are the ladder operators for orbital
and spin angular momenta, and Lz and sz are the an-
gular momentum operators in ẑ. The index i labels the
sublattice.

The orbital angular momentum ladder operators are
well-suited for our new basis as they operate on the sec-
ond quantum number in Eq. (4) to change it by one.
Thus, the term of Hi

SOC with the ladder operators cou-
ples |1, 1〉 ⊗ | ↓〉 with |1, 0〉 ⊗ | ↑〉 and |1,−1〉 ⊗ | ↑〉
with |1, 0〉 ⊗ | ↓〉 of the same sublattice with the cou-

pling strength TSO/
√

2. The second term, one the other
hand, modifies the diagonal elements of the self-energy
for |1,±1〉 by adding (subtracting) TSO/2 if Lz and sz
point in the same (opposite) direction.

A. M Point

We start by turning our attention to the M point, lo-
cated at the corner of the Brillouin zone at kx = ky =

π/2. As was stated earlier, we can show that the Rashba-
like bands at the M point require only buckling and suf-
ficiently strong SOI. In other words, this dispersion ex-
plicitly does not require a transverse electric field.

To the leading order in k, the hopping matrix K̃ be-
comes

K̃ = 4α2∆

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0



− 2
√

2αk


0 V

(1)
spσe−iφ V

(1)
spσeiφ 0

V
(2)
spσeiφ 0 0 β∆eiφ

V
(2)
spσe−iφ 0 0 β∆e−iφ

0 −β∆e−iφ −β∆eiφ 0

 ,

(7)

where φ is the angle measured from the x̂ direction. At
k = 0, the Hamiltonian decomposes into several uncou-
pled blocks with the corresponding bases:

Hm,±
s = Sm : |0, 0〉 ⊗ |±〉 ⊗ |m〉 ,

Hmn,±
p =

Pm −
Tm

2
Tm√

2
∓4iα2∆

Tm√
2

Pm 0

±4iα2∆ 0 Pn + Tn

2

 :

|1,±1〉 ⊗ |∓〉 ⊗ |m〉
|1, 0〉 ⊗ |±〉 ⊗ |m〉
|1,∓1〉 ⊗ |∓〉 ⊗ |n〉

 ,

(8)

where m 6= n label the sublattices and the middle |±〉 ket
denotes the spin state. Using the direct sum notation, we
can write down the total Hamiltonian as H = HA,+

s ⊕
HA,−
s ⊕HB,+

s ⊕HB,−
s ⊕HAB,+

p ⊕HAB,−
p ⊕HBA,+

p ⊕HBA,−
p .

From Hs, we see that for a given m, the eigenstates
are spin-degenerate. The degeneracy becomes four-fold
if the atoms of sublattices A and B are the same, leading
to SA = SB. Equation (7) shows that at finite k there
is no coupling between the degenerate |0, 0〉 states that
is linear in momentum. This means that the bands com-
posed of s orbitals have local extrema at the M point.

Next, we turn to Hp from Eq. (8). Just as for Hs, the
bands are doubly or four-fold degenerate depending on
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whether the sublattices are composed of the same atomic
species. Without making assumptions about the lattice
composition, the general form of the degenerate states is

|Ψ±〉mn = a|1,±1〉 ⊗ |∓〉 ⊗ |m〉+ b|1, 0〉 ⊗ |±〉 ⊗ |m〉
± ic|1,∓1〉 ⊗ |∓〉 ⊗ |n〉 , (9)

with a, b, and c real. At finite k,

mn〈Ψ+|H|Ψ−〉mn = −2 sin 2θbc
(
∆ike−iφ

)
εmn , (10)

where εAB = −εBA = 1 is the two-dimensional Levi-
Civita symbol. This coupling between the degenerate
states leads to an effective Rashba-like Hamiltonian:

Hmn
eff = 2 sin 2θbc∆εmn [(k× σ) · ẑ] :

(
|Ψ+〉mn
|Ψ−〉mn

)
. (11)

It is important to keep in mind that the product bc in
the Eq. (11) depends on the identities of the m and n
sublattices and swapping them leads to a different bc.
The Hamiltonian in Eq. (11) results in a linear dispersion
which, when superimposed on the underlying curvature
of the band at the M point, leads to a Rashba-like dis-
persion. The presence of sin 2θ explicitly shows that for
a flat lattice with θ = 0, the prefactor of the Hamiltonian
in Eq. (11) goes to zero, leading to a vanishing Hamilto-
nian. The upper and lower linear branches of Eq. (11)
are given by

|U/L〉mn =
1√
2

(
1

±εmnieiφ
)
. (12)

Just as with traditional Rashba statates, the wavefunc-
tions in Eq. (12) have spins pointing perpendicular to the
momentum with the upper and lower branches manifest-
ing opposite spins. In addition, it is straightforward to
see that because of the Levi-Civita term in Eq. (11), the

spin texture of the upper and lower branches of Hmn
eff is

opposite to that of Hnm
eff . Generally, the energies of the

|U/L〉mn and |U/L〉nm are not equal, resulting in a non-
vanishing spin texture. If, however, the lattice is com-
posed of a single atomic species, the bands of Hmn

eff and
Hnm

eff become degenerate and their opposite spin orienta-
tion leads to the overall cancellation of the spin texture
while retaining the linear dispersion.

B. Γ Point

Next, we move to the Γ point at the center of the Bril-
louin zone. Unlike the M point, the Rashba-like disper-
sion appears only for heterogeneous lattices. Moreover,
because of the band composition and the required cou-
pling between different orbitals, the splitting here will
generally be weaker than at the M point.

As before, we start by obtaining the simplified effective
Hamiltonian. Here, K̃ does not undergo such a drastic
simplification as at the corner of the Brillouin zone:

K̃ = 4


Vssσ 0 0 −βV (1)

spσ

0 Vppπ + α2∆ 0 0
0 0 Vppπ + α2∆ 0

βV
(2)
spσ 0 0 Vppπ + β2∆



− 2
√

2iαk


0 V

(1)
spσeiφ −V (1)

spσe−iφ 0

−V (2)
spσe−iφ 0 0 −β∆e−iφ

V
(2)
spσeiφ 0 0 β∆eiφ

0 −β∆eiφ β∆e−iφ 0

 .

(13)

For k = 0, we get the following uncoupled Hamiltonian
blocks:

H±1 =



SA 0 0 4Vssσ 0 −4βV
(1)
spσ

0 PA − TA

2
TA√

2
0 4Vppπ + 4α2∆ 0

0 TA√
2

PA 4βV
(2)
spσ 0 4Vppπ + 4β2∆

4Vssσ 0 4βV
(2)
spσ SB 0 0

0 4Vppπ + 4α2∆ 0 0 PB − TB

2
TB√

2

−4βV
(1)
spσ 0 4Vppπ + 4β2∆ 0 TB√

2
PB


:


|0, 0〉 ⊗ |±〉 ⊗ |A〉
|1,±1〉 ⊗ |∓〉 ⊗ |A〉
|1, 0〉 ⊗ |±〉 ⊗ |A〉
|0, 0〉 ⊗ |±〉 ⊗ |B〉
|1,±1〉 ⊗ |∓〉 ⊗ |B〉
|1, 0〉 ⊗ |±〉 ⊗ |B〉

 ,

H±2 =

(
PA + TA

2 4Vppπ + 4α2∆
4Vppπ + 4α2∆ PB + TB

2

)
:

(
|1,±1〉 ⊗ |±〉 ⊗ |A〉
|1,±1〉 ⊗ |±〉 ⊗ |B〉

)
. (14)

Just as before, the blocks are doubly-degenerate. The
total Hamiltonian can be written as H = H+

1 ⊕ H
−
1 ⊕

H+
2 ⊕ H

−
2 . From Eq. (13), one can see that at finite k,

only Lz = 0 and Lz 6= 0 are coupled. This means that

the degenerate eigenstates ofH2 blocks remain uncoupled
since they are composed exclusively of Lz 6= 0 states.

The case of H2 is slightly more complicated. The gen-
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eral form of the degenerate wave functions is

|Ψ±〉 = aA|0, 0〉 ⊗ |±〉 ⊗ |A〉+ bA|1,±1〉 ⊗ |∓〉 ⊗ |A〉+
+ cA|1, 0〉 ⊗ |±〉 ⊗ |A〉+ aB|0, 0〉 ⊗ |±〉 ⊗ |B〉+
+ bB|1,±1〉 ⊗ |∓〉 ⊗ |B〉+ cB|1, 0〉 ⊗ |±〉 ⊗ |B〉 .

(15)

Similarly to the M point, here we get

〈Ψ+|H|Ψ−〉 = 4
√

2iαke−iφ×[
aAbBV

(1)
spσ + aBbAV

(2)
spσ + β∆ (cBbA − cAbB)

]
. (16)

Despite being somewhat more elaborate compared to
Eq. (10), Eq. (16) has the same form. The main differ-
ence between the two points of the Brillouin zone appears
when the atoms of both sublattices are the same. In this
case, V

(1)
spσ = V

(2)
spσ. Additionally, aA = −aB, bA = bB,

and cA = cB, leading to a vanishing matrix element in
Eq. (16). Thus, unlike the M point, where having a lat-
tice composed of a single atomic type eliminates the spin
texture while preserving the linear dispersion, Rashba-
like dispersion at the Γ point requires two different atomic
species.

IV. AB INITIO CALCULATIONS

We performed density functional theory (DFT) calcu-
lations implemented in Quantum ESPRESSO pack-
age12 to simulate heavy elements BI, Pb, and Sn in
a square lattice geometry. We employed Projector
Augmeneted-Wave (PAW) pseudopotential with Perdew-
Burke-Ernzerhof (PBE) for the exchange and correlation
functional within the generalized gradient approximation
(GGA)13. The Kohn-Sham orbitals were expanded in a
plane-wave basis with a cutoff energy of 70 Ry, and for
the charge density a cutoff of 280 Ry was used. A k-point
grid sampling grid was generated using the Monkhorst-
Pack scheme with 16×16×1 points14. For electronic band
structure calculations, the spin orbit interaction was in-
cluded using noncollinear calculations with fully relativis-
tic pseudopotentials.

Here we tabulate the optimized geometrical parame-
ters of buckled heavy metal monolayers.

TABLE I. Lattice constant a, buckling angle θ, buckling
height dz, and nearest-neighbor bond distance d.

2αa (Å) θ (◦) dz (Å) d (Å)
BiBi 3.89 30.3 3.04 3.19
PbPb 3.44 44.3 4.49 3.40
PbBi 3.63 38.4 3.84 3.26
PbSn 3.36 44.7 4.45 3.34

We Rashba-like dispersion near the M point which are
consistent with our TB prediction, shown in Fig. 2. In
addition, since the A and B sublattices are composed of

(a)

(d)(c)

(b)

FIG. 2. Top row: band structures of Pb (a) and Bi (b).
Fermi energy is set to be zero. Red lines indicate when spin-
orbit interaction is included. Bottom row: Band structures
for PbSn (c) and PbBi (d). Note the appearance of Rashba-
like splitting at the Γ point and lifted degeneracy at the M
point.

the same atomic species, there is no Rashba-like splitting
at the Γ point.

In addition, we provide band structures of two lattices
composed of two atomic species, see Fig. 2. As expected,
breaking the species symmetry lifts the band degeneracy
and introduces a quasi-Rashba dispersion at Γ.

V. DISCUSSION AND CONCLUSIONS

Having shown that buckled square lattices can give rise
to Rashba-like bands, we now explain why the buckling of
the system is a vital component. To keep the discussion
as simple as possible, we focus on the M point.

Revisiting Eq. (9), we see that |Ψ±〉mn contain the
state |1, 0〉⊗|m〉 with the spin given by the superscript of
Ψ. The fact that these two states are coupled to give rise
to the linear dispersion means that there is a finite ampli-
tude for spin-flipping processes for |1, 0〉. The mechanism
that allows the change of spin is spin-orbit interaction.
To understand why buckling is required in addition to
SOC, consider Fig. 3. This Figure shows a set of steps
describing a spin-flipping process. The path involves a
transition between in-plane and out-of-plane orbitals of
different atoms. From this illustration, it is clear why
the lattice has to be buckled: in a flat lattice, pz orbitals
decouple from px and py, making the first hop impossible.

From our cartoon illustration in Fig. 3, it might ap-
pear that we have done unnecessary work by considering
a square lattice because one only needs a zigzag 1D chain,
similar to polyacetylene. It is possible to show that 1D
chains are not sufficient by performing a full tight-binding
analysis. However, an easier way to see that 1D chain is
insufficient involves rotating it 90◦ around the longitudi-
nal axis so that the zigzags are in the xy plane. In this
orientation, pz orbitals are decoupled and, as we deter-
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z

y

x

FIG. 3. Hopping path, leading to a spin-flip for an out-of-
plane orbital. The first and third atom belong to the same
sublattice, the middle one is a part of the other sublattice.
The transition between the out-of-plane and in-plane orbitals
is only allowed if the lattice is buckled. The transitions on
the right hand side of the dashed line take place within one
eigenstate (e.g., |Ψ+〉mn). The hop across the dashed line is
the transition between the two degenerate eigenstates of the
Hamiltonian.

mined above, one needs coupling between in-plane and
out-of-plane orbitals to observe the SOI-induced band
splitting.

To summarize, we have shown that Rashba-like dis-
persion can arise in the absence of an external electric
field in buckled materials with a strong spin-orbital cou-
pling. The magnitude of the band splitting depends on
the strength of the spin-orbit interaction and can reach
the scale of electron volts for heavier atoms, making the

spin texture separation stable against thermal fluctua-
tions. This, along with the fact that the materials possess
a fairly simple structure, makes them suitable candidates
for spintronic applications.
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