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We consider the simplest non-integrable model of multistate Landau-Zener transition. In this
model two pairs of levels in two tunnel coupled quantum dots are swept passed each other by the

gate voltage.

Although this 2 x 2 model is non-integrable, it can be solved analytically in the

limit when the inter-level energy distance is much smaller than their tunnel splitting. The result is
contrasted to the similar 2 x 1 model, in which one of the dots contains only one level. The latter
model does not allow interference of the virtual transition amplitudes, and it is exactly solvable.
In 2 x 1 model, the probability for a particle, residing at time ¢ — —oo in one dot, to remain
in the same dot at ¢ — oo falls off exponentially with tunnel coupling. By contrast, in 2 x 2
model, this probability grows rapidly with tunnel coupling. The physical origin of this growth is the
formation of the tunneling-induced collective states in the system of two dots. This can be viewed

as manifestation of the Dicke effect.

PACS numbers:

I. INTRODUCTION

Motivations for the study of the transition probabilities
between multiple intersecting levels (multistate Landau-
Zener transitions) were different over different periods
of time. For example, the paper Ref. [I, in which the
scattering matrix was found for a particular variant of
crossing of the large number of levels, was motivated by
the research?® on inelastic atomic collisions. Multilevel
description of the electron transfer in the course of the
collision is required when the crossing levels are dense, so
that the tunnel splitting exceeds the level spacing. In this
situation, the conventional Landau-Zener (LZ) theoryS
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FIG. 1: (Color online) Two elementary multistate LZ models
are illustrated; (a) 2x 1 model of tunnel-coupled dots: a single
level in the right dot is swept by two levels in the left dot with
relative velocity, v; (b) 2 x 2 model: the energy spacing, 24,
between the levels in both dots is the same. Each level in one
dot is coupled with both levels in the other dot with coupling
constant, J.

FIG. 2: (Color online) Different paths of the multilevel LZ
transition are illustrated for 2 x 1 (a) and 2 x 2 (b) models.
Red and blue arrows illustrate the two interfering paths.

developed for a single crossing is inapplicable.

Later, the physics of multiple level crossings had
emerged in quantum optics'’, in particular, in the prob-
lem of two optical transitions, having a common level, in
an atom driven by two laser beams. Theoretical works
of this period™20 had broadened the class of exactly
solvable models. Also, for general mustistate models, the
exact results for certain elements of the scattering matrix
had been established.

Finally, the motivation for the very recent studies of
the multilevel LZ transitions??3% was the ongoing ex-
perimental research on qubits manipulation by time-
dependent fields in relation to the information processing.
In these studies?3% 4 number of new exactly solvable
models were identified, although the conclusion about
their solvability was drawn on the basis of numerics.

The simplification, which allowed the authors of Ref. 1]
to find the scattering matrix exactly, stemmed from the
assumption about the time evolution of the energy lev-
els. Namely, it was assumed that N — 1 out of N levels
evolved with the same velocity, and only one level evolved
with different velocity. Thus, the number of crossings was
N —1. The behavior of the amplitudes to stay on a given
level at t — —oo, i.e. far away from all crossings, can



be found semiclassically. The contour integral method
employed in Ref. [I] allows to establish the relations be-
tween these amplitudes at ¢ - —oco and t — oco. With
N — 1 crossings, these conditions are sufficient to fix all

% (N 2 + 3N — 2) nonzero transition probabilities®!. The

above approach, along with others, was employed in later
theoretical works. In particular, in Refs. [15 and 32l the
transition probabilities were derived upon summation of
the perturbation expansion in powers of the inter-level
coupling strengths.

The fact that a given multistate LZ problem with fi-
nite number of intersecting levels can be solved exactly
implies that the elements of scattering matrix can be
constructed from the partial LZ probabilities, P, for
individual pairs of intersecting levels. In other words,
the time intervals between the successive intersections
do not enter in the result even when these intervals are
much smaller than the characteristic time of LZ transi-
tion. Yet another way to express this remarkable fact is
that the independent crossing approximation, valid for
small tunneling gaps, remains applicable even when the
gaps are much bigger than the energy separation of the
neighboring crossing points.

Note that, for sufficiently slow drive velocities or for
big enough LZ gaps, when the individual P, ;-values ap-
proach 1, the “survival” probability for a particle to stay
on the initial level is exponentially small. This imme-
diately suggests that, for exactly solvable (integrable)
models, the survival probabilities fall off exponentially
with increasing the gaps. Then the question arises as to
whether the above conclusion is valid for non-integrable
models. This question is addressed in the present paper.
We focus on a simple example of the electron transfer be-
tween two multilevel quantum dots. Our main finding is
that the survival probability can, actually, increase with
increasing the tunneling gap. We relate this finding to the
Dicke effect33. The reason why the non-integrable model
can be solved analytically is that, for a very slow drive,
the semiclassical approach for the time-dependent ampli-
tudes applies even in the vicinity of the LZ transition34%32,
By semiclassical approach we mean the solution of the
Shrodinger equation for the amplitudes in the form of a
slow prefactors multiplied by the fast phase factor, com-
mon for all amplitudes.

II. THE MODEL

We start by illustrating the difference between inte-
grable and non-integrable models using the simplest ex-
ample of two quantum dots depicted in Fig. [l In Fig.
a) there are two levels in the left dot separated by 2A
and one level in the right dot. The left-dot levels are
driven, say, by the gate voltage, with velocity v/2, while
the right-dot level is driven in the opposite direction with
the same velocity (if the velocities are different, v is mea-
sured from the average velocity). Both left-dot levels

are coupled to the right-dot level by the same coupling
constant, J. The matrix form of the Hamiltonian is the
following:

—A-% 0 J
Azt g, (1)

J J oY

The evolution of the amplitudes, a1 (t), az(t), and by (¢),
see Fig. [lh, is governed by the Schrodinger equation

a1 . ax
) C:LQ = HQ’ 1|laz2]. (2)
by b1

To find the semiclassical eigenvalues we assume that all
the amplitudes, a1 (t), a2(t), b1 (t), are proportional to the
fast phase factor, exp {z fct dt’ A(t' )}, while the prefac-
tors are the slow functions of time. Neglecting the time

derivatives of these prefactors, we arrive to the following
cubic equation for A(t)

A +oth? — (A2 + 0% + 2J%) A
= vt (A% +0*t* +2J%). (3)

It is easy to see that the behavior of A(t) (in the units of
J) as a function of the dimensionless time, vt/J, is gov-
erned by a single dimensionless parameter A/J. Upon
changing this parameter, the semiclassical levels evolve
as shown in Fig. [[Il For small gap, J < A, the levels
exhibit two LZ transitions. At critical A = 21/2J the
slope of the middle level changes the sign. Finally, for
large coupling, J > A, the asymptotic solutions of Eq.

are

Amot, Ar (022 4272)"% (4)
Eq. implies that in the limit, A <« J, the middle
semiclassical level decouples from the upper and lower
levels, which are given by the conventional LZ expressions
with J replaced by 2'/2.J.

The power of the integrability can be now illustrated
as follows. Suppose that at ¢ = —oo the electron is in the
right dot. For large A, in order to remain in the right
dot at t — oo, it should survive two LZ transitions. Then
the survival probability of each transition is given by

2
QLZ‘ . = exp (—27TJ> . (5)

v

In the opposite limit of strong coupling the electron un-
dergoes a single LZ transition. Integrability suggests that
the survival probability in this limit is given by the same
formula as for the weak coupling, i.e. one should have

QLZ'A<<J - (QLZ‘A>>J)2. (6)
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FIG. 3: (Color online) The evolution of the semiclassical lev-
els in 2 x 1 model (a), (b) and in 2 x 2 model (c), (d) upon
increasing the tunnel coupling. In 2 x 1 model the two indi-
vidual LZ transitions evolve into a single transition at big J,
while the middle branch (red) gets decoupled. In 2 x 2 model
the four individual LZ transitions evolve into the fast transi-
tion (red) and slow transition (blue). The levels are plotted
in the units of J from the solutions of Egs. (3)(a, b) and
(14)(c, d) for parameters A/J = 10 (a, ¢) and A/J = 0.5 (b,
d). Vertical scale is set by the gap at ¢t = 0: 2/2+4 A%/J? in

(a, b), and 2(1 + /1 + A2/J?) in (c, d).
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Indeed, substituting 2'/2.J, into Eq. 1) we realize that
the relation Eq. @ holds.

We now turn to non-integrable four-level model with
the Hamiltonian

~A-% 0 J J
A 0 A-2 J
Hyo = (7)
J J A+ 0
J J 0 A+Y

In this model, there are two levels in the right dot, which
are also split by 2A, see Fig. [[b. Instead of the am-
plitudes a1, as, b1, bs, it is convenient to introduce the
combinations

Al =ay + ao, As = ay — ao, (8)
By = by + bo,

By = by — bo, 9)

The time evolution of Ay, Ay, By, B is governed by the

system
.t
iAy — %Ag —AA, =0, (10)
L vt
ZBQ + EBQ - ABl = O, (11)
.t
iAr — %Al —2JB) = Ady, (12)
.ot
iBy + %Bl —2JA; = AB,. (13)

The equation for the semiclassical levels similar to Eq.

takes the form
2
vt
A+ =] —A?

(-3 -
2

=4J?

The solutions of this equation are given by

1/2

2
t
AN2=272+ (Z) $A2+2
J+<2 + .

2
JA+ JPAZ+ A2 (”t> ]

(15)
Our main point is that, in the limit of strong coupling,
J > A, the solutions Eq. can be classified into
“slow” and “fast”, namely

4 2
o (wf)] | )
42 2
We see that, while the characteristic time for the slow
solution is the conventional LZ time, t; ~ J/v, the char-
acteristic time for the fast solutions is t; ~ A2/ Jv, i.e.
it is much shorter (see also Fig. [[d). This is in strik-
ing contrast with the integrable model. Unlike integrable
model, the splitting enters the result even if this splitting
is very small. Such a sensitivity to the times of the level
crossings can be viewed as an indication that it is inter-
ference of the scattering paths which makes the model
non-integrable. This interference is illustrated in Fig. [}
In fact, the signs 4+ and — in Eq. describe the con-
structive and destructive interference, respectively.

Note in passing, that, in the opposite limit, A > J, the
interference is also important. As illustrated in Fig. [Ib,
it affects the survival probability, but only if the system
starts in the excited state. Then the difference of A in
Eq. corresponding to the sign 4+ and to the sign —
determines the phase difference between the red and blue
tunneling paths.

It is believed that in non-integrable models the two-
level description is not applicable. In fact, Eq.
suggests that the scattering process decouples into two



two-level LZ transitions with modified gaps. From Egs.
and we can readily infer the survival probabili-
ties of the slow and fast transitions:

sl = exp {—277(4‘]2)}, (18)
17 =exp [ 2”(4J2 )] (19)

We see that, due to smallness of the “fast” gap, Q%"

is much bigger than Q5'%", i.e. there is an anomalous
survival of electron in a given dot. In other words, due
to the interference, the adiabaticity of the transition be-
tween the two dots is lifted.

The above consideration was purely semiclassical.
Thus, it applies when the probability Q77" is small. This
requires that the splitting, 2A, while smaller than J, ex-

ceeds J(v/J2> v

section we go beyond the semiclassics and demonstrate
that the condition of strong coupling, J > A, is sufficient

for Eq. to apply.

, as follows from Eq. 1) In the next

III. ANOMALOUS SURVIVAL PROBABILITY

Our goal is to find the asymptotic solution of the sys-
tem Eqgs. — using the small parameter A/J. It
is seen that in the zeroth order, A — 0, the systems for
Ay, By and for A, By are completely decoupled from
each other. In this order, A; is still coupled to B; via
a big coupling constant, 2J. For finite A, an indirect
coupling between the amplitudes A, and By via A; and
By emerges. We are interested to capture the fast LZ

J

transition described by the amplitudes As and Bs. For
this reason, we start with Eqs. , and express
Ay, B; via Ay and Bs in the following way

Ay (%)

By (t)

X X5 (@)
+¢ (1)
Y () Yo (1)

10

where XF(t) and Y (t) are the pairs of the linear-
independent solutions of Egs. 7 without the
right-hand sides. In the presence of the right hand side,

in order to satisfy the system, the functions ¢, ¢; should
obey the following conditions
ict X +ic; X7 = AAs, (21)
weTYF +ic Y, = ABs. (22)
Solving the system Egs. , , we find
ier = A (AQY; - BQX;)7 (23)
icy = JAM(BQX: - AQY:F)v (24)
where we have introduced the notation
JW, = XY Y X, (25)

so that W, has a meaning of the Wronskian, which is

time-independent. Substituting Eqs. (23] (24) into Eq.
, and then Eq. into Egs. (10)), (11, we arrive
to the closed system of integral-differential equations for

As(t), Ba(t)

iAy — %A, +zJW f dt' Ky (t, ) Ax(t') = 'AW f dt' Ko (t, ") Ba (1), (26)

iBy+ % By —if f dt' Ky (1, 1) By (')

where the three kernels are defined as

Kpa(t, 1) = XT ()X (1) = X7 (OXT (), (28)
Kyy(t, 1) = Y (OYS () =Y (OYF (@), (29)
Koy (8,1) = XS (@O)Y () = XS (Y (). (30)

Up to now, we did not make use of the smallness of A. As
we had found above, see Eq. . the characteristic time
of the fast LZ transition is ¢ty ~ A?/Jv, so that vty < J.
This allows to neglect the terms +vt/2 in the equations
for X, Y, which, in turn, leads to the following solutions

XHt) =exp(2iJt), Y (t) = —exp(2iJt), (31)

X7 (t) =exp(—2iJt), Y, (t) = exp(—2iJt). (32)

S

iﬁﬁz f dt' Ky (', 1) Aa(t'), (27)

(

In fact, the true asymptotic behavior of the solutions Egs.
, contains corrections originating from the vt/2
terms. For example, the asymptote for X} has the form

X (t) = exp(2iJt) + exp < - 77%) exp(—2iJt). (33)

The second term can be neglected due to the condition
that the slow LZ transition is adiabatic. Under this con-
dition, the kernels also get greatly simplified, and acquire



the form
Koot 1) :%ﬁnpja—ﬂﬂ, (34)
K,y (t,t') = —2isin {QJ(t—t’)}, (35)
Ky(t,t')  =2cos [2J(t - t')} , (36)

idy— %Ay +in? [t cos [2J(t = ¢)] Aa(t)

— 00

. t
iBy+ 4By — i [ dt cos [27(t )| Ba(t)

— 00

As a next step, we argue that the kernels are rapidly os-
cillating functions, while A5 (¢') and By(t') are slow func-
tions of time. If we take them out of the integrals at
t’ = t, then the integral in the left-hand side will turn to
zero, while the integral in the right-hand side will assume
the value 1/2J. As a result the system Eqgs. ,
will simplify to

. A2
Ay — —A — DBy, 39
iAs 2= 57 (39)
A2
ZBQ —|— 2 B2 i AQ. (40)

The above system describes the conventional LZ transi-
tion with coupling £ 5750 that the corresponding survival
probability will be given by Eq. .

In our derivation we did not assume that the fast LZ
transition is adiabatic. In fact, Qf 95! can be compara-
ble to 1. Certainly, the smlphﬁcatlon of the integrals in
Eqgs. , requires justification. In the Appendix
we consider this simplification in detail.

IV. DISCUSSION

In order to illuminate our main message, let us com-
pare the theoretical predictions for 2 x 2 model in two lim-
itss: A > J and A < J. In the first limit the smallness
of the LZ gap allows to obtain the transition probabili-
ties from simple reasoning. Suppose that at t = —oo the
electron is in the state 1 in the left dot, see Fig. [I} In this
situation, the survival implies that at ¢ — oo the electron
remains in the state 1, i.e. it survives two LZ transitions.
The probability for this is Q11 = QQLZ. Ifat t = -0
the electron is in the state 2, then the survival probability
is the sum of probabilities to remain either in the state 2
or in the state 1. The first probability is Qa2 = Q% ,.
With regard to the second probability, it should be taken
into account that there are two paths from 2 to 1, as illus-
trated in Fig. [[ Corresponding amplitudes interfere with

while the Wronskian assumes the value JW, = 2. The
above expressions for X and Y apply at short times ¢t <
ts ~ J/v, i.e. at times shorter than the time of slow LZ
transition. Still, ¢, is much bigger than ¢, which allows

to use the kernels Egs. — in the system Eqs. ,
(27). The substitution yields

— A2 f‘ dt’ sin [2J(t—t')}32(t'), (37)

= A2 ft dt’ sin {QJ(tft’)]AQ(t’). (38)

(

each other. If the big phase difference, accumulated dur-
ing the time 2A /v is treated as random, one can add the
corresponding probabilities, so that Q21 = 2Q(1 — Q)?.
The average (with respect to the initial states) survival
probability reads

Qi1+ Qoo + Qa1

Qr = 5

=Qrz (Qi,—Quz+1).
(41)
Consider now the limit J > A. If initially the electron

is in the ground state, the at ¢ = —oo we have A; = %

and Ay = % If the electron starts in the excited state,

then the initial conditions are following: A; = %
Ay = —

%. For both initial conditions the outcome of
the LZ transition is the same, namely, A, survives with
high probability, while A; survives with low probability.
Then for the net survival probability we have

1 2m At 4?2
QL = 2{ exp [ 4J2 — 27TU‘| } (42)

We see that for, J > A, the probability Eq. . is
much bigger than Eq. ., which seems counterintu-
itive. Moreover, for J > A, Qy increases with increasing
the tunneling, i.e. the adiabaticity of the multilevel LZ
transition gets suppressed.

In this paper we have focused on a simplest example
of non-integrable model, crossing of two pairs of levels in
the left and in the right dots. It would be certainly inter-
esting to establish how general is our conclusion about
the anomalous survival of electron in a given dot. We
can go one step further and generalize the model to the
case when two groups of N levels in the left and in the
right dot cross each other. Two assumptions™®: (i) all
N? couplings are the same, and (ii) the levels are aligned
at t =0, greatly simplify the analysis. Namely, instead
of Eq. we get the following generalized equation

ZA+€ m‘] ZA+EP vf

and

+ exp

1
L)




In the limit J > ey, which we assumed throughout the
paper, the structure of the solutions is the following. One
solution describes the fast transition. Neglecting e in
the denominators, we find

Aslow — 4 [(%)2 n NQJQ} 2 (44)

The fact that A3°? is much bigger than ¢, justifies ne-
glecting € in the denominators. The corresponding sur-
vival probability is

= @iz @)

2rN2J?
25" (N) = exp [— = ]

v

This result should be contrasted to

=@z, (46)

2N J?
il%w(N)eXp[ 5 ]

which emerges within the independent crossing approach
and also applies to the integrable models. Indeed, to
enforce integrability in a multilevel model, see e.g. Ref.
28|, a portion of tunnel couplings should be set to be zero.

The other N — 1 solutions of Eq. describe the
fast LZ transitions. The values of A for these sojlfutions

are close to the values, Ay, for which the sum, S(A+

k=1
1)~ !, passes through zero. This emphasizes the role
of interference in the formation of the fast transitions.
Indeed, the eigenvector, corresponding to a given A, is
composed of many levels. If all £, reside in the interval A,
then the estimate for A,, is also A, which is much smaller
than J. To find corresponding survival probabilities we
expand Eq. near A,,. The linear terms proportional
to vt/2 get canceled out and we obtain

(a-1) - (%) = L
<2) ﬂ[ém]

From here we find that the survival probability corre-
sponding to a given A,

i‘l;tm)—exp{—” T } (48)
2| % gtay]

All the terms in the sum, S (A, + £;)~2, are positive,

k
and the value of the sum is determined only by the levels
e closest to —A,,. The distance between these levels is

2
~ (A/N). Thus, the sum can be estimated as (%) .

Finally, within a numerical factor in the exponent, we
have

We conclude that, for the fast transitions, the survival
probability grows rapidly with N. Note also that the
result Eq. (48) is straightforward generalization of the
result Eq. (19) to the case of N intersecting levels. We
derived it using the semiclassical approach. However, we
have proven above that Eq. applies beyond semi-
classics. This proof can be generalized to demonstrate
that Eq. is valid beyond semiclassics.

To explain qualitatively the loss of adiabaticity with
increasing the tunneling gap we draw the analogy be-
tween this effect and the Dicke effect®¥ well known in op-
tics. If two emitters are separated by the distance much
smaller than the emitted wavelength, the radiation life-
time of the pair increases drastically. This is because the
two eigenmodes of the oscillating emitters are the sym-
metric and antisymmetric combinations of the individual
oscillations. The antisymmetric mode weakly overlaps
with the emission field. Hence the long lifetime. In the
model we considered, due to tunneling, the correct eigen-
states of, say, the left dot are also A; = %(al + as) and
Ay = %(al — az). The gap for A; is twice the gap in
the individual LZ transition, while the gap for A, is sup-
pressed and decreases with J. This is the origin of the
anomalous survival. The bigger is the number of levels in
each dot, the less strict is the requirement that all tunnel
couplings are the same 38

V. CONCLUDING REMARKS

(i) It is common to judge on whether or not the system
with many degrees of freedom is integrable basing on nu-
merically generated level statistics in a limited spectral
interval, see e.g. Ref. [37. If the statistics is Poissonian,
the system can be decoupled into individual “blocks”
which do not interact with each other. This is an indica-
tion that the system is integrable. If, alternatively, the
level statistics is Wigner-Dyson, different energy levels
repel each other, suggesting that the corresponding eigen-
states “know” about the entire system. Such a system
is non-integrable. With regard to multistate LZ mod-
els, similar approach has been employed in Refs. 2728l
If the time evolution of the semiclassical levels exhib-
ited avoided crossings, the model was judged to be non-
integrable. Certainly, it is the interference of many par-
tial amplitudes that is responsible for the level repulsion
in many-body systems. Similarly, in non-integrable mul-
tilevel LZ models the time evolution between two distant
level crossings allows more than one path.

(ii) Although the integrable models in Refs. 22123| con-
tain interfering paths, the parameters of these models are
fine-tuned in order to enforce the destructive interference.

(iii) It might seem that if we modify the 2 x 2 model by
making the two spacings uneven and sending one of the
spacings to zero, the 2 x 2 model will cross over to 2 x 1
model. We would like to emphasize that this is not the
case. Even if the levels in the right dot are separated by
2A1 < 2A, we will not emulate the 2 x 1 situation. The



formal reason for this is that the level degeneracy in the
right dot will be lifted due to coupling of the degenerate
levels via the left dot. With asymmetry, the width of the
gap corresponding to the fast LZ transition, is modified
from A2/2J to AA;/2J.
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VI. APPENDIX

In this Appendix we explore the assumptions leading

from the system Eqs. ), to the system Egs. (39)),
. We will first assume that the system Eqgs. , (140)

applies, and use it to trace the above assumptions.

Consider the integral in the right-hand side in Eq. .
Upon performing the integration by parts twice, it can
be cast in the form

j dt’ sin [2J(t - t’)} As(t)

t

2 /
/ dt’ sin [2J(t — t’)} %ﬁg”.

1 1
B Ay

— 00

(50)

It is now convenient to combine the left-hand side with

the term containing second derivative in the right-hand
side

t

/ dt’ sin [2J(t — t’)]

—0o0

(1 9P A(t)

I [
A(t) + 42 ot

:_%@@.@U

If the system Egs. 7 applies, the 92 A, /0t" can

be expressed through A,. Substituting this expression
into Eq. , we get

¢
At v vt
! e Yy / _ ;2
/dt sin {2J(t t):|{A2(t)|:1 16J4—H4J2 16,]2]}

—0o0

:%@@(m

Now we see that taking As(t) out of the integral amounts
to keeping only the first term in the square brackets.
Indeed, the second term is much smaller than 1 by virtue
of the condition A <« J. The third term is much smaller
than 1, since the slow transition is adiabatic. With regard
to the fourth term, the characteristic ¢’ is of the order of
time of the fast LZ transition. If the fast transition is
adiabatic, then ¢’ is of the order of A?/Jv, so that the
fourth term is of order of the second term. If the fast
transition is non-adiabatic, then ¢’ is of the order of v—1/2.
In this limit the fourth term is of the order of the third
term. In both cases the terms which we neglected are
small. Similar consideration justifies the simplification
of the other integrals.
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