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The intrinsic ferromagnetic semiconductor GdN o↵ers a unique opportunity to separate the
anomalous and ordinary contributions to the Hall e↵ect, and to investigate the strength of the
anomalous Hall e↵ect (AHE) as a function of carrier concentration and relaxation time. The data
show an AHE that is inversely proportional to the carrier concentration n in a single spin channel.
There is no dependence at all on the relaxation time ⌧ , rather than the usual ⌧1 or ⌧2 dependencies
predicted by conventional mechanisms. However, the n and ⌧ dependencies are identical to those of
the ordinary Hall e↵ct (OHE), which suggests a semiclassical wave-packet description of an intrinsic
AHE contribution that ultimately provides a quantitative agreement with the data.

PACS numbers: 72.25.Dc, 73.50.Jt 75.50.Pp

I. INTRODUCTION

The anomalous Hall e↵ect (AHE) is a current-
transverse voltage proportional to the magnetisation of
ferromagnetic conductors that has been recognised for
more than a century.1 For more than half a century the
e↵ect has been recognised as resulting from the spin-orbit
(SO) interaction, which deflects in opposite senses the
paths of spin-up and spin-down electrons.2 The experi-
mental literature is overwhelmingly focused on ferromag-
netic metals, in which it has been common to investigate
the transverse Hall resistivity (⇢xy) as a function of the
longitudinal resistivity (⇢xx).3–5

Three competing mechanisms are proposed for the
AHE: (1) a side-step scattering at each impurity scatter-
ing event, (2) a skew scattering from the same impurities
and (3) an intrinsic assymetry resulting from the SO in-
teraction at host ions.3 They are usually separated by
their dependence on the scattering frequency � = ⌧

�1,
relying on the approximately fixed carrier concentration
in metals to permit the use of the longitudinal resistivity
as a proxy for �.3 An independent control of the car-
rier concentration and relaxation time in semiconductors
o↵ers the opportunity to separate the influences of the
two parameters, but a paucity of suitable intrinsic fer-
romagnetic semiconductors has so far prevented such a
study. The recent recognition of the rare-earth nitrides
as a series of epitaxy-compatible intrinsic ferromagnetic
semiconductors relieves that bottleneck.6–8 Here we re-
port a study of the AHE and the ordinary Hall e↵ect
(OHE) in films of GdN, the prototypical rare-earth ni-
tride, with a wide range of carrier concentrations and
relaxation times.

The rare-earth nitrides condense into the NaCl struc-
ture, with a lattice constant close to 0.5 nm.9 Their
wide-ranging magnetic and coupled magnetic-electronic
responses have seen them included in a number of device
structures.10–13 The series includes at least one supercon-
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FIG. 1. Typical Hall data in GdN. Above 2.1 T the field
dependence is linear with a slope of the OHE, while the zero-
field intercept gives the saturation value of the AHE.

ducting member,14 and ab initio calculations support the
suggestion that they may show both ferroelectric15 and
topological insulator16 phases. GdN lies in the center of
the series with a purely spin magnetic moment of 7 Bohr
magnetons (µB) per primitive cell that is sited primarily
in the Gd3+ 4f shell.
Electron transport occurs in the 5d conduction band

that is populated by nitrogen-vacancy (VN ) donors.17,18

A ferromagnetic 5d-4f exchange interaction ensures that
the 5d alignment follows the 4f alignment, thus retaining
the close connection between the magnetisation and the
spin imbalance in the conduction band. For the Hall
geometry in thin films the shape anisotropy dictates that
the magnetisation rises linearly with an applied field B

until the magnetisation saturates above B = 4⇡Msat ⇡
2.1 T for the large magnetisation of GdN, where Msat is
the saturation magnetisation. Above that field the AHE
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FIG. 2. (Color online) The amplitude of the AHE in donor-doped GdN as a function of (a) the resistivity, (b) the electron
concentration, (c) the electron mobility and (d) the mobility after correcting for the concentration influence. It is clear that
there is no correlation with the mobility, but as highlighted by the line in (b) there is rather an excellent, tightly-defined inverse
correlation with the electron concentration for the electron concentration below 1021 cm�3.

is saturated, and the net Hall e↵ect then increases with
the OHE, as seen in the data of Figure 1.6,19,20 With
such a simple field dependence the carrier concentration
can be determined from the slope at high fields, and the
AHE magnitude is given by the extrapolation to zero
field. Note that the coercive field is so small in GdN
(⇡ 0.01 T) as to be irrelevant at the scale of Figure 1.21

II. EXPERIMENTAL DETAILS

The GdN films used in the present work were grown to
thickness of 50-150 nm in four di↵erent growth chambers.
They comprise a mixture of epitaxial and polycrystalline
films. The films were grown at 0.5-1.0 nm s�1 in the
presence of ⇡10�4 mbar of pure N2 or ammonia. They
had carrier concentrations controlled by varying the VN

concentration6,20,22 and by the introduction of Mg as an
acceptor.23 The relaxation time was limited by a mix-
ture of point defects (e.g., VN , Mg dopants) and grain
boundaries, so as seen below it is not simply related to
the carrier concentration.

Magneto-transport measurements at 2-300 K and in
fields to ±8 T were performed in a Quantum Design
PPMS. The results all conform to the pattern seen in
Figure 1, with both the ordinary and the anomalous con-
tributions negative and the knee corresponding to the
shape-anisotropy limit at ⇡2.1 T.20 For the present pur-
pose we focus on temperatures of  20 K, well below
the GdN Curie temperature of 50-70 K,6 to ensure that
the magnetization is within a few percent of its zero-
temperature saturated value.

III. RESULTS AND DISCUSSION

A. Carrier concentration and mobilty dependencies

The carrier concentrations and AHE magnitudes from
a wide range of GdN films, along with the mobility de-
termined by resistivity data, display a remarkably consis-
tent correlation. In Figure 2(a) the AHE magnitudes are
plotted against the resistivity, as is the common presenta-
tion for ferromagnetic metals. There is a loosely-defined
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correlation which in metals would suggest that the AHE
is inversely proportional to the electron relaxation time,
or equivalently the mobility.3 However, in these semicon-
ductor films there is a simple inverse dependence on the
carrier concentration [Figure 2(b)] and no dependence at
all on the relaxation time [Figure 2(c)].

The lack of any systematic AHE dependence on the
electron mobility in the present data set is at odds with
conventional expectations, so it is essential to understand
how strongly the data support that lack. Figure 2(c)
shows a widely scattered pattern, so we show also in Fig-
ure 2(d) ⇢AH

xy after correction for the inverse carrier con-
centration dependence. The data span less than a factor
of 1.5 (i.e., ±20%) as the mobility changes by two or-
ders of magnitude. The evidence for a lack of scattering
dependence is exceedingly strong.

The common 1/n dependence of the ordinary and
anomalous contributions to the Hall e↵ect ensure that
the two contributions scale, that the ratio between them
is independent of the carrier concentration. In terms of
their resistivities, the line in Figure 2(b) defines

⇢

AH
xy =

2.2⇥ 10�5

n

⌦cm

= ⇢

OH
xy

5 T

B

. (1)

Thus for carrier concentration less than 1021 cm�3 the
OHE is equal to the AHE at B = 5 T, as already seen in
Figure 1.

In the following sections we focus first on the corre-
lation between the AHE and the carrier concentration,
which agrees well with with a purely majority-spin trans-
port channel seen in the computed band structure. We
then move to discuss the lack of the relaxation-time de-
pendence that is in such strong direct disagreement with
the three common mechanisms for the AHE.

B. Filling the majority-spin band

The anomalous Hall conductivity �

AH
xy has opposite

contributions from the two spin-oriented electrons; it fol-
lows the di↵erence (n" � n#) between the concentration
of spin up (n") and spin down (n#) electrons, whereas the
longitudinal conductivity �xx follows the sum (n" + n#).
The measurements correspond to the resistivity, ⇢xy =
�yx/�

2
xx for �yx ⌧ �xx, giving a concentration depen-

dence of (n" � n#)/(n" + n#)2 for the anomalous Hall
resistivity ⇢

AH
xy . Thus a signature of a single-spin chan-

nel, with n# = 0, is that the AHE, like the OHE, is in-
versely proportional to the carrier concentration. This is
exactly the dependence in moderately-doped GdN seen
in Figure 2(b); evidently only one spin state populates
the conduction band of GdN until there are 1021 cm�3

carriers. At larger concentration the minority-spin band
begins to fill, reducing the relative spin imbalance to re-
duce the AHE below the 1/n extrapolation.

 

FIG. 3. (Color online) LSDA+U -calculated band structure
of ferromagnetic GdN (from Ref. [8]). The solid red (dashed
blue) lines represent the majority (minority) spin bands. The
expanded view of the conduction-band minimum identifies
the semimajor (a) and semiminor (b) axes of the majority-
spin prolate spheroid immediately before increasing the car-
rier concentration to start filling the minority-spin pocket.

The LSDA+U computed band structure for GdN
shows three prolate-spheroid electron pockets at the X

points (see Figure 3), with a spin splitting of ⇡ 1 eV.8,24

The concentration at which the Fermi energy reaches the
minority-spin conduction band is determined by the vol-
ume of the majority-spin pockets at the Fermi energy cor-
responding to the bottom of the minority-spin pockets.
The semi-axes a and b of the maximum-volume spheroids
are noted in Figure 3, in terms of which the maximum
purely majority-spin filling is

1

(2⇡)3
4⇡

3
ab

2
. (2)

The dimensions shown in Figure 3 give a carrier concen-
tration of 3⇥1020 cm�3, so that the net purely majority-
spin electron concentration in the three X-point pockets
is ⇠ 1021 cm�3, in excellent agreement with the data.
For lower concentration the conduction channel is purely
of majority spin, as the AHE data suggest.

C. Semiclassical treatment of the AHE

Theoretical AHE descriptions are firmly focused on the
dependence of the AHE on the scattering frequency �,
described in terms of an exponent defined by

⇢

AH
xy / �

� (3)

The competing AHE scenarios are characterised as:
(i) skew scattering by impurities (� = 1), (ii) side jump
scattering events (� = 2) and (iii) the intrinsic Berry



4

phase description (� = 2).3 The expected run of the AHE
is shown by the lines in Figure 2(d); the data disagree
exceedingly strongly with them both. However, there
is a large body of data in a strongly disordered regime
showing a superlinear dependence of the anomalous Hall
conductivity �

AH
xy on the longitudinal conductivity �xx

�

AH
xy / �

↵
xx; 1  ↵  2; 1 � � � 0. (4)

The phenomenon has been modelled by Onoda et al.,4

where the exponent ↵ ⇡ 1.6 (� ⇡ 0.4) is found for
⇢xx � 0.5 m⌦cm corresponding to the range in these
GdN films. We thus show the expected dependence in
Figure 2(d). The GdN data, with � = 0, does not fit to
any of these scenarios. Furthermore the lack of any de-
pendence on the various di↵ering scattering centres in the
wide range of samples suggests that the details of defect
scattering are unimportant and encourages a considera-
tion of an intrinsic mechanism for the observed AHE. We
thus proceed on that path.

The spin-orbit interaction necessarily introduces a
term in the Hamiltonian that shows the full translational
symmetry of the crystal, whose primary e↵ect is mix-
ing among the various bands, as is of central importance
in the Berry-phase description of the intrinsic AHE.25

However, within the semiclassical description of electron
transport one notices that, in addition to the periodic
terms that are absorbed into the e↵ective mass, an elec-
tron traversing the crystal experiences also a transverse
force with a finite volume average, which we now treat
within the semiclassical model.

Our treatment is based on the Boltzmann equation,
for which the solutions are textbook material.26–28 In the
presence of a magnetic field there is a velocity-transverse
Lorentz force on each electron that introduces a trans-
verse acceleration proportional to the electron velocity,
which in Gaussian units is given by

v̇ =
e

m

⇤
c

v ⇥B, (5)

where c is the speed of light. This in turn leads to a
deflection of the path within the wave-packet description
of the electron at an angular rate given by

✓̇ = !c = v̇?/v =
eB

m

⇤
c

, (6)

where v̇? is the component of acceleration perpendicular
to the velocity. For the quadratic electron dispersion at
the conduction-band minimum the electron paths are de-
flected through an angle !c⌧ (!c the cyclotron frequency)
under the influence of the Lorentz force. For short relax-
ation times, (!c⌧ ⌧ 1),

�xy = �xx!c⌧, (7)

which imposes the ⌧

2 dependence on �xy. Inverting to
the resistivity tensor yields an ordinary Hall resistivity

⇢xy = ⇢xx!c⌧. (8)

The resistivity ⇢xx depends inversely on ⌧ to give a Hall
resistivity that is independent of scattering.
Turning now to the spin-orbit interaction, the mag-

netic field sensed by an electron moving with velocity v

through the electric field in a crystal is given by the usual
relativistic transformation

B = �1

c

v ⇥E. (9)

Note that Equation 9 assumes a nonrelativistic velocity,
v
c ⌧ 1. The electron, with magnetic moment µ, experi-
ences a force

F = r(µ ·B). (10)

Within the semiclassical picture the electron is repre-
sented by a Bloch wave packet traveling with the group
velocity. Taking the volume average of the product of the
force and the square of the wave function, which reduces
trivially to the integral over a primitive cell, we have:

F = �1

c

Z
d

3
rr[µ · (v ⇥E)] |uk|2. (11)

As usual the Bloch-wave phase factor does not contribute
to the function |uk|2, which then has the full translation
and point symmetry of the lattice. The equation assumes
that |uk|2 is normalised within the primitive cell.
Deep in the ferromagnetic phase the magnetic moment

of a conduction-band electron can be represented as µB ẑ,
and selecting the in-plane (i.e., magnetic-moment trans-
verse) velocity to be along x,

F = �µBvx

c

Z
d

3
rrEy |uk|2. (12)

The x and z components of rEy are odd about the
centers of inversion in the crystal, and |uk|2 is even, so
that the only component of the force is transverse to
both the magnetic moment and the velocity, and it has
the magnitude

Fy = �µBvx

c

Z
d

3
r

@Ey

@y

|uk|2 (13)

which drives a transverse acceleration and redirects the
field-normal velocity at a rate

!so =
v̇y

vx
= � µB

m

⇤
c

Z
d

3
r

@Ey

@y

|uk|2. (14)
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Under the cubic point symmetry of GdN, the three
coordinates return identical integrals, so that

!so =
�µB

3m⇤
c

Z
d

3
rr ·E |uk|2

=
�4⇡µB

3m⇤
c

Z
d

3
r⇢(r) |uk|2. (15)

Here ⇢(r) is the charge density of all nuclei and electrons
within the unit cell. The form of the deflection is en-
tirely analogous to the Lorentz-force deflection for which
the Boltzmann equation then leads to the mobility in-
dependent AHE (� = 0) in common with the conven-
tional Hall e↵ect.26,27 For the single-spin channel of GdN
the Boltzmann-equation solution gives a clear relation-
ship between the diagonal and o↵-diagonal elements in
the resistivity:27,28

⇢xy = ⇢xx(!c⌧ + !so⌧), (16)

⇢xx =
m

⇤

ne

2
⌧

, (17)

!c =
eB

m

⇤
c

. (18)

Finally the ratio of AHE to OHE is given by

⇢

AH
xy

⇢

OH
xy

=
!so

!c
=

�4⇡µB

3eB

Z
d

3
r⇢(r) |uk|2. (19)

One expects that both terms in the integrand are even
about a center of inversion, so simple symmetry argu-
ments are not helpful to establish a zero integral. ⇢(r) is
the charge density in an undoped GdN unit cell, includ-
ing all charges of the Gd3+ and N3� ions. The net charge
within a unit cell is necessarily zero, but the conduction
band consists of nearly pure Gd 5d character, which fea-
tures zero weight at the Gd nucleus, the site of the single
largest contribution to the charge. The intergral then in-
volves the remaining -eZGd with ZGd = 64, though the
electronic charge from the most tightly bound core states
will also be diminished by the vanishing weight of the 5d
wave function near the Gd nucleus. Thus as a first ap-
proximation one expects the integral to return somewhat
less that 64e

V for a unit cell volume V , so that

Z
d

3
r⇢(r) | uk |2= �⌘

64e

V

(20)

and

!so

!c
B = ⌘

256⇡µB

3V
(21)

FIG. 4. (Color on-line) Calculation of the integral in Eq. 20
and its contributions.

with ⌘ < 1. With the GdN cell volume (V = 3.1 ⇥
10�23 cm3),

!so

!c
B = ⌘7.9⇥ 104 G = ⌘7.9 T. (22)

Recalling that the ratio !
so

!
c

is 1.0 at 5 T, one finds that
⌘ = 0.6, an entirely reasonable result.
A first-principles estimate of the integral in Eq. 20

can be determined as follows. The Bloch state at the
conduction band minimum uk is essentially a dxy state
when the conduction band minimum is considered at
kX = [0, 0, 1]2⇡/a. Thus the integral over angles in Eq.
20 reduces to the spherical harmonic normalization inte-
gral and we are left with

Z s

0
r

2
dr⇢(r)Rd(r)

2 (23)

where Rd(r) is the radial part of the Gd-d function and
s is the size of a sphere around the Gd atom. We re-
place it by the free atom Gd-d radial wave function cal-
culated within the local density approximation for sim-
plicity. The upper limit is not very crucial because, as
we will see, most of the integral comes from the inner
part of the sphere and is well converged within a touch-
ing mu�n-tin sphere around the Gd site. Fig. 4 shows
the behavior of the relevant functions and the integral.
It shows the up and down spin contributions to the

total charge density 4⇡⇢(r)r2 which is seen to integrate to
64. The Gd-partial contribution 4⇡⇢Gd�dr

2 = 4⇡R2
d(r)r

2

is shown by the green line, multiplied by a factor 100 to
make it visible. Although this function is seen to have its
maximum at about 2 a0 and extend till about 7 a0 the
relevant integral shown by the dashed brown line is seen
to converge to a value of about 0.19 within about 1 a0.
The volume of the unit cell, V = 208a30 corresponds to a
density of n = 64/208 = 0.30a�3

0 . Thus our calculated ⌘

factor is 0.19/30 = 0.63 in excellent agreement with the
above experimental estimate.
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FIG. 5. (Color online) Sketch of the electron trajectories lead-
ing to the ordinary (left) and anomalous (right) Hall e↵ects.
The circulating arrows represent the spin angular momentum
sense, and the up/down arrows give the direction of the mag-
netic dipole moments. The sketch is drawn assuming that
(i) the favored spin magnetic moment is parallel to the mag-
netic field and (ii) a magnetic-moment up electron is deflected
to the left, for which the OHE and AHE share a common sign.

Finally we note that the common negative sign be-
tween the OHE and AHE is exactly as expected, based
on the electron doping into a band where the magnetic
dipole moments of the carriers align with the applied
magnetic field. For the velocity v along x̂ and the mag-
netic field along ẑ an electron is deflected toward the left,
i.e., toward positive ŷ. The resulting trajectories are il-
lustrated in Figure 5.

The data in the present paper clearly relate closely
to the strong scattering limit within the Berry-phase de-
scription of the intrinsic AHE.3,4,25 The scattering depen-
dence of �AH

xy predicted4 as proportional to ⌧

1.6 appears
in the present semiclassical model to follow the measured
dependence on ⌧

2. Furthermore the present model re-
turns a magnitude in quantitative agreement with the
data. The inference is that the intrinsic �

AH
xy is reduced

at scattering rates ⌧

�1 � !so, thereafter following a ⌧

2

dependence.

IV. SUMMARY

We have reported measurements of the anomalous Hall
e↵ect in GdN. The results display a very simple field

dependence that permits a clear separation of the or-
dinary and anomalous Hall resistances. Furthermore,
both the carrier concentration and the scattering rate
are amenable to control in this intrinsic ferromagnetic
semiconductor, which has provided a unique opportu-
nity for an unambiguous investigation of the dependence
of the anomalous Hall e↵ect on these two parameters.
There is an especially simple inverse dependence on the
carrier concentration that is easily understood as sig-
nalling that the current carriers reside in a majority spin
band; the minority-spin band remains unoccupied until
the carrier concentration reaches 1021 cm�3. That car-
rier concentration coincides with the prediction based on
an LSDA+U band structure calculation, confirming the
utility of the band structure and highlighting GdN as a
single-spin-channel semiconductor.

The measurements show a lack of any dependence on
the carrier mobility, or equivalently electron relaxation
time, at variance with currently formulated mechanisms
for the anomalous Hall e↵ect. We provide an inclusion of
the intrinsic spin-orbit interaction within a semiclassical
model that is in excellent agreement with the entire data
set, and suggest that it represents the strong-scattering
limit of the Berry-phase intrinsic AHE.
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