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The inversion symmetry breaking at the interface between different materials generates a strong
interfacial spin-orbit coupling (ISOC) that may influence the spin and charge transport in hybrid
structures. Here we use a simple analytically solvable model to study in the ballistic approximation
various spin transport phenomena induced by ISOC in a bilayer metallic system. In this model
a non-equilibrium steady state carrying a spin current is created by applying a spin dependent
bias across the metallic junction. Physical observables are then calculated using the scattering
matrix approach. In particular we calculate the absorption of the spin current at the interface
(the interface spin-loss) and study the interface spin-to-charge conversion. The latter consists of
an in-plane interface charge current generated by the spin dependent bias applied to the junction,
which can be viewed as a spin galvanic effect mediated by ISOC. Finally we demonstrate that ISOC
leads to an interfacial spin current swapping, that is, the “primary” spin current flowing through
the spin-orbit active interface is necessarily accompanied with a “secondary” swapped spin current
flowing along the interface and polarized in the direction perpendicular to that of the “primary”
current. Using the exact spin continuity equation we relate the swapping effect to the intefacial
spin-loss, and argue that this effect is generic and independent on the ballistic approximation used
for specific calculations.

I. INTRODUCTION

During the last 15 years spin-orbit coupling (SOC)
has emerged as one of the most popular topics in
spintronics1–16. The coupling between the spin and
charge degrees of freedom permits the manipulation of
the magnetic properties through electric fields. This fact
has lead to the study of many different effects produced
by SOC in non-magnetic materials. The spin Hall ef-
fect (SHE), which is the appearance of a spin current
produced by an external electric field/current perpendic-
ular to it, has focused the attention of the field at its
beginning17–23. The Edelstein effect (EE), also known as
the current induced spin polarization, or the inverse spin
galvanic effect, consists, instead, in the appearance of a
spin polarization in response to a perpendicular charge
current, and it has been proposed as a promising way of
achieving all-electrical control of magnetic properties in
electronic circuits18,19,24–33. Their inverses, i.e. the in-
verse spin Hall (ISHE) and the inverse Edelstein effects
(IEE), also known as spin galvanic effect (SGE), have also
been studied theoretically and found experimentally34–39.
While these effects rely on the spin-to-charge conversion,
the SOC can be also responsible of spin-to-spin conver-
sion. The example is a spin swapping effect (SSE) that
consists in the appearance of a “secondary” spin current
as a response to a non-equilibrium ”primary” spin cur-
rent in such a way that the directions of flow and the spin
in the secondary current are “swapped” with respect to
those in the primary spin flow40–42. Observation of the
effect presents a difficult issue, as it requires to produce
and quantify a spin current that acts like a source. Some-
times it is complicated to distinguish between the SSE
and the so-called spin Hanle effect, where the secondary
current is produced by the combination of the external

electric field, the ferromagnetic exchange field, and the
SOC43. If we are dealing with pure non-magnetic mate-
rials this duality vanish.

In bulk materials the effects of SOC are usually weak.
However, the inversion symmetry breaking across the
interface of two different materials may produce a gi-
ant SOC44–48. The strong interfacial SOC (ISOC)
has attracted a lot of attention in the field of hy-
brid magnetic/non-magnetic structures because of its
relevance for many spintronics effects like spin-orbit
torques49–51.

When a spin current passes through an interface with
ISOC a part of this spin current is absorbed. This
effect is called spin loss and it is crucial to take it
into account in order to interpret and quantify spin
pumping experiments52,53. The effect of ISOC in non-
magnetic/non-magnetic junctions has been actively stud-
ied in the last few years. The efficiency of the inter-
facial spin-to-charge converting has been demonstrated
in various, metal/metal,39,54 metal/insulator55,56, and in
topological insulator interface57 experiments, using spin
pumping and spin lateral valves techniques. Theoret-
ically, metal/insulator transport phenomena induced by
ISOC in non-magnetic materials has been studied in thin
metal films58,59 and semi-infinite junction geometries60.
Most of the above cited works concern with diffusive
systems, but the ballistic spin transport through het-
erostructures with SOC has also been studied for various
geometries61,62

In lateral spin valves experiments a non-equilibrium
spin distribution is generated by passing a current
through a ferromagnet54,63–65. This spin distribution is
transported in a material with low SOC, such as Cu or Al,
to a material with a strong SOC at the interface where
a part of the incoming spin current is absorbed and/or
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converted to a charge current parallel to the interface.
In general one can suggest at least three different mecha-
nisms for the generation of the charge current in this kind
of experimental setup. These are (i) the ISHE in the bulk
of materials forming the junction, (ii) the IEE in the in-
terface/surface Rashba-splitted band, and (iii) the spin-
to-charge conversion due to the interference of the spinor
Bloch states scattered off the interface with strong ISOC.
The first two mechanisms as well as their relative contri-
bution to the generation of the charge current have been
extensively discussed in the literature39,54–56,63–65. To
the best of our knowledge the last, “interference channel”
of the spin-to-charge conversion have not been studied in
the context of the spin transport through a metal/metal
interface. However, by analogy with the current induced
surface spin accumulation studied in Ref. 60 one can ex-
pect that this channel may give a contribution compara-
ble to that of the IEE in the interface band. In fact, it has
been shown in60 that at lest for some materials the con-
tribution of the bulk scattering states to the surface spin
accumulation dominates over the contribution produced
via the EE in the Rashba-splitted surface band. Investi-
gation of the spin-dependent interference mechanism of
the interface spin-to-charge and spin-to-spin conversion
is the main subject of the present work.

Specifically in this paper we study spin transport
across a planar metal/metal interface supporting ISOC,
within a scattering matrix approach, in the ballistic limit
. To make the physics as clear as possible we exclude the
bulk ISHE and a possible presence of interface bands by
modeling the junction as two semi-infinite Fermi gases
with a potential step due to different work functions.
The SOC appears as the derivative the potential, which
generates a Rashba-like SOC term localized at the inter-
face. Within the ballistic approximation we adopt the
Landauer approach and generate a pure spin current by
applying a spin bias that is modeled as difference of spin-
dependent chemical potentials across the interface. Us-
ing this model we focus on three different phenomena,
the spin loss at the interface, the conversion of the inci-
dent spin current to the interface charge current, and the
interface spin swapping effect, i.e., the spin-to-spin con-
version mediated by the ISOC. In a forthcoming paper66

we study these interface at the quantitative level in a re-
alistic tungsten-aluminium junction using first principle,
DFT-based transport theory methods.

This paper is organized as follows. In Sec. II we intro-
duce and discuss the model. In Sec. III we study the spin
loss effect, that is, the absorption of the spin current at
the interface produced by the ISOC. In Sec. IV we show
that the spin-dependent scattering at the interface with
ISOC leads to the spin-to-charge conversion. In partic-
ular we calculate the interfacial charge current that is
produced by the spin bias (difference of spin-dependent
chemical potentials) applied to the junction. This effect
can be viewed as an interfacial analog of the ISHE, which
originates solely from the scattering states. In Sec. V we
first present general arguments based on the spin con-

FIG. 1. Scheme of the potential of the metal-metal junction.
µ± are the chemical potentials for ±spins species in the x-axis

tinuity equation, which show that the spin loss at the
interface implies the existence of the intefacial spin cur-
rent swapping. Then we explicitly calculate in our model
the spin-to-spin conversion due to ISOC. Sec. VI presents
our summary and conclusions.

II. THE MODEL

Our aim is to describe a ballistic spin transport across
the interface between two different metals. To simplify
calculations and emphasize the physical picture we con-
sider the simplest possible “minimal” model that cap-
tures the most important physical aspects of the effects
of interest. We model our system as a free electron gas
(jellium model) in the presence of a potential forming a
step at the interface located at z = 0 (see Fig. 1). The
potential step represents different work functions of the
two metals. The system is assumed to be translation in-
variant in the x-y plane. The presence of the interface
(the potential step) breaks the inversion symmetry and
generates a local SOC term which is responsible for the
transport phenomena that we will study later on. The
model is described by the following Hamiltonian

H =
p2

2m
− ∂2z

2m
+ V (z) + γV ′(z)(ẑ× p) · σ, (1)

where p is the two-dimensional momentum in the x-y
plane, V (z) the potential step, σ is a vector of Pauli
matrices, and γ is a material dependent parameter which
describes the strength of SOC at the interface. The first
two terms of the Hamiltonian describe the kinetic energy
of the electrons, the third one represents the potential
step due to the different work functions, and the fourth
term localized at the interface corresponds to SOC due
to the gradient of this potential barrier, the ISOC.

Because of the translation invariance in the x-y plane
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the eigenfunctions read

ψp,k(r, z) = eip·ρϕk(z), (2)

where ρ = (x, y) is the in-plane coordinate, and ϕk(z)
are spinor scattering states in z-direction which are la-
beled by the wave vector k of the incoming wave. In
the complete set of the scattering states we distinguish
two orthogonal subsets of eigenfunctions: (i) the states
−→ϕ incoming from the left, and (ii) the states←−ϕ incoming
from the right. Away from the interface the wave func-
tions corresponding to the energy ε = (p2 +k2)/2m have
the following form

−→ϕ kσ(z) =

{
(eikz + r̂ke

−ikz)χσ
t̂ke

ik′zχσ

if z < 0
if z > 0

←−ϕ kσ(z) =

{
(e−ik

′z + r̂′ke
ik′z)χσ

t̂′ke
−ikzχσ

if z > 0
if z < 0

(3)

where k′ =
√
k2 − 2mV , r̂k and r̂′k are the 2 × 2 matrix

reflexion coefficients, t̂k and t̂′k are the matrix transmis-
sion coefficients, and the spinor factors χσ with σ = ±
are the basis vectors spanning the spinor subspace. In
the following, for definiteness, we choose χσ to be the

eigenfunctions of σx, which read χ†± = (1,±1)/
√

2. Ap-
parently the expressions of Eq. (3) are only valid when
k2 > 2mV , that is, when the energy of the scattering
states is larger then the height of the interface potential
barrier. It can be easily proven that the electrons with
k2 < 2mV do not contribute to the transport effects we
are considering in this work.

In general, the matrix scattering coefficients can be
represented as follows

r̂k = r0σ0 + r · σσσ, r̂′k = r′0σ0 + r′ · σσσ, (4)

t̂k = t0σ0 + t · σσσ, t̂′k = t′0σ0 + t′ · σσσ, (5)

where, σ0 is a 2 × 2 unit matrix, and vectors r, r′, t,
and t′ describe the spin dependent (spin flip) part of the
scattering at the interface. A nontrivial spin dependent
part of the scattering coefficients, appearing due to the
ISOC, is the physical origin of the spin-to-charge and
spin-to-spin conversion effects that will be considered in
the next sections.

It is convenient to define the following dimensionless
parameters, ν =

√
2mV /kF and s = γk2F , which, re-

spectively, quantify the difference of the work functions,
and the strength of ISOC in the units of Fermi energy
EF = k2F /2m of the left metal. In the physical situation
we are describing here the SOC and the potential barrier
are smaller than EF which implies ν, s < 1.

In order to have closed analytic expressions for the
scattering coefficients in Eqs. (3)-(5) we will choose the
potential to be V (z) = VΘ(z), which implies V ′(z) =
V δ(z). By solving explicitly the scattering problem for

the Hamiltonian of Eq. (1) with V (z) = VΘ(z) we find

t0 =
2k

k + k′
1

1 + (ν2sp)2

(k+k′)2

, t′0 =
2k′

k + k′
1

1 + (ν2sp)2

(k+k′)2

,

r0 = −1 + t0 =
(k − k′)− (ν2sp)2

(k+k′)

k + k′
1

1 + (ν2sp)2

(k+k′)2

,

r′0 = −1 + t′0 =
(k′ − k)− (ν2sp)2

(k+k′)

k + k′
1

1 + (ν2sp)2

(k+k′)2

,

t = r = i(ẑ× p)
sν2

k + k′
t0

t′ = r′ = i(ẑ× p)
sν2

k + k′
t′0. (6)

The scattering coefficients have some general properties
which will be useful in the next sections:

r∗0r + r∗r0 = r
′∗
0 r′ + r

′∗r′0 = 0 (7)

t∗0t + t∗t0 = t
′∗
0 t′ + t

′∗t′0 = 0 (8)

In addition the charge current conservation implies the
following identity

k

m
(1− r∗0r0 − r∗r) =

k′

m
(t∗0t0 + t∗t) (9)

Equations (3)-(6) define the complete and orthonormal
set of scattering states for our model. In the next sections
we will use these scattering states to study a steady state
ballistic spin transport across the interface with ISOC. To
create a nonequilibrium density matrix supporting steady
spin and/or charge flows we populate the states −→ϕ σ in-
coming from the left metal with the chemical potential
µLσ, and the states ←−ϕ σ incoming from the right metal
with the chemical potential µRσ 6= µLσ. In this paper
we are interested in the situation of a pure spin current
which corresponds to

∑
σ µRσ =

∑
σ µLσ.

III. SPIN LOSS AT THE INTERFACE

In this Section we calculate the spin loss which oc-
curs when a spin current passes through a spin-orbit
active interface. We will consider the case shown in
Fig. 1, which corresponds to different spin-plus and spin-
minus chemical potentials (x-polarized spin bias) in the
left metal (µL+ 6= µL− with µL+ + µL− = 2EF ), and
µR+ = µR− = EF in the right metal. As we will see in
the following, the effect of different spin-chemical poten-
tial in the right metal can be calculated straightforwardly
in the same way. The total spin current flowing along the
z-direction and polarized along x-axis, Jxz , is given by the
following formula

Jxz =
∑
p,k,σ

fF (εk,p − µLσ) jxσzL + fF (εk,p − µRσ) jxσzR,

(10)
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where fF (E) is the Fermi distribution function, εk,p =
(k2 + p2)/2m, and

jx,σz,L(z) = − i

4m

(−→ϕ †σ(z)σx∂z
−→ϕ σ(z)− (∂z

−→ϕ †σ(z))σx
−→ϕ σ(z)

)
jx,σz,R(z) = − i

4m

(←−ϕ †σ(z)σx∂z
←−ϕ σ(z)− (∂z

←−ϕ †σ(z))σx
←−ϕ σ(z)

)
are the spectral spin currents corresponding to the states
incoming from the left (L) and from the right (R), respec-
tively. Using the wave functions of Eq. (3) we find the
spectral spin current in the left/right half space (z ≶ 0):

jxσz,L(z < 0) =
k

4m

[
χ†σσxχσ − χ†σ r̂†σxr̂χσ

]
= σ

k

2m

(
1− |r0|2 − |rx|2 + |ry|2

)
(11)

jxσz,L(z > 0) = σ
k′

2m

(
|t0|2 + |tx|2 − |ty|2

)
, (12)

where we used the identities Eqs.(7,8). It is easy to see
that the R components of the currents (those correspond-
ing to the states incoming from the right) are obtained
by interchanging the half spaces and replacing k → k′,
k′ → k, and r̂, t̂→ r̂′, t̂′.

It is worth noting that the spin currents for opposite
spin projections are opposite, jx+z = −jx−z . Using this
fact and setting µR+ = µR− we rewrite Eq.(10) in the
following form

Jxz =
∑
p,k,σ

[fF (εk,p − µL+)− fF (εk,p − µL−)] jx+zL . (13)

In the following we consider the zero temperature limit,
when the Fermi function is fF (E) = θ(−E), and assume
that the spin bias µL+−µL− = ∆µxL is much smaller than
the Fermi energy, ∆µxL � EF . Under these assumptions
we can expand the difference of the distribution functions
in Eq.(13) to the leading order in ∆µxL and simplify the
expression for the total current as follows

Jxz =
∑
p,k

jx+zL δ(εp,k − EF )∆µxL (14)

which reduces to the following explicit form

Jxz (z > 0) =
∑
p,k

k′

2m
|t0|2δ(εp,k − EF )∆µxL (15)

Jxz (z < 0) =
∑
p,k

k

2m
(1− |r0|2)δ(εp,k − EF )∆µxL,

Because of ISOC the spin current is not conserved
across the interface. The spin loss which occurs at the
interface is defined as a discontinuity of the spin current,

Ls = Jxz (z < 0)− Jxz (z > 0), (16)

which using the condition of Eq.(9) and Eq. (6) can be

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

FIG. 2. The spin loss Ls in units of the incoming spin current
Jxz (z < 0), as a function of ν. As we may expect physically it
vanishes for ν = 0, 1.

represented as

Ls =
∑
p,k

(
k

2m
r∗r +

k′

2m
t∗t

)
δ(εp,k − EF )∆µxL

=
s2ν4

2m

∑
p,k

p2|t0|2

k + k′
δ(εp,k − EF )∆µxL. (17)

Apparently the leading contribution to Ls is of the second
order in the dimensionless spin-orbit coupling strength s.
This agrees with the spin-loss calculated using the Kubo
formula to explain spin-pumping experiments in the pres-
ence of spin-orbit active interfaces53. To demonstrate the
dependence of the spin-loss Eq.(17) on the difference V
of the work functions we neglect the modification of the
transmission coefficient t0 by SOC because for s < 1 the
effects beyond s2 are practically irrelevant. In Fig.(2) we
show the ν-dependence of Ls in units of Jzy s

2. As we
can see the spin-loss vanishes for ν = 0 because there is
no SOC in the absence of the barrier. It also vanishes
at ν = 1 as at this value the barrier the right half space
becomes insulating implying vanishing spin current and
no possible spin loss. The spin-loss acquires a maximum
near this value due to its ν4 dependence.

IV. SPIN-TO-CHARGE CONVERSION

In this Section we will calculate the in-plane interface
charge current generated by the spin bias – difference of
spin chemical potentials (x-polarized) across the inter-
face. We will start with the same configuration of the
spin chemical potentials as considered in the previous
Section, i.e. µL+ 6= µL− and µR+ = µR−. The total
charge current flowing along the y-direction is described
by the following formula.

Jy =
∑
p,k,σ

fF (εk,p − µLσ) jσy,L + fF (εk,p − µRσ) jσyR,
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with the spectral charge currents

jσy,L(z) =− ie

2m

(−→ϕ †σ(z)∂y
−→ϕ σ(z)− (∂y

−→ϕ †σ(z))−→ϕ σ(z)
)

− e

m

(−→ϕ †σ(z)Γ̂y
−→ϕ σ(z)

)
(18)

jσy,R(z) =− ie

2m

(←−ϕ †σ(z)∂y
←−ϕ σ(z)− (∂y

←−ϕ †σ(z))←−ϕ σ(z)
)

− e

m

(←−ϕ †σ(z)Γ̂y
←−ϕ σ(z)

)
, (19)

where Γ̂y = γmV ′(z)σx is the anomalous velocity opera-
tor that occurs due to the presence of the ISOC. Accord-
ingly in the currents we will distinguish the ”regular” or
”normal” contribution labeled by the superscript N , and
the ”anomalous” one coming from the anomalous veloc-
ity, which we will label by the superscript A.

The normal contribution to the spectral current reads

jNσy,L(z < 0) =
epy
m

[
1− χ†σ(r̂†e2ikz + r̂e−2ikz + r̂†r̂)χσ

]
,

jNσy,L(z > 0) =
epy
m
χ†σ t̂
†t̂χσ (20)

and similarly for jNσy,R(z). Because of the integration over

the directions of p in Eq.(18) only even in py or px part of
the spectral current will contribute to the physical charge
current. According to Eqs.(7) the nonvanishing contri-
bution may come only from the terms which are odd in
rx = tx ∼ py. Therefore the relevant part of the normal
spectral current takes the form

jNσy,L(z < 0) = −2σi
e

m
pyrx sin(2kz) (21)

jNσy,L(z > 0) = 0. (22)

As we may see jNσy,L/R is proportional to σ which allows

us to rewrite Eq.(18) as follows

JNy (z) =
∑
p,k

jN+
y,L (z)δ(εp,k − EF )∆µxL, (23)

where we have used the fact that µR+ = µR− and that
µL+−µL− = ∆µxL � EF . Explicitly this equation reads

JNy (z < 0) = −
∑
p,k

2i
e

m
pyrx sin(2kz)δ(εp,k − EF )∆µxL

= − ek
2
F s

(2π)2
g(ν, 2kF z)∆µ

x
L (24)

JNy (z > 0) = 0. (25)

In Fig.(3) we plot the integral g(ν, 2kF z) at different
values of ν as a function of the distance z from the inter-
face. The charge current is nonzero only in the left metal.
It presents clear 1D-Friedel oscillations and a power law
decay away from the interface. The normal total contri-
bution to the interface charge current is

INy =

∫
dzJNy (z)

=
∑
p,k

i
e

km
pyrxδ(εp,k − EF )∆µxL. (26)

ν=0.2

ν=0.3

ν=0.5

ν=0.7

5 10 15 20 25 30

-0.04
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0.06

FIG. 3. The function g as a function of ν and z in units of
2k−1
F . The induced charge current is concentrated near the

interface and shows 1D-Friedel oscillations.

Let us now calculate the anomalous contribution to
the interface charge current. The corresponding spectral
current density reads

jAσy,L = −eσγ
(←−ϕ †σ(z)V ′(z)←−ϕ σ(z)

)
(27)

The total anomalous current is given by the following
expression

IAy = −eγ
∑
p,k

∫
dz←−ϕ †(z)V ′(z)←−ϕ (z)δ(εp,k − EF )∆µxL

(28)
To obtain the leading in SOC contribution to the anoma-
lous current it is sufficient to neglects the SOC in the
scattering states entering the right hand side of Eq. (28).
At this point we recall the static force balance equation
which holds true for any stationary eigenstate the Hamil-
tonian (1) to the zeroth order in SOC

F kinz + ϕ†
∂V

∂z
ϕ = 0, (29)

where the kinetic stress stress force is defined as follows
(see, for example, Ref. 67)

F kinz =
1

m

∂

∂z

[
∂ϕ†

∂z

∂ϕ

∂z
− 1

4

∂2

∂z2
(ϕ†ϕ)

]
. (30)

The force balance identity implies for the z-integral in
Eq. (28)∫

dz←−ϕ †(z)V ′(z)←−ϕ (z) = −
∫
dzF kinz

= − 1

2m
(k′2 − k2)t†0t0 = V t†0t0 (31)

This equation relates the anomalous current to the differ-
ence of “spectral pressures” at ±∞, which only depends
on the height V of the potential step, but not of its z-
dependence. Using this relation we reduce Eq.(28) to the
following form

IAy = −esν2
∑
p,k

t∗0t0
2m

δ(εp,k − EF )∆µxL. (32)
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FIG. 4. The function h(ν) which determines the total in-

terface charge current in units of ekF s
(2π)2

. The normal term

dominates for small values of ν, implying positive h, while at
bigger values of ν the anomalous term wins giving rise to the
sign change.

Now we are able to compare the anomalous and the
normal contributions to the current. Both terms have
different signs and a different ν dependence. The total
charge current flowing along the spin-orbit active inter-
face reads

Iy = IAy + INy =
ekF s

(2π)2
h(ν)∆µxL. (33)

The two terms in the current have a different physical
origin. The normal contribution to the current originates
from the interference of the incoming wave and the wave
reflected (with a spin-flip) by the spin-dependent inter-
face. The anomalous contribution has its origin in the
momentum dependence of the SOC term of the Hamilto-
nian. This term generates the anomalous velocity which
is completely localized at the interface.

The different physical nature of the two contributions
explains their different z- and ν-dependence. As we can
see in Fig.(4) the difference in the ν-dependence of the
two contributions makes one term dominate against the
other, giving rise to a sign change of the current. The
anomalous term depends more strongly on the poten-
tial V because it scales with t20, while the interference
contribution only scales with t0. For this reasons if the
barrier is small, the interference term dominates against
the one localized at the interface. For larger potentials
the anomalous contribution becomes dominant. As in
the case of the spin loss either contribution vanishes at
ν = 0, 1 due to the absence of SOC or because of the
insulating nature of the right half space.

We have described the interface charge current pro-
duced by imposing the difference of spin-chemical poten-
tials ∆µxL on the left side of the junction, while keep-
ing µR+ = µR− on the right hand side. Obviously the
reversed situation with ∆µxR = µR+ − µR− 6= 0 and
µL+ = µL− can be described in a similar way. Following
the same procedure we obtain the following results for

the normal contribution to the current density

JNy (z > 0) = −
∑
p,k

2i
e

m
pyr
′
x sin(2k′z)

× δ(εp,k − EF )∆µxR (34)

JNy (z < 0) = 0, (35)

As in the previous case, it shows 1D-Friedel oscillations
but now in the z > 0 half space, while vanishing at z < 0.
The total normal part of the current is

INy =

∫
dzJNx,y(z)

=
∑
p,k

i
e

k′m
pyr
′
xδ(εp,k − EF )∆µxR.

The anomalous contribution is given by the expression
that is similar to Eq.(32)

IAy = −esν2
∑
p,k

t
′∗
0 t
′
0

2m
δ(εp,k − EF )∆µxR. (36)

V. THE SPIN SWAPPING EFFECT

Any linear in momentum SOC can be conveniently de-
scribed in terms of an effective SU(2) gauge field68,69

Ai = Aai σa/2. In our system defined by the Hamilto-
nian of Eq.(1) the only nonzero components of the SU(2)
potential are Ayx = −Axy = −γ2mV δ(z). The gauge field
interpretation of SOC naturally leads to a covariant con-
servation law for the spin density, which in a steady state
requires a vanishing covariant divergence of the spin cur-
rent Jk = Jakσ

a

∂kJk − i[Ak,Jk] = 0. (37)

Here the commutator part of the covariant divergence
describes the spin torque induced by the SOC.

In the present case the above covariant continuity
equation takes the form

∂zJz = i

[
Ayx

σy

2
,Jx

]
− i
[
Axy

σx

2
,Jy

]
, (38)

which after multiplying by σx and taking the trace gives

∂zJ
x
z = −γ2mV δ(z)

(
Jzx + Jzy

)
. (39)

Integration of this equation across the interface leads the
following relation for the spin-loss of Eq. (16)

Ls = sν2
(
Jzx(0) + Jzy (0)

)
. (40)

It is worth noting that this general identity does not de-
pend on the validity of the ballistic approximation used
in this paper.

The relation of Eq. (40) shows that in the presence
of the spin-loss generated by ISOC there must exist a
nonzero secondary spin current with the spin component
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perpendicular to that lost at the interface. The symme-
try of the problem implies that the spin polarization of
the secondary current must be along ẑ. The reason is
that the SOC term Eq.(1) contains only σx,y, so that the
primary spin σx can only rotate about the σy internal
magnetic field, creating spins polarized in the ẑ direc-
tion. Therefore only Jzx is nonzero in the right hand side
of Eq. (40) meaning that the space and spin indexes of the
secondary current are swapped with respect to those of
the incident spin current. A similar “spin current swap-
ping” effect in which a primary spin current J i,Pa ≡ Jxz
generates a secondary spin current Ja,SCSi ≡ Jzi is known
in the bulk systems with extrinsic SOC40. However we
are not aware of any discussion of the spin swapping in-
duced by the ISOC.

To calculate swapped current in the ballistic approxi-
mation we follow the procedure used in the previous sec-
tions. For the spectral ”secondary“ spin current we find

jzσi,L(z > 0) =
1

4m
piχ
†
σ

[(
t̂†e−ikz

)
σz
(
eikz t̂

)]
χσ

= σ
ipi
m

(
t∗yt0

)
(41)

jzσi,L(z < 0) = σ
ipi
m

(
r∗yr0 + r∗ycos(2kz)

)
. (42)

Now it is easy to see that because of the symmetries of
ty and ry only the terms with i = x will give a non-zero
contribution after the integration over p̂. Therefore we
conclude that Jzy = 0 and only Jzx can be nonzero.

Following the procedure used in previous sections we
obtain the following result for the secondary spin current
in the right half space

Jzx(z > 0) = sν2
∑
p,k

p2y
m(k + k′)

t∗0t0δ(εp,k − EF )∆µxL.

(43)
Using Eq.(17) we may rewrite this expression as follows

Jzx(z > 0) =
1

ν2s
Ls, (44)

which at z → 0 reduces the general identity of Eq. (40).
In the left metal the secondary spin current Jzx(z < 0)
contains two parts, a contribution showing 1D-Friedel os-
cillations, and a constant one.

Jzx(z < 0) = −
∑
p,k

ipx
m

(
r∗yr0 + r∗y cos(2kz)

)
×δ(εp,k − EF )∆µxL (45)

One can easily check that the current Jzx(z) defined by
the above two expressions is continuous at the interface,
Jzx(0+) = Jzx(0−). The oscillatory part of Jzx(z < 0) van-
ishes upon the z-integration (due to the cos(2kz) depen-
dence instead of sin(2kz) in the charge current). There-
fore only the constant part contributes to the net sec-
ondary spin current, which take the following form

Jz<x = sν2
∑
p,k

p2y
m(k + k′)

t∗0r0δ(εp,k − EF )∆µxL. (46)

Thus our analysis demonstrates the existence of the
global spin current swapping induced by the ISOC. The
spin bias across the spin-orbit active interface not only
generates a ”trivial“ incident spin current polarized in the
bias direction, but also produces the ”swapped“ global
spin current that flows along the interface and carries a
spin perpendicular to polarization of the spin bias.

VI. CONCLUSIONS

We have developed a simple ballistic model which de-
scribes the coupled spin and charge transport in the pres-
ence of the spin-orbit coupling generated at the interface
between two different metals. This model accounts for
different work functions parametrized by V and the ISOC
controlled by the material-dependent parameter γ. We
have applied the concept of a spin-dependent chemical
potential at both sides of the interface in order to cre-
ate a non-equilibrium spin density. This model explains
qualitatively a number of spin transport phenomena oc-
curring in lateral spin valve geometry and induced by
ISOC. In particular we have derived an analytical expres-
sion for this spin-loss which describes the reduction of the
spin current when it crosses the interface with SOC. We
have also calculated the lateral interface charge current
created by the transverse spin bias applied across the
junction. Our analysis demonstrates a highly nonmono-
tonic dependence of this charge current on the differ-
ence of work functions. The origin of this dependence is
a competition of two contribution to the interface cur-
rent. The first contribution comes from the interfer-
ence between the incoming and the spin-dependent scat-
tered wave functions. The other one has its origin in the
anomalous velocity related to the momentum dependence
of the ISOC. For this reason the first term penetrates the
metal and decays a 1D-Friedel oscillations while the other
is completely localized at the interface. Both terms have
different signs and the predominance of one of them de-
pends on the value of the potential V .

Probably the most interesting result of this work is
a prediction of the spin current swapping at the inter-
face. We have shown that the bulk lateral ”swapped“
spin current is generated by the spin dependent bias ap-
plied across the junction. We have seen that this cur-
rent is intimately related to the spin loss at the interface.
While our specific calculations have been done in the bal-
listic limit, we believe that the spin current swapping in-
duced by ISOC is a general effect, which can be observed
experimentally.
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